Stirring System Design for Automatic Coffee Maker Using OMRON PLC and PID Control

(1) Ashadi Setiawan Mail (Universitas Ahmad Dahlan, Indonesia)
(2) * Alfian Ma'arif Mail (Universitas Ahmad Dahlan, Indonesia)
*corresponding author

Abstract


The implementation of the use of PLC in this study was designed for a small scale in the process of stirring coffee drinks at a speed of 600 RPM. To get a stable speed so that the water does not overflow, a control system is needed. To get optimal results, a system design that can control the stirring speed is arranged automatically using a Programmable Logic Controller (PLC). This system is designed using a rotary encoder sensor C38S6G5-600B-G24N as a speed reader obtained from the movement of the motor, DC Motor JGA25-370 12V as an actuator or stirrer. PLC OMRON CP1E-NA20DR-A is used as a motor speed control device using the Proportional Integral Derivative (PID) algorithm to control the system according to the setpoint entered. The motor speed control system with the PID algorithm shows a system response that works well according to the researchers' expectations. The response of the system obtained is fast enough to achieve a stable speed with a small overshoot value. Thus this system was successfully designed to control the stirring process of coffee drinks automatically and produce stable stirring by giving a set point of 600 RPM at the parameter constant Proportional band is 720%; Integral time is 1.6s; and Derivative time is 0.2s with a rise time value is 1.3s; settling time is 11s; overshoot is 1.1%; and steady-state error is 0.5%.

Keywords


Programmable Logic Controller; PLC Omron; DC Motor; PID Control; Angular Speed

   

DOI

https://doi.org/10.31763/ijrcs.v1i3.457
      

Article metrics

10.31763/ijrcs.v1i3.457 Abstract views : 4627 | PDF views : 946

   

Cite

   

Full Text

Download

References


[1] Z. Lv and N. Kumar, “Software defined solutions for sensors in 6G/IoE,” Computer Communications, vol. 153, pp. 42–47, Mar. 2020. https://doi.org/10.1016/j.comcom.2020.01.060

[2] M. A. Ahad, S. Paiva, G. Tripathi, and N. Feroz, “Enabling technologies and sustainable smart cities,” Sustainable Cities and Society, vol. 61, p. 102301, Oct. 2020. https://doi.org/10.1016/j.scs.2020.102301

[3] S. Singh, P. K. Sharma, B. Yoon, M. Shojafar, G. H. Cho, and I. H. Ra, “Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city,” Sustainable Cities and Society, vol. 63, p. 102364, Dec. 2020. https://doi.org/10.1016/j.scs.2020.102364

[4] H. Hamdan, “Industri 4.0: Pengaruh Revolusi Industri Pada Kewirausahaan Demi Kemandirian Ekonomi,” Jurnal Nusantara Aplikasi Manajemen Bisnis, vol. 3, no. 2, p. 1, 2018. https://doi.org/10.29407/nusamba.v3i2.12142

[5] H. Cañas, J. Mula, M. Díaz-Madroñero, and F. Campuzano-Bolarín, “Implementing Industry 4.0 principles,” Computers & Industrial Engineering, vol. 158, p. 107379, Aug. 2021. https://doi.org/10.1016/j.cie.2021.107379

[6] Y. Shahzad, H. Javed, H. Farman, J. Ahmad, B. Jan, and M. Zubair, “Internet of Energy: Opportunities, applications, architectures and challenges in smart industries,” Computers & Electrical Engineering, vol. 86, p. 106739, Sep. 2020. https://doi.org/10.1016/j.compeleceng.2020.106739

[7] A. Sestino, M. I. Prete, L. Piper, and G. Guido, “Internet of Things and Big Data as enablers for business digitalization strategies,” Technovation, vol. 98, p. 102173, Dec. 2020. https://doi.org/10.1016/j.technovation.2020.102173

[8] S. Nižetić, P. Šolić, D. López-de-Ipiña González-de-Artaza, and L. Patrono, “Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future,” Journal of Cleaner Production, vol. 274, p. 122877, Nov. 2020. https://doi.org/10.1016/j.jclepro.2020.122877

[9] C. Spence and F. M. Carvalho, “The coffee drinking experience: Product extrinsic (atmospheric) influences on taste and choice,” Food Quality and Preference, vol. 80, p. 103802, Mar. 2020. https://doi.org/10.1016/j.foodqual.2019.103802

[10] N. Firmawati, G. Farokhi, and W. Wildian, “Rancang Bangun Mesin Pembuat Minuman Kopi Otomatis Berbasis Arduino UNO dengan Kontrol Android,” JITCE (Journal of Information Technology and Computer Engineering), vol. 3, no. 01, pp. 25–29, Mar. 2019. https://doi.org/10.25077/jitce.3.01.25-29.2019

[11] L. Wibowo and W. Broto, “Pemanfaatan Mikrokontroler Dalam Mesin Pembuat Kopi,” Prosiding SNF, vol. 6, pp. SNF2017-CIP, Oct. 2017. https://doi.org/10.21009/03.SNF2017.02.CIP.01

[12] M. S. Hadi, S. Ubaidilah, R. A. P. Sari, and D. P. Fatmala, “Sistem kendali otomatis mesin penetas telur menggunakan kontroler PID,” Jurnal Teknologi, Elektro, dan Kejuruan, vol. 27, no. 2, pp. 116–124, 2017. https://doi.org/10.17977/um034v27i2p116-124

[13] J. Mellado and F. Núñez, “Design of an IoT-PLC: A containerized programmable logical controller for the industry 4.0,” Journal of Industrial Information Integration, p. 100250, Aug. 2021. https://doi.org/10.1016/j.jii.2021.100250

[14] A. Goeritno and S. Pratama, “Rancang-Bangun Prototipe Sistem Kontrol Berbasis Programmable Logic Controller untuk Pengoperasian Miniatur Penyortiran Material,” Jurnal Rekayasa Elektrika, vol. 16, no. 3, pp. 198–206, 2020. https://doi.org/10.17529/jre.v16i3.14905

[15] D. Yuhendri, “Penggunaan PLC Sebagai Pengontrol Peralatan Building Automatis,” Journal of Electrical Technology, vol. 3, no. 3, pp. 121–127, 2018. https://jurnal.uisu.ac.id/index.php/jet/article/view/952

[16] A. Rustandi and M. F. Ibrahim, “Simulasi Mesin Pencampur Kopi Otomatis dengan Metode Tunning PID pada LabVIEW Automatic Coffee Mixer Simulator with Tunning PID Methode on LabVIEW,” vol. 4, no. 2, pp. 25–34, 2016. https://doi.org/10.34010/telekontran.v4i2.1887

[17] N. Mohammed and A. M. Saif, “Programmable logic controller based lithium-ion battery management system for accurate state of charge estimation,” Computers & Electrical Engineering, vol. 93, p. 107306, Jul. 2021. https://doi.org/10.1016/j.compeleceng.2021.107306

[18] S. Vadi, R. Bayindir, Y. Toplar, and I. Colak, “Induction motor control system with a Programmable Logic Controller (PLC) and Profibus communication for industrial plants — An experimental setup,” ISA Transactions, Apr. 2021. https://doi.org/10.1016/j.isatra.2021.04.019

[19] K. Czerwiński, A. Wojtulewicz, and M. Ławryńczuk, “Fuzzy Controller for Laboratory Levitation System: Real-time Experiments Using Programmable Logic Controller,” International Journal of Control, Automation and Systems, vol. 17, no. 6, pp. 1507–1514, May 2019. https://doi.org/10.1007/s12555-018-0394-1

[20] R. D. Puriyanto, S. A. Akbar, and A. Aktawan, “Desain Sistem Biodiesel Berbasis Plc Berdasarkan Diagram Keadaan,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 4, no. 2, pp. 100–109, 2018. https://doi.org/10.26555/jiteki.v4i2.12051

[21] Hendra, S. Pebriyanto, Hernadewita, Hermiyetti, and Yoserizal, “Applying Programmable Logic Control (PLC) for Control Motors, Blower and Heater in the Rubber Drying Processing,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 1, pp. 131–141, 2021. https://doi.org/10.26555/jiteki.v7i1.20514

[22] Y. H. Cheng, P. J. Chao, H. Y. Liang, and C. N. Kuo, “Smart home environment management using programmable logic controller,” Engineering Letters, vol. 28, no. 4, pp. 1174–1181, 2020. http://www.engineeringletters.com/issues_v28/issue_4/EL_28_4_24.pdf

[23] S. Yahya, S. W. Jadmiko, K. Wijayanto, and A. R. A. Tahtawi, “Design and implementation of training module for control liquid level on tank using PID method based PLC,” IOP Conference Series: Materials Science and Engineering, vol. 830, no. 3, p. 032065, Apr. 2020. https://doi.org/10.1088/1757-899X/830/3/032065

[24] D.-A. Mocanu, V. Bădescu, C. Bucur, I. Ștefan, E. Carcadea, M. S. Răboacă, and I. Manta “PLC Automation and Control Strategy in a Stirling Solar Power System,” Energies 2020, Vol. 13, Page 1917, vol. 13, no. 8, p. 1917, Apr. 2020. https://doi.org/10.3390/en13081917

[25] S. Kadry and V. Rajinikanth, “Design of PID Controller for Magnetic Levitation System using Harris Hawks Optimization,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 6, no. 2, p. 70, 2021. https://doi.org/10.26555/jiteki.v6i2.19167

[26] T. P. Cabré, A. S. Vela, M. T. Ribes, J. M. Blanc, J. R. Pablo, and F. C. Sancho, “Didactic platform for DC motor speed and position control in Z-plane,” ISA Transactions, 2021. https://doi.org/10.1016/j.isatra.2021.02.020

[27] S. Ekinci, B. Hekimoğlu, and D. Izci, “Opposition based Henry gas solubility optimization as a novel algorithm for PID control of DC motor,” Engineering Science and Technology, an International Journal, vol. 24, no. 2, pp. 331–342, Apr. 2021. https://doi.org/10.1016/j.jestch.2020.08.011

[28] X. Jin, K. Chen, Y. Zhao, J. Ji, and P. Jing, “Simulation of hydraulic transplanting robot control system based on fuzzy PID controller,” Measurement, vol. 164, p. 108023, Nov. 2020. https://doi.org/10.1016/j.measurement.2020.108023

[29] Q. Bu, J. Cai, Y. Liu, M. Cao, L. Dong, R. Ruan, and H. Mao, “The effect of fuzzy PID temperature control on thermal behavior analysis and kinetics study of biomass microwave pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 158, p. 105176, Sep. 2021. https://doi.org/10.1016/j.jaap.2021.105176

[30] L. Pan and X. Wang, “Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control,” Renewable Energy, vol. 159, pp. 221–237, Oct. 2020. https://doi.org/10.1016/j.renene.2020.05.093

[31] C. Conker and M. K. Baltacioglu, “Fuzzy self-adaptive PID control technique for driving HHO dry cell systems,” International Journal of Hydrogen Energy, vol. 45, no. 49, pp. 26059–26069, Oct. 2020. https://doi.org/10.1016/j.ijhydene.2020.01.136

[32] I. Carlucho, M. De Paula, and G. G. Acosta, “An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots,” ISA Transactions, vol. 102, pp. 280–294, Jul. 2020. https://doi.org/10.1016/j.isatra.2020.02.017

[33] H. Rahimi Nohooji, “Constrained neural adaptive PID control for robot manipulators,” Journal of the Franklin Institute, vol. 357, no. 7, pp. 3907–3923, May 2020. https://doi.org/10.1016/j.jfranklin.2019.12.042

[34] W. Tang, L. Wang, J. Gu, and Y. Gu, “Single Neural Adaptive PID Control for Small UAV Micro-Turbojet Engine,” Sensors 2020, Vol. 20, Page 345, vol. 20, no. 2, p. 345, Jan. 2020. https://doi.org/10.3390/s20020345

[35] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, tuning methods and applications,” International Journal of Dynamics and Control 2020 9:2, vol. 9, no. 2, pp. 818–827, Jul. 2020. https://doi.org/10.1007/s40435-020-00665-4

[36] J. Możaryn, J. Petryszyn, and S. Ozana, “PLC based fractional-order PID temperature control in pipeline: design procedure and experimental evaluation,” Meccanica 2020 56:4, vol. 56, no. 4, pp. 855–871, Aug. 2020. https://doi.org/10.1007/s11012-020-01215-0

[37] F. Meng, S. Liu, and K. Liu, “Design of an Optimal Fractional Order PID for Constant Tension Control System,” IEEE Access, vol. 8, pp. 58933–58939, 2020. https://doi.org/10.1109/ACCESS.2020.2983059

[38] Kasmira, A. Waris, and M. T. Sapsal, “Rancang Bangun Sistem Kendali Kecepatan Putar Motor DC menggunakan PID Controller pada Mesin Pengaduk,” AgriTechno, vol. 11, no. 1, pp. 81–92, 2018. https://doi.org/10.20956/at.v11i1.90

[39] Y. Zhi, W. Weiqing, C. Jing, and N. Razmjooy, “Interval linear quadratic regulator and its application for speed control of DC motor in the presence of uncertainties,” ISA Transactions, Jul. 2021. https://doi.org/10.1016/j.isatra.2021.07.004

[40] B. N. Kommula and V. R. Kota, “Direct instantaneous torque control of Brushless DC motor using firefly Algorithm based fractional order PID controller,” Journal of King Saud University - Engineering Sciences, vol. 32, no. 2, pp. 133–140, Feb. 2020. https://doi.org/10.1016/j.jksues.2018.04.007

[41] E. Eker, M. Kayri, S. Ekinci, and D. Izci, “A New Fusion of ASO with SA Algorithm and Its Applications to MLP Training and DC Motor Speed Control,” Arabian Journal for Science and Engineering, vol. 46, no. 4, pp. 3889–3911, Feb. 2021. https://doi.org/10.1007/s13369-020-05228-5

[42] S. Ekinci, D. Izci, and B. Hekimoglu, “PID Speed Control of DC Motor Using Harris Hawks Optimization Algorithm,” in 2nd International Conference on Electrical, Communication and Computer Engineering, ICECCE 2020, 2020. https://doi.org/10.1109/ICECCE49384.2020.9179308

[43] H. Yin, W. Yi, K. Wang, J. Guan, and J. Wu, “Research on brushless DC motor control system based on fuzzy parameter adaptive PI algorithm,” AIP Advances, vol. 10, no. 10, p. 105208, Oct. 2020. https://doi.org/10.1063/5.0025000

[44] F. Auliansyah, Sutedjo, O. Asrarul Qudsi, and I. Ferdiansyah, “Controlling speed of brushless dc motor by using fuzzy logic controller,” Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, iSemantic 2020, pp. 298–304, Sep. 2020. https://doi.org/10.1109/iSemantic50169.2020.9234290

[45] L. Zhou, F. Jiang, J. She, and Z. Zhang, “Generalized-extended-state-observer-based Repetitive Control for DC Motor Servo System with Mismatched Disturbances,” International Journal of Control, Automation and Systems, vol. 18, pp. 1936–1945, Jan. 2020. https://doi.org/10.1007/s12555-019-0578-3

[46] A. K. Kumawat, R. Kumawat, M. Rawat, and R. Rout, “Real time position control of electrohydraulic system using PID controller,” Materials Today: Proceedings, vol. 47, pp. 2966–2969, Jan. 2021. https://doi.org/10.1016/j.matpr.2021.05.203

[47] S. M. H. Mousakazemi, “Computational effort comparison of genetic algorithm and particle swarm optimization algorithms for the proportional–integral–derivative controller tuning of a pressurized water nuclear reactor,” Annals of Nuclear Energy, vol. 136, p. 107019, Feb. 2020. https://doi.org/10.1016/j.anucene.2019.107019

[48] M. F. Al Andzar and R. D. Puriyanto, “PID Control for Temperature and Motor Speed Based on PLC,” Signal and Image Processing Letters, vol. 1, no. 1, pp. 7–13, Mar. 2019. https://doi.org/10.31763/simple.v1i1.150


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ashadi Setiawan, Alfian Ma'arif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia