Forecasting learning in electrical engineering and informatics: An ontological approach

(1) Agung Bella Putra Utama Mail (Department of Electrical Engineering and Informatics, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang no. 5, Malang 65145, Indonesia)
(2) Syaad Patmanthara Mail (Department of Electrical Engineering and Informatics, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang no. 5, Malang 65145, Indonesia)
(3) * Aji Prasetya Wibawa Mail (Department of Electrical Engineering and Informatics, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang no. 5, Malang 65145, Indonesia)
(4) Gülsün Kurubacak Mail (Department of Distance Education, Anadolu University College of Open Education, Yeşiltepe, Tepebaşı/Eskişehir 26470, Turkey)
*corresponding author

Abstract


This research explores the vital role of ontology in learning forecasting in electrical engineering and informatics. As formally defined models of knowledge, ontologies are critical in organizing concepts for predictive learning. More than just an inquiry, our research reveals complex interconnections centered on Internet of Things (IoT) design, the semantic web, and knowledge modeling. Applications demonstrate the practical significance of ontologies in fostering intelligent connections, advancing information production, and improving interactions between computers, devices, and humans. This research introduces a comprehensive forecasting learning ontology to highlight the importance of ontologies in education, scientific inquiry, and developing systems for predictive analysis. Ontologies provide a structured framework for understanding the essence of predictive learning, encompassing key elements such as ideas, terminology, methodology, algorithms, data preprocessing, assessment, validation, data sources, application environments, interactions with technology, and learning processes. Emphasizing ontologies as indispensable instruments that drive technological development, our work underscores structured representation, semantic interoperability, and knowledge integration. In summary, this research improves the understanding of ontologies in forecasting by explaining practical applications and revealing new perspectives. Its unique contribution lies in its specific applications and natural consequences, laying the foundation for the future progress of ontology and learning forecasting, especially in educational contexts.

Keywords


Ontology; Forecasting; Electrical Engineering and Informatics

   

DOI

https://doi.org/10.31763/ijele.v5i3.1227
      

Article metrics

10.31763/ijele.v5i3.1227 Abstract views : 508 | PDF views : 103

   

Cite

   

Full Text

Download

References


[1] E. Steinhart, “Ontology,” in Believing in Dawkins, Cham: Springer International Publishing, 2020, pp. 189–245. doi: 10.1007/978-3-030-43052-8_6

[2] T. Lomas, “The person as an extended field: Querying the ontological binaries and dominant ‘container’ metaphor at the core of psychology,” New Ideas Psychol., vol. 70, p. 101035, Aug. 2023, doi: 10.1016/j.newideapsych.2023.101035.

[3] C. Moir, Ernst Bloch’s Speculative Materialism, vol. 202. BRILL, 2020. doi: 10.1163/9789004272873

[4] K. Callaway, S. Schnitker, and M. Gilbertson, “Not all transcendence is created equal: Distinguishing ontological, phenomenological, and subjective beliefs about transcendence,” Philos. Psychol., vol. 33, no. 4, pp. 479–510, May 2020, doi: 10.1080/09515089.2020.1743254.

[5] D. Weinberg, “Diagnosis as Topic and as Resource: Reflections on the Epistemology and Ontology of Disease in Medical Sociology,” Symb. Interact., vol. 44, no. 2, pp. 367–391, May 2021, doi: 10.1002/symb.504.

[6] J. Miranda et al., “The core components of education 4.0 in higher education: Three case studies in engineering education,” Comput. Electr. Eng., vol. 93, p. 107278, Jul. 2021, doi: 10.1016/j.compeleceng.2021.107278.

[7] H. Rahman and M. I. Hussain, “A comprehensive survey on semantic interoperability for Internet of Things: State‐of‐the‐art and research challenges,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 12, Dec. 2020, doi: 10.1002/ett.3902.

[8] V. Caballero, S. Valbuena, D. Vernet, and A. Zaballos, “Ontology-Defined Middleware for Internet of Things Architectures,” Sensors, vol. 19, no. 5, p. 1163, Mar. 2019, doi: 10.3390/s19051163.

[9] A. E. Grojek and L. F. Sikos, “Ontology-Driven Artificial Intelligence in IoT Forensics,” in Breakthroughs in Digital Biometrics and Forensics, Cham: Springer International Publishing, 2022, pp. 257–286. doi: 10.1007/978-3-031-10706-1_12

[10] P. Zangeneh and B. McCabe, “Ontology-based knowledge representation for industrial megaprojects analytics using linked data and the semantic web,” Adv. Eng. Informatics, vol. 46, p. 101164, Oct. 2020, doi: 10.1016/j.aei.2020.101164.

[11] M. H. Jarrahi, D. Askay, A. Eshraghi, and P. Smith, “Artificial intelligence and knowledge management: A partnership between human and AI,” Bus. Horiz., vol. 66, no. 1, pp. 87–99, Jan. 2023, doi: 10.1016/j.bushor.2022.03.002.

[12] O. Ogunfowora and H. Najjaran, “Reinforcement and deep reinforcement learning-based solutions for machine maintenance planning, scheduling policies, and optimization,” J. Manuf. Syst., vol. 70, pp. 244–263, Oct. 2023, doi: 10.1016/j.jmsy.2023.07.014.

[13] D. Hain, R. Jurowetzki, S. Lee, and Y. Zhou, “Machine learning and artificial intelligence for science, technology, innovation mapping and forecasting: Review, synthesis, and applications,” Scientometrics, vol. 128, no. 3, pp. 1465–1472, Mar. 2023, doi: 10.1007/s11192-022-04628-8.

[14] O. A. Lawal and J. Teh, “Assessment of dynamic line rating forecasting methods,” Electr. Power Syst. Res., vol. 214, p. 108807, Jan. 2023, doi: 10.1016/j.epsr.2022.108807.

[15] S. Kartsios, I. Pytharoulis, T. Karacostas, V. Pavlidis, and E. Katragkou, “Verification of a global weather forecasting system for decision-making in farming over Africa,” Acta Geophys., Jul. 2023, doi: 10.1007/s11600-023-01136-y.

[16] F. K. Karim, D. S. Khafaga, M. M. Eid, S. K. Towfek, and H. K. Alkahtani, “A Novel Bio-Inspired Optimization Algorithm Design for Wind Power Engineering Applications Time-Series Forecasting,” Biomimetics, vol. 8, no. 3, p. 321, Jul. 2023, doi: 10.3390/biomimetics8030321.

[17] S. Kraus, S. Kumar, W. M. Lim, J. Kaur, A. Sharma, and F. Schiavone, “From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change,” Technol. Forecast. Soc. Change, vol. 189, p. 122381, Apr. 2023, doi: 10.1016/j.techfore.2023.122381.

[18] M. Braei and S. Wagner, “Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art,” 2020.

[19] Y. Yin and P. Shang, “Forecasting traffic time series with multivariate predicting method,” Appl. Math. Comput., vol. 291, pp. 266–278, Dec. 2016, doi: 10.1016/j.amc.2016.07.017.

[20] A. Yadav, C. K. Jha, and A. Sharan, “Optimizing LSTM for time series prediction in Indian stock market,” Procedia Comput. Sci., vol. 167, pp. 2091–2100, 2020, doi: 10.1016/j.procs.2020.03.257.

[21] A. Asfaw, B. Simane, A. Hassen, and A. Bantider, “Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin,” Weather Clim. Extrem., vol. 19, pp. 29–41, Mar. 2018, doi: 10.1016/j.wace.2017.12.002.

[22] I. Naim, T. Mahara, and A. R. Idrisi, “Effective Short-Term Forecasting for Daily Time Series with Complex Seasonal Patterns,” Procedia Comput. Sci., vol. 132, pp. 1832–1841, 2018, doi: 10.1016/j.procs.2018.05.136.

[23] S. M. Idrees, M. A. Alam, and P. Agarwal, “A Prediction Approach for Stock Market Volatility Based on Time Series Data,” IEEE Access, vol. 7, pp. 17287–17298, 2019, doi: 10.1109/ACCESS.2019.2895252.

[24] P. Purnawansyah, H. Haviluddin, R. Alfred, and A. F. O. Gaffar, “Network Traffic Time Series Performance Analysis Using Statistical Methods,” Knowl. Eng. Data Sci., vol. 1, no. 1, p. 1, 2017, doi: 10.17977/um018v1i12018p1-7.

[25] H. A. Rosyid, M. W. Aniendya, H. W. Herwanto, and P. Shi, “Comparison of Indonesian Imports Forecasting by Limited Period Using SARIMA Method,” Knowl. Eng. Data Sci., vol. 2, no. 2, p. 90, Dec. 2019, doi: 10.17977/um018v2i22019p90-100.

[26] A. P. Wibawa, Z. N. Izdihar, A. B. P. Utama, L. Hernandez, and Haviluddin, “Min-Max Backpropagation Neural Network to Forecast e-Journal Visitors,” in 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2021, pp. 052–058, doi: 10.1109/ICAIIC51459.2021.9415197.

[27] A. P. Wibawa, “Mean-Median Smoothing Backpropagation Neural Network to Forecast Unique Visitors Time Series of Electronic Journal,” J. Appl. Data Sci., vol. 4, no. 3, pp. 163–174, Sep. 2023, doi: 10.47738/jads.v4i3.97.

[28] A. Pranolo, Y. Mao, A. P. Wibawa, A. B. P. Utama, and F. A. Dwiyanto, “Optimized Three Deep Learning Models Based-PSO Hyperparameters for Beijing PM2.5 Prediction,” Knowl. Eng. Data Sci., vol. 5, no. 1, p. 53, Nov. 2022, doi: 10.17977/um018v5i12022p53-66.

[29] A. R. F. Dewandra, A. P. Wibawa, U. Pujianto, A. B. P. Utama, and A. Nafalski, “Journal Unique Visitors Forecasting Based on Multivariate Attributes Using CNN,” Int. J. Artif. Intell. Res., vol. 6, no. 2, Jul. 2022, doi: 10.29099/ijair.v6i1.274.

[30] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learning forecasting methods: Concerns and ways forward,” PLoS One, vol. 13, no. 3, p. e0194889, Mar. 2018, doi: 10.1371/journal.pone.0194889.

[31] B. Singh and D. Pozo, “A Guide to Solar Power Forecasting using ARMA Models,” in 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), 2019, pp. 1–4, doi: 10.1109/ISGTEurope.2019.8905430.

[32] E. Cesario, C. Catlett, and D. Talia, “Forecasting Crimes Using Autoregressive Models,” in 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), 2016, pp. 795–802, doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.138.

[33] T. Alghamdi, K. Elgazzar, M. Bayoumi, T. Sharaf, and S. Shah, “Forecasting Traffic Congestion Using ARIMA Modeling,” in 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), 2019, pp. 1227–1232, doi: 10.1109/IWCMC.2019.8766698.

[34] Haviluddin and A. Jawahir, “Comparing of ARIMA and RBFNN for short-term forecasting,” Int. J. Adv. Intell. Informatics, vol. 1, no. 1, pp. 15–22, 2015, doi: 10.26555/ijain.v1i1.10.

[35] Haviluddin and R. Alfred, “Performance of modeling time series using nonlinear autoregressive with eXogenous input (NARX) in the network traffic forecasting,” in Proceedings - 2015 International Conference on Science in Information Technology: Big Data Spectrum for Future Information Economy, ICSITech 2015, 2016, doi: 10.1109/ICSITech.2015.7407797.

[36] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, pp. 685–695, Sep. 2021, doi: 10.1007/s12525-021-00475-2.

[37] K. Choi, J. Yi, C. Park, and S. Yoon, “Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines,” IEEE Access, vol. 9, pp. 120043–120065, 2021, doi: 10.1109/ACCESS.2021.3107975.

[38] A.-R. Al-Ghuwairi, Y. Sharrab, D. Al-Fraihat, M. AlElaimat, A. Alsarhan, and A. Algarni, “Intrusion detection in cloud computing based on time series anomalies utilizing machine learning,” J. Cloud Comput., vol. 12, no. 1, p. 127, Aug. 2023, doi: 10.1186/s13677-023-00491-x.

[39] Y. Mao, A. Pranolo, A. P. Wibawa, A. B. Putra Utama, F. A. Dwiyanto, and S. Saifullah, “Selection of Precise Long Short Term Memory (LSTM) Hyperparameters based on Particle Swarm Optimization,” in 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 2022, pp. 1114–1121, doi: 10.1109/ICAAIC53929.2022.9792708.

[40] A. Pranolo, Y. Mao, A. P. Wibawa, A. B. P. Utama, and F. A. Dwiyanto, “Robust LSTM With Tuned-PSO and Bifold-Attention Mechanism for Analyzing Multivariate Time-Series,” IEEE Access, vol. 10, pp. 78423–78434, 2022, doi: 10.1109/ACCESS.2022.3193643.

[41] A. B. P. Utama, A. P. Wibawa, Muladi, and A. Nafalski, “PSO based Hyperparameter tuning of CNN Multivariate Time-Series Analysis,” J. Online Inform., vol. 7, no. 2, pp. 193–202, 2022, doi: 10.15575/join.v7i2.858.

[42] A. P. Wibawa et al., “Deep Learning Approaches with Optimum Alpha for Energy Usage Forecasting,” Knowl. Eng. Data Sci., vol. 6, no. 2, pp. 170–187, Oct. 2023, doi: 10.17977/um018v6i22023p170-187.

[43] A. Shehadeh, O. Alshboul, and G. Almasabha, “Slope displacement detection in construction: An automated management algorithm for disaster prevention,” Expert Syst. Appl., vol. 237, p. 121505, Mar. 2024, doi: 10.1016/j.eswa.2023.121505.

[44] X. Tan, W. Chen, T. Zou, J. Yang, and B. Du, “Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data,” J. Rock Mech. Geotech. Eng., vol. 15, no. 4, pp. 886–895, Apr. 2023, doi: 10.1016/j.jrmge.2022.06.015.

[45] CC2020 Task Force, Computing Curricula 2020. New York, NY, USA: ACM, 2020. doi: 10.1145/3467967

[46] Jurusan Teknik Elektro Fakultas Teknik Universitas Negeri Malang, Buku Pedomana Akademik 2020 Program Studi Teknik Informatika. 2020, pp. 1–96.

[47] Jurusan Teknik Informatika Fakultas Ilmu Komputer Universitas Brawijaya, Buku Kurikulum Program Studi S Teknik Informatika 2020-2024. 2020, pp. 1–120.

[48] J. T. I. F. S. dan T. U. I. N. M. M. Ibrahim, “Struktur Kurikulum,” 2017.

[49] U. M. Malang, “Kurikulum Prodi Informatika 2018,” 2018. .

[50] U. M. Malang, Pedoman Penyelenggaran Pendidikan Tahun Akademik 2021/2021. 2020.

[51] Jurusan Statistika Fakultas MIPA Universitas Brawijaya, Pedoman Pendidikan Sarjana Tahun Akademik 2021/2022. 2021.

[52] A. Azeem, I. Ismail, S. M. Jameel, and V. R. Harindran, “Electrical Load Forecasting Models for Different Generation Modalities: A Review,” IEEE Access, vol. 9, pp. 142239–142263, 2021, doi: 10.1109/ACCESS.2021.3120731.

[53] P. Boutselis and K. McNaught, “Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context,” Int. J. Prod. Econ., vol. 209, pp. 325–333, Mar. 2019, doi: 10.1016/j.ijpe.2018.06.017.

[54] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey,” Comput. Commun., vol. 170, pp. 19–41, Mar. 2021, doi: 10.1016/j.comcom.2021.01.021.

[55] J. C. Rodriguez Gamboa, A. J. da Silva, I. C. S. Araujo, E. S. Albarracin E., and C. M. Duran A., “Validation of the rapid detection approach for enhancing the electronic nose systems performance, using different deep learning models and support vector machines,” Sensors Actuators B Chem., vol. 327, p. 128921, Jan. 2021, doi: 10.1016/j.snb.2020.128921.

[56] F. Kaytez, “A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption,” Energy, vol. 197, p. 117200, Apr. 2020, doi: 10.1016/j.energy.2020.117200.

[57] N. Somu, G. Raman M R, and K. Ramamritham, “A deep learning framework for building energy consumption forecast,” Renew. Sustain. Energy Rev., vol. 137, p. 110591, Mar. 2021, doi: 10.1016/j.rser.2020.110591.

[58] A. Altan, S. Karasu, and S. Bekiros, “Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques,” Chaos, Solitons & Fractals, vol. 126, pp. 325–336, Sep. 2019, doi: 10.1016/j.chaos.2019.07.011.

[59] M. Balehegn, S. Balehey, C. Fu, and W. Liang, “Indigenous weather and climate forecasting knowledge among Afar pastoralists of north eastern Ethiopia: Role in adaptation to weather and climate variability,” Pastoralism, vol. 9, no. 1, p. 8, Dec. 2019, doi: 10.1186/s13570-019-0143-y.

[60] J. Wen, J. Yang, B. Jiang, H. Song, and H. Wang, “Big Data Driven Marine Environment Information Forecasting: A Time Series Prediction Network,” IEEE Trans. Fuzzy Syst., vol. 29, no. 1, pp. 4–18, Jan. 2021, doi: 10.1109/TFUZZ.2020.3012393.

[61] M. Koot and F. Wijnhoven, “Usage impact on data center electricity needs: A system dynamic forecasting model,” Appl. Energy, vol. 291, p. 116798, Jun. 2021, doi: 10.1016/j.apenergy.2021.116798.

[62] Y.-C. Tsao, Y.-K. Chen, S.-H. Chiu, J.-C. Lu, and T.-L. Vu, “An innovative demand forecasting approach for the server industry,” Technovation, vol. 110, p. 102371, Feb. 2022, doi: 10.1016/j.technovation.2021.102371.

[63] R. Casado-Vara, A. Martin del Rey, D. Pérez-Palau, L. De-la-Fuente-Valentín, and J. M. Corchado, “Web Traffic Time Series Forecasting Using LSTM Neural Networks with Distributed Asynchronous Training,” Mathematics, vol. 9, no. 4, p. 421, Feb. 2021, doi: 10.3390/math9040421.

[64] T. Daim, K. K. Lai, H. Yalcin, F. Alsoubie, and V. Kumar, “Forecasting technological positioning through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and Blockchain,” Technol. Forecast. Soc. Change, vol. 161, p. 120329, Dec. 2020, doi: 10.1016/j.techfore.2020.120329.

[65] O. Rutz, A. Aravindakshan, and O. Rubel, “Measuring and forecasting mobile game app engagement,” Int. J. Res. Mark., vol. 36, no. 2, pp. 185–199, Jun. 2019, doi: 10.1016/j.ijresmar.2019.01.002.

[66] M. Seyedan and F. Mafakheri, “Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities,” J. Big Data, vol. 7, no. 1, p. 53, Dec. 2020, doi: 10.1186/s40537-020-00329-2.

[67] P. Roy, G. S. Mahapatra, and K. N. Dey, “Forecasting of software reliability using neighborhood fuzzy particle swarm optimization based novel neural network,” IEEE/CAA J. Autom. Sin., vol. 6, no. 6, pp. 1365–1383, Nov. 2019, doi: 10.1109/JAS.2019.1911753.

[68] S. Fathi, R. Srinivasan, A. Fenner, and S. Fathi, “Machine learning applications in urban building energy performance forecasting: A systematic review,” Renew. Sustain. Energy Rev., vol. 133, p. 110287, Nov. 2020, doi: 10.1016/j.rser.2020.110287.

[69] A. Valencia, O. Gorbatov, and L. Eleftheriadis, “Hardware alarms reduction in Radio Base Stations by forecasting Power Supply Units headroom,” Electr. Power Syst. Res., vol. 213, p. 108519, Dec. 2022, doi: 10.1016/j.epsr.2022.108519.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Agung Bella Putra Utama, Syaad Patmanthara, Aji Prasetya Wibawa, Gülsün Kurubacak

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Education and Learning
ISSN 2684-9240
Published by Association for Scientific Computing Electronics and Engineering (ASCEE)
W : http://pubs2.ascee.org/index.php/ijele
E : zalik@ascee.org


View IJELE Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.