
(2) * Abdel-Nasser Sharkawy

(3) I. Hamdan

(4) Hussein M. Maghrabie

*corresponding author
AbstractThis article presented previous efforts for overcoming low photovoltaic (PV) solar panel electrical efficiencies resulted from excess heat problem reached in hot climates. Utilizing water cooling, temperature-controlled water cooling and solar tracking solar systems are discussed in this paper. Water is a perfect medium can be used for absorbing excess heat due to its high thermal capacity, availability and low cost. In addition to, utilizing control systems for water cooling systems based on Arduino unit and microcontroller chip which can be interfaced with Bluetooth, WIFI, and Internet of Things (IOT) enhances saving time and effort in large PV solar plants and PV performance. Solar tracking systems, depend on light-dependent resistors (LDRs) which are resistors operated by incident light, or ultraviolet (UV) sensors which are detectors based on incident ultraviolet radiation sensing enhances PV performance. Solar tracking systems enhances PV electrical efficiency compared to fixed PV panels. PV efficiencies of latest studies were presented and compared. Utilizing water cooling systems enhances PV electrical efficiency up to 30%, using an ON-OFF temperature-controlled water-cooling systems increased overall efficiency up to 51.4% and can reduce consumption of water up to 29.28%. In addition to, using two solar tracking systems enhances PV solar panel efficiency up to 65%. The increase in PV installation faces challenges includes millions of solar waste tons that harms environment and human health. However, it can be eliminated utilizing recycling technologies. Artificial intelligence (AI), machine learning techniques would enhance PV performance analyzing and data collection.
KeywordsSystematic Review; PV Systems; Electrical Efficiency Improvement; Automated Cooling System; Solar Tracking System; Control Systems
|
DOIhttps://doi.org/10.31763/ijrcs.v4i4.1642 |
Article metrics10.31763/ijrcs.v4i4.1642 Abstract views : 426 | PDF views : 41 |
Cite |
Full Text![]() |
References
[1] P. G. V. Sampaio, and M. O. A. González, “Photovoltaic solar energy: Conceptual framework,†Renewable and Sustainable Energy Reviews, vol. 74, pp. 590-601, 2017, https://doi.org/10.1016/j.rser.2017.02.081.
[2] G. Li, M. Li, R. Taylor, Y. Hao, G. Besagni, and C. N. Markides, “Solar energy utilisation: Current status and roll-out potential,†Applied Thermal Engineering, vol. 209, p. 118285, 2022, https://doi.org/10.1016/j.applthermaleng.2022.118285.
[3] R. Dutta, K. Chanda, and R. Maity, “Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis,†Renewable Energy, vol. 188, pp. 819-829, 2022, https://doi.org/10.1016/j.renene.2022.02.023.
[4] S. Zaphar, M. Chandrashekara, and G. Verma, “Thermal Analysis of an Evacuated Tube Solar Collector using a One-end Stainless Steel Manifold for Air Heating Applications under Diverse Operational Conditions,†Evergreen, vol. 10, no. 2, pp. 897-911, 2023, https://doi.org/10.5109/6792885.
[5] K. Verma, O. Prakash, A. S. Paikra, and P. Tiwari, “Photovoltaic Panel Integration Using Phase Change Material (PCM): Review,†Evergreen, vol. 10, no. 1, pp. 444–453, 2023, https://doi.org/10.5109/6782147.
[6] E. G. Cojocaru, J. M. Bravo, M. J. Vasallo, and D. M. Santos, “Optimal scheduling in concentrating solar power plants oriented to low generation cycling,†Renewable Energy, vol. 135, pp. 789-799, 2019, https://doi.org/10.1016/j.renene.2018.12.026.
[7] S. Comello, S. Reichelstein, and A. Sahoo, “The road ahead for solar PV power,†Renewable and Sustainable Energy Reviews, vol. 92, pp. 744-756, 2018, https://doi.org/10.1016/j.rser.2018.04.098.
[8] U. K. Das et al., “Forecasting of photovoltaic power generation and model optimization: A review,†Renewable and Sustainable Energy Reviews, vol. 81, pp. 912-928, 2018, https://doi.org/10.1016/j.rser.2017.08.017.
[9] A. Taqwa, T. Dewi, R. D. Kusumanto, C. R. Sitompul, and Rusdianasari, “Automatic Cooling of a PV System to Overcome Overheated PV Surface in Palembang,†Journal of Physics: Conference Series, vol. 1500, no. 1, p. 012013, 2020, https://doi.org/10.1088/1742-6596/1500/1/012013.
[10] K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,†Applied Physics Letters, vol. 58, no. 25, pp. 2924-2926, 1991, https://doi.org/10.1063/1.104723.
[11] Y. Cho, A. Yamaguchi, R. Uehara, S. Yasuhara, T. Hoshina, and M. Miyauchi, “Temperature dependence on bandgap of semiconductor photocatalysts,†The Journal of Chemical Physsics, vol. 152, no. 23, 2020, https://doi.org/10.1063/5.0012330.
[12] S. Nagae, M. Toda, T. Minemoto, H. Takakura, and Y. Hamakawa, “Evaluation of the impact of solar spectrum and temperature variations on output power of silicon-based photovoltaic modules,†Solar Energy Materials and Solar Cells, vol. 90, no. 20, pp. 3568-3575, 2006, https://doi.org/10.1016/j.solmat.2006.06.045.
[13] G. Wang, X. Cheng, P. Hu, Z. Chen, Y. Liu, and L. Jia, “Theoretical analysis of spectral selective transmission coatings for solar energy PV system,†International Journal of Thermophysics, vol. 34, no. 12, pp. 2322-2333, 2013, https://doi.org/10.1007/s10765-011-1143-3.
[14] S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,†Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2920-2925, 2012, https://doi.org/10.1016/j.rser.2012.02.012.
[15] N. Gökmen, W. Hu, P. Hou, Z. Chen, D. Sera, and S. Spataru, “Investigation of wind speed cooling effect on PV panels in windy locations,†Renewable Energy, vol. 90, pp. 283-290, 2016, https://doi.org/10.1016/j.renene.2016.01.017.
[16] M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,†Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 3124-3131, 2010, https://doi.org/10.1016/j.rser.2010.07.065.
[17] M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,†Renewable and Sustainable Energy Reviews, vol. 59, pp. 1307-1316, 2016, https://doi.org/10.1016/j.rser.2016.01.044.
[18] K. Ishaque and Z. Salam, “A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition,†Renewable and Sustainable Energy Reviews, vol. 19, pp. 475-488, 2013, https://doi.org/10.1016/j.rser.2012.11.032.
[19] M. A. M. Ramli, S. Twaha, K. Ishaque, and Y. A. Al-Turki, “A review on maximum power point tracking for photovoltaic systems with and without shading conditions,†Renewable and Sustainable Energy Reviews, vol. 67, pp. 144-159, 2017, https://doi.org/10.1016/j.rser.2016.09.013.
[20] S. Ghosh, V. K. Yadav, and V. Mukherjee, “Impact of environmental factors on photovoltaic performance and their mitigation strategies–A holistic review,†Renewable Energy Focus, vol. 28, pp. 153-172, 2019, https://doi.org/10.1016/j.ref.2018.12.005.
[21] P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, “Advanced cooling techniques of P.V. modules: A state of art,†Case Studies in Thermal Engineering, vol. 21, p. 100674, 2020, https://doi.org/10.1016/j.csite.2020.100674.
[22] Y. M. Irwan et al., “Indoor Test Performance of PV Panel through Water Cooling Method,†Energy Procedia, vol. 79, pp. 604-611, 2015, https://doi.org/10.1016/j.egypro.2015.11.540.
[23] S. Ammach and A. Attia, "Design and Implementation of Autonomous Energy Efficient Solar Tracking System for PV Power Plants," 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), pp. 1-6, 2019, https://doi.org/10.1109/ICECTA48151.2019.8959537.
[24] C. Jia Joon and K. C. W. Jin, “Design of Augmented Cooling System for Urban Solar PV System,†MATEC Web of Conferences, vol. 335, p. 3002, 2021, https://doi.org/10.1051/matecconf/202133503002.
[25] L. J. Piotrowski, M. G. Simões, and F. A. Farret, “Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects,†Solar Energy, vol. 207, pp. 103-109, 2020, https://doi.org/10.1016/j.solener.2020.06.087.
[26] A. Hadipour, M. Rajabi Zargarabadi, and S. Rashidi, “An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis,†Renewable Energy, vol. 164, pp. 867-875, 2021, https://doi.org/10.1016/j.renene.2020.09.021.
[27] M. Fathi, M. Abderrezek, and F. Djahli, “Heating Behavior of Photovoltaic Panels and Front Side Water Cooling Efficiency,†Applied Solar Energy, vol. 55, no. 5, pp. 327-339, 2019, https://doi.org/10.3103/S0003701X19050050.
[28] I. Ceylan, A. E. Gürel, H. Demircan, and B. Aksu, “Cooling of a photovoltaic module with temperature controlled solar collector,†Energy and Buildings, vol. 72, pp. 96-101, 2014, https://doi.org/10.1016/j.enbuild.2013.12.058.
[29] O. T. Laseinde and M. D. Ramere, “Efficiency Improvement in polycrystalline solar panel using thermal control water spraying cooling,†Procedia Computer Science, vol. 180, pp. 239-248, 2021, https://doi.org/10.1016/j.procs.2021.01.161.
[30] K. Sornek, W. Goryl, G. Dabrowska, J. Brezden, “Development and Tests of the Water Cooling System Dedicated to Photovoltaic Panels,†Energies, vol. 15, no. 16, p. 58884, 2022, https://doi.org/10.3390/en15165884.
[31] A. Pradhan, S. K. S. Parashar, S. M. Ali and P. Paikray, "Water cooling method to improve efficiency of photovoltaic module," 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 1044-1047, 2016, https://doi.org/10.1109/SCOPES.2016.7955600.
[32] A. Saxena, S. Deshmukh, S. Nirali, and S. Wani, “Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation,†Renewable Energy, vol. 115, pp. 128-138, 2018, https://doi.org/10.1016/j.renene.2017.08.029.
[33] A. Elnozahy, A. K. A. Rahman, A. H. H. Ali, M. Abdel-Salam, and S. Ookawara, “Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning,†Energy and Buildings, vol. 88, pp. 100-109, 2015, https://doi.org/10.1016/j.enbuild.2014.12.012.
[34] M. S. Ahmed, R. Karal, B. K. Das, and A. Das, “Experimental investigation of cooling, wind velocity, and dust deposition effects on solar PV performance in a tropical climate in Bangladesh,†Case Studies in Thermal Engineering, vol. 50, p. 103409, 2023, https://doi.org/10.1016/j.csite.2023.103409.
[35] S. M. Shalaby, M. K. Elfakharany, B. M. Moharram, and H. F. Abosheiasha, “Experimental study on the performance of PV with water cooling,†Energy Reports, vol. 8, pp. 957-961, 2022, https://doi.org/10.1016/j.egyr.2021.11.155.
[36] I. Masalha, S. U. Masuri, O. O. Badran, M. K. A. M. Ariffin, A. R. Abu Talib, and F. Alfaqs, “Outdoor experimental and numerical simulation of photovoltaic cooling using porous media,†Case Studies in Thermal Engineering, vol. 42, p. 102748, 2023, https://doi.org/10.1016/j.csite.2023.102748.
[37] F. Schiro, A. Benato, A. Stoppato, and N. Destro, “Improving photovoltaics efficiency by water cooling: Modelling and experimental approach,†Energy, vol. 137, pp. 798-810, 2017, https://doi.org/10.1016/j.energy.2017.04.164.
[38] C. Mah, B. Lim, C. Wong, M. Tan, K. Keong Chong, and A. Lai, “Investigating the Performance Improvement of and a Photovoltaic System in a Tropical Climate using Water Cooling Method,†Energy Procedia, vol. 159, pp. 78-83, 2019, https://doi.org/10.1016/j.egypro.2018.12.022.
[39] M. Lucas, J. Ruiz, F. J. Aguilar, C. G. Cutillas, A. S. Kaiser, and P. G. Vicente, “Experimental study of a modified evaporative photovoltaic chimney including water sliding,†Renewable Energy, vol. 134, pp. 161-168, 2019, https://doi.org/10.1016/j.renene.2018.11.008.
[40] M. A. Elgenedy, A. M. Massoud, S. Ahmed, B. W. Williams and J. R. McDonald, "A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications," IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 10575-10589, 2019, https://doi.org/10.1109/TPEL.2019.2899974.
[41] G. T. Chala, S. A. Sulaiman, and S. M. Al Alshaikh, “Effects of cooling and interval cleaning on the performance of soiled photovoltaic panels in Muscat, Oman,†Results in Engineering, vol. 21, p. 101933, 2024, https://doi.org/10.1016/j.rineng.2024.101933.
[42] S. Sargunanathan, K. Ramanathan, S. T. Mohideen, and S. Suresh, “Enhancing the Performance of the Standalone Rooftop SPV Module during Peak Solar Irradiance and Ambient Temperature by the Active Cooling of the Rear Surface with Spraying Water and the Front Surface with Overflowing Water,†International Journal of Photoenergy, vol. 2020, no. 1, pp. 1-11, 2020, https://doi.org/10.1155/2020/8826966.
[43] W. Pang, Y. Cui, Q. Zhang, H. Yu, L. Zhang, and H. Yan, “Experimental e ff ect of high mass fl ow rate and volume cooling on performance of a water-type PV / T collector,†Solar Energy, vol. 188, pp. 1360-1368, 2019, https://doi.org/10.1016/j.solener.2019.07.024.
[44] L. Lu and H. X. Yang, “Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong,†Applied Energy, vol. 87, no. 12, pp. 3625-3631, 2010, https://doi.org/10.1016/j.apenergy.2010.06.011.
[45] J. B. Lee, J. W. Park, J. H. Yoon, N. C. Baek, D. K. Kim, and U. C. Shin, “An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building,†Energy, vol. 66, pp. 25-34, 2014, https://doi.org/10.1016/j.energy.2013.08.012.
[46] Y. H. Yau and K. S. Lim, “Energy analysis of green office buildings in the tropics - Photovoltaic system,†Energy and Buildings, vol. 126, pp. 177-193, 2016, https://doi.org/10.1016/j.enbuild.2016.05.010.
[47] M. Fuentes, M. Vivar, J. de la Casa, and J. Aguilera, “An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV,†Renewable and Sustainable Energy Reviews, vol. 93, pp. 110-120, 2018, https://doi.org/10.1016/j.rser.2018.05.021.
[48] H. A. Kazem, M. T. Chaichan, A. H. A. Al-waeli, and K. Sopian, “Comparison and evaluation of solar photovoltaic thermal system with hybrid collector: An experimental study,†Thermal Science and Engineering Progress, vol. 22, p. 100845, 2021, https://doi.org/10.1016/j.tsep.2021.100845.
[49] H. M. Maghrabie, T. Wilberforce, A. G. Olabi, M. Ali Abdelkareem, E. T. Sayed, and K. Elsaid, “Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges,†Sustainable Energy Technologies and Assessments, vol. 45, p. 101151, 2021, https://doi.org/10.1016/j.seta.2021.101151.
[50] B. P. Kumar, D. P. Winston, P. Pounraj, A. M. Manokar, R. Sathyamurthy, and A. E. Kabeel, “Experimental investigation on hybrid PV / T active solar still with e ff ective heating and cover cooling method,†Desalination, vol. 435, pp. 140-151, 2018, https://doi.org/10.1016/j.desal.2017.11.007.
[51] C. E. Fouas, N. C. Cherecheș, S. V. Hudișteanu, B. Hajji, E. F. Țurcanu, M. L. Cherecheș, “Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System,†Applied Science, vol. 12, no. 2, p. 646, 2022, https://doi.org/10.3390/app12020646.
[52] M. S. Bin ehtsham and S. Ahmad, “Water cooling system of PV panel,†AIP Conference Proceedings, vol. 2324, no. 1, 2021, https://doi.org/10.1063/5.0037593.
[53] S. Abbas et al., “Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study,†Renewable Energy, vol. 204, pp. 400-420, 2023, https://doi.org/10.1016/j.renene.2023.01.032.
[54] A. Hassan et al., “An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system,†Renewable Energy, vol. 202, pp. 499-512, 2023, https://doi.org/10.1016/j.renene.2022.11.087.
[55] B. E. Larock, R. W. Jeppson, and G. Z. Watters, “Hydraulics of Pipeline Systems,†CRC Press, 1999, https://doi.org/10.1201/9780367802431.
[56] M. F. Mohammed, H. Daud, and N. S. Ekaab, “Numerical Study of Cooling System for Photovoltaic Thermal,†Journal of Engineering Science and Technology, vol. 16, no. 6, pp. 4817-4832, 2021, https://jestec.taylors.edu.my/Vol%2016%20Issue%206%20December%20%202021/16_6_32.pdf.
[57] Z. Ejaz, M. U. Asghar, M. O. Khan, M. Kamran, and M. Usama, “Performance Optimization and Efficiency Enhancement of IoT- Integrated Hybrid Solar Thermoelectric Generation System,†TechRxiv, 2023, https://doi.org/10.36227/techrxiv.23617641.v1.
[58] S. A. Polus, R. S. Abdullah, “Enhancing Photovoltaic Efficiency Through Water Cooling System Design and Analysis,†Research Square, 2023, https://doi.org/10.21203/rs.3.rs-3127715/v1.
[59] R. Duan, J. Du, Q. Fu, Y. Yue, T. Liu, and L. Liu, “Investigation on pressure-swirl atomization for cooling and efficiency improvement of photovoltaic module,†Applied Thermal Engineering, vol. 244, p. 122720, 2024, https://doi.org/10.1016/j.applthermaleng.2024.122720.
[60] K. Hossin and H. Attia, “Water-Cooling-Based Approach for PV System Performance Enhancement towards UAE Future Energy Efficiency Policies,†International Journal of Energy Economics and Policy, vol. 14, no. 1, pp. 433-440, 2024, https://doi.org/10.32479/ijeep.15237.
[61] K. Mostakim, M. R. Akbar, M. A. Islam, and M. K. Islam, “Integrated photovoltaic-thermal system utilizing front surface water cooling technique: An experimental performance response,†Heliyon, vol. 10, no. 3, p. e25300, 2024, https://doi.org/10.1016/j.heliyon.2024.e25300.
[62] S. A. R. Naqvi, L. Kumar, K. Harijan, and A. K. Sleiti, “Performance investigation of solar photovoltaic panels using mist nozzles cooling system,†Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, no. 1, pp. 2299-2317, 2024, https://doi.org/10.1080/15567036.2024.2305302.
[63] H. A. Hasan et al., “Experimental Evaluation of the Thermoelectrical Performance of Photovoltaic-Thermal Systems with a Water-Cooled Heat Sink,†Sustainability, vol. 14, no. 16, p. 10231, 2022, https://doi.org/10.3390/su141610231.
[64] A. Benato, A. Stoppato, F. D. Vanna, F. Schiro, “Spraying Cooling System for PV Modules: Experimental Measurements for Temperature Trends Assessment and System Design Feasibility,†Designs, vol. 5, no. 2, p. 25, 2021, https://doi.org/10.3390/designs5020025.
[65] M. Sharaf, M. S. Yousef, and A. S. Huzayyin, “Review of cooling techniques used to enhance the efficiency of photovoltaic power systems,†Environmental Science and Pollution Research, vol. 29, no. 18, pp. 26131-26159, 2022, https://doi.org/10.1007/s11356-022-18719-9.
[66] A. Azimi, N. Basiri, and M. Eslami, “A novel two-step optimization approach for film water cooling of a photovoltaic module in real ambient conditions,†Applied Thermal Engineering, vol. 236, p. 121898, 2024, https://doi.org/10.1016/j.applthermaleng.2023.121898.
[67] H. K. Elminir, V. Benda, and I. KudláÄek, “Actual Optical and Thermal Performance of Photovoltaic Modules,†Acta Polytechnica, vol. 41, no. 2, pp. 557-574, 2001, https://doi.org/10.14311/204.
[68] E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency / power correlations,†Solar Energy, vol. 83, no. 5, pp. 614-624, 2009, https://doi.org/10.1016/j.solener.2008.10.008.
[69] N. Reza and N. Mondol, "Design and Implementation of an Automatic Single Axis Tracking with Water-Cooling System to Improve the Performance of Solar Photovoltaic Panel," 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), pp. 1-6, 2021, https://doi.org/10.1109/ACMI53878.2021.9528189.
[70] A. Bejan and A. D. Kraus, “Heat Transfer Handbook,†John Wiley & Sons, 2003, https://books.google.co.id/books/about/Heat_Transfer_Handbook.html?id=d4cgNG_IUq8C&redir_esc=y.
[71] S. Sharples and P. S. Charlesworth, “Full-scale measurements of wind-induced: Convective heat transfer from a roof mounted flat plate solar collector,†Solar Energy, vol. 62, no. 2, pp. 69-77, 1998, https://doi.org/10.1016/S0038-092X(97)00119-9.
[72] F. Schiro, A. Benato, A. Stoppato, and N. Destro, “Improving photovoltaics ef fi ciency by water cooling: Modelling and experimental approach,†Energy, vol. 137, pp. 798-810, 2017, https://doi.org/10.1016/j.energy.2017.04.164.
[73] A. Kherkhar, Y. Chiba, A. Tlemçani, and H. Mamur, “Case Studies in Thermal Engineering Thermal investigation of a thermoelectric cooler based on Arduino and PID control approach,†Case Studies in Thermal Engineering, vol. 36, p. 102249, 2022, https://doi.org/10.1016/j.csite.2022.102249.
[74] G. M. Tina and F. B. Scavo, “Energy performance analysis of tracking fl oating photovoltaic systems,†Heliyon, vol. 8, no. 8, p. e10088, 2022, https://doi.org/10.1016/j.heliyon.2022.e10088.
[75] O. RodrÃguez-Abreo, J. RodrÃguez-Reséndiz, C. Fuentes-Silva, R. Hernández-Alvarado and M. D. C. P. T. Falcón, "Self-Tuning Neural Network PID With Dynamic Response Control," IEEE Access, vol. 9, pp. 65206-65215, 2021, https://doi.org/10.1109/ACCESS.2021.3075452.
[76] Z. L. Edaris, M. S. Saad, M. F. N. Tajuddin, M. S. A. Rahim, and M. H. Ali, “Review of Control Strategies for Improving the Photovoltaic Electrical Efficiency by Hybrid Active Cooling,†Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 117, no. 2, pp. 192-210, 2024, https://doi.org/10.37934/arfmts.117.2.192210.
[77] R. Sahu, S. Misra, Y. Bhanu Sandhya, P. K. Panigrahi, and G. Satya Prasad, “Smart controller PV system for stochastic environmental condition,†Materialstoday: Proceedings, vol. 48, pp. 2553-2556, 2021, https://doi.org/10.1016/j.matpr.2021.06.406.
[78] A. R. Prasad, R. Shankar, C. K. Patil, A. Karthick, A. Kumar, and R. Rahim, “Performance enhancement of solar photovoltaic system for roof top garden,†Environmental Science and Pollution Research, vol. 28, no. 36, pp. 50017-50027, 2021, https://doi.org/10.1007/s11356-021-14191-z.
[79] M. N. Kamarudin, S. M. Rozali, and M. S. Jamri, “Active cooling photovoltaic with iot facility,†International Journal of Power Electronics and Drive Systems, vol. 12, no. 3, pp. 1494-1504, 2021, https://doi.org/10.11591/ijpeds.v12.i3.pp1494-1504.
[80] I. Etier, S. Nijmeh, M. Shdiefat, and O. Al-Obaidy, “Experimentally evaluating electrical outputs of a pv-t system in jordan,†International Journal of Power Electronics and Drive Systems, vol. 12, no. 1, pp. 421-430, 2021, http://doi.org/10.11591/ijpeds.v12.i1.pp421-430.
[81] N. A. A. Jamil, S. A. Jumaat, S. Salimin, M. N. Abdullah, and A. F. M. Nor, “Performance enhancement of solar powered floating photovoltaic system using arduino approach,†International Journal of Power Electronics and Drive Systems, vol. 11, no. 2, pp. 651-657, 2020, http://doi.org/10.11591/ijpeds.v11.i2.pp651-657.
[82] A. M. Kadhim and I. M. A. Aljubury, “Experimental performance of cooling photovoltaic panels using geothermal energy in an arid climate,†Heat Transfer, vol. 50, no. 3, pp. 2725-2742, 2021, https://doi.org/10.1002/htj.22002.
[83] C. Hajjaj et al., “A PVT cooling system design and realization: Temperature effect on the PV module performance under real operating conditions,†International Journal of Renewable Energy Research, vol. 9, no. 1, pp. 401-413, 2019, https://doi.org/10.20508/ijrer.v9i1.8789.g7598.
[84] A. Samal, A. Mohanty, P. K. Ray, S. Mohanty, and P. P. Mohanty, “Implementation of digital temperature control system on photovoltaic cell model: An experimental analysis,†Optik, vol. 176, pp. 324-333, 2019, https://doi.org/10.1016/j.ijleo.2018.09.095.
[85] R. Harahap and S. Suherman, “Active Versus Passive Cooling Systems in Increasing Solar Panel Output *,†Procedia Environmental Science, Engineering and Management, vol. 8, no. 1, pp. 157-166, 2021, https://www.procedia-esem.eu/pdf/issues/2021/no1/18_02.18.Suherman_21.pdf.
[86] T. Nabil and T. M. Mansour, “Results in Engineering Augmenting the performance of photovoltaic panel by decreasing its temperature using various cooling techniques,†Results in Engineering, vol. 15, p. 100564, 2022, https://doi.org/10.1016/j.rineng.2022.100564.
[87] A. A. Abdullah, F. S. Attulla, O. K. Ahmed, and S. Algburi, “Effect of cooling method on the performance of PV / Trombe wall: Experimental assessment,†Thermal Science and Engineering Progress, vol. 30, p. 101273, 2022, https://doi.org/10.1016/j.tsep.2022.101273.
[88] A. Samal, A. Mohanty, P. K. Ray, S. Mohanty, and P. P. Mohanty, “Implementation of digital temperature control system on photovoltaic cell model: An experimental analysis,†Optik, vol. 176, pp. 324-333, 2019, https://doi.org/10.1016/j.ijleo.2018.09.095.
[89] M. Y. A. Shdaifat, A. A. Salih, and R. Zulkifli, “Investigation on a Pv-T System Using Direct Heat Exchange between the Coolant and the Pv Panel: The Electrical Performance Aspect,†Journal of Modern Polymer Chemistry and Materials, vol. 1, no. 1, pp. 1–10, 2022, https://doi.org/10.53964/jmpcm.2022004.
[90] A. M. A. Alshibil, I. Farkas, and P. VÃg, “Multi-Aspect Approach of Electrical and Thermal Performance Evaluation for Hybrid Photovoltaic/Thermal Solar Collector Using Trnsys Tool,†International Journal of Thermofluids, vol. 16, p. 100222, 2022, https://doi.org/10.1016/j.ijft.2022.100222.
[91] M. H. Mohamed, “Synergistic experimental investigation of the nano‑ceramic cover sheet on the PV module performance,†Journal of Umm Al-Qura University for Engineering and Architecture, vol. 13, pp. 2-17, 2022, https://doi.org/10.1007/s43995-022-00001-1.
[92] V. A. Kusuma, H. Aprillia, S. S. Suprapto, M. N. Ramadhani, A. A. Firdaus, and D. F. U. Putra, “Analysis of the effect of a microcontroller-based solar panel cooling system on temperature and power output,†International Journal of Applied Power Engineering, vol. 12, no. 2, pp. 119-125, 2023, http://doi.org/10.11591/ijape.v12.i2.pp119-125.
[93] B. Singh et al., “Performance Improvement and Optimisation Using Response Surface Methodology (Central Composite Design) of Solar Photovoltaic Module with Reflector and Automatic Water Cooling,†Process Integration and Optimization for Sustainability, vol. 7, pp. 343-357, 2022, https://doi.org/10.1007/s41660-022-00296-6.
[94] M. Novak, R. Vohnout, L. Landkamer, O. Budik, M. Eider, and A. Mukherjee, “Energy-efficient smart solar system cooling for real-time dynamic weather changes in mild-climate regions,†Renewable and Sustainable Energy Reviews, vol. 182, p. 113347, 2023, https://doi.org/10.1016/j.rser.2023.113347.
[95] N. Wang, L. Ni, A. Wang, H. Shan, H. Jia, and L. Zuo, “High-efficiency photovoltaic-thermoelectric hybrid energy harvesting system based on functionally multiplexed intelligent thermal management,†Energy Conversion and Management, vol. 272, p. 116377, 2022, https://doi.org/10.1016/j.enconman.2022.116377.
[96] B. Winardi, A. Nugroho, and Y. Alvin, “Monitoring and Automatic Cooling Systems in Realtime Photovoltaic Based on IoT,†Bulletin of Computer Science and Electrical Engineering, vol. 3, no. 2, pp. 55-65, 2022, https://doi.org/10.25008/bcsee.v3i2.1164.
[97] M. S. F. M. Azmi et al., “Hybrid Cooling System for Solar Photovoltaic Panel,†Journal of Physics: Conference Series, vol. 2550, no. 1, 2023, p. 012004, 2023, https://doi.org/10.1088/1742-6596/2550/1/012004.
[98] M. I. Yusoff et al., “The Development of Hybrid Cooling Photovoltaic Panel by using Active and Passive Cooling System,†CFD Letters, vol. 5, no. 5, pp. 107-120, 2024, https://doi.org/10.37934/cfdl.16.5.107120.
[99] H. Idan, H. Kadhom, and S. Faraj, “Performance enhancement of PV panels by a channel shaped heat exchanger with an electromechanical control,†Engineering and Technology Journal, vol. 42, no. 7, pp. 818-832, 2024, https://doi.org/10.30684/etj.2024.143283.1575.
[100] A. Hamada, M. Emam, H. A. Refaey, M. Moawed, M. A. Abdelrahman, and M. E. A. Elsayed, “Identification of a different design of a photovoltaic thermal collector based on fuzzy logic control and the ARMAX model,†Thermal Science and Engineering Progress, vol. 48, p. 102395, 2024, https://doi.org/10.1016/j.tsep.2024.102395.
[101] A. S. B. Mohd Shah, H. Yokoyama and N. Kakimoto, "High-Precision Forecasting Model of Solar Irradiance Based on Grid Point Value Data Analysis for an Efficient Photovoltaic System," IEEE Transactions on Sustainable Energy, vol. 6, no. 2, pp. 474-481, 2015, https://doi.org/10.1109/TSTE.2014.2383398.
[102] M. B. Hayat, D. Ali, K. C. Monyake, L. Alagha, and N. Ahmed, “Solar energy—A look into power generation, challenges, and a solar-powered future,†International Journal of Energy Research, vol. 43, no. 3, pp. 1049-1067, 2019, https://doi.org/10.1002/er.4252.
[103] Z. Şen, “Solar energy in progress and future research trends,†Progress in Energy and Combustion Science, vol. 30, no. 4, pp. 367-416, 2004, https://doi.org/10.1016/j.pecs.2004.02.004.
[104] R. Jayabarathi, R. Sivaramakrishnan, S. Sruthi, M. Raakesh and B. Manoj, "Simulation and Implementation of Solar Power Penetration in an IEEE 5 bus System," 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), pp. 263-266, 2019, https://doi.org/10.1109/ICACCS.2019.8728428.
[105] S. R. Awad, M. A. Al Jbaar, and M. A. M. Abdullah, “Efficient and Low-Cost Arduino based Solar Tracking System,†IOP Conference Series: Materials Science and Engineering, vol. 745, no. 1, p. 012016, 2020, https://doi.org/10.1088/1757-899X/745/1/012016.
[106] I. S. Osman, I. K. Almadani, N. G. Hariri, and T. S. Maatallah, “Experimental Investigation and Comparison of the Net Energy Yield Using Control-Based Solar Tracking Systems,†International Journal of Photoenergy, vol. 2022, no. pp. 1-14, 2022, https://doi.org/10.1155/2022/7715214.
[107] N. G. Hariri, M. A. Almutawa, I. S. Osman, I. K. Almadani, A. M. Almahdi, and S. Ali, “Experimental Investigation of Azimuth- and Sensor-Based Control Strategies for a PV Solar Tracking Application,†Applied Science, vol. 12, no. 9, p. 4758, 2022, https://doi.org/10.3390/app12094758.
[108] S. Jain, R. Yadav, A. Garg, A. Gupta and T. Som, "Fabrication of an energy dual-axis solar tracking system and performance analyses through optimal values of solar panel parameters," 2021 Innovations in Energy Management and Renewable Resources(52042), pp. 1-5, 2021, https://doi.org/10.1109/IEMRE52042.2021.9386905.
[109] V. Mohanapriya, V. Manimegalai, V. Praveenkumar, and P. Sakthivel, “Implementation of Dual Axis Solar Tracking System,†IOP Conference Series: Materials Science and Engineering, vol. 1084, no. 1, p. 12073, 2021, https://doi.org/10.1088/1757-899X/1084/1/012073.
[110] M. Mollahasanoglu and H. İ. Okumus, “Performance Evaluation of the Designed Two-Axis Solar Tracking System for Trabzon Performance Evaluation of the Designed Two-Axis Solar Tracking System for Trabzon,†IETE Journal of Research, vol. 69, no. 8, pp. 5338-5350, 2021, https://doi.org/10.1080/03772063.2021.1973592.
[111] S. Kyi and A. Taparugssanagorn, “Wireless sensing for a solar power system,†Digital Communications and Networks, vol. 6, no. 1, pp. 51-57, 2020, https://doi.org/10.1016/j.dcan.2018.11.002.
[112] H. M. Fahad, A. Islam, M. Islam, M. F. Hasan, W. F. Brishty and M. M. Rahman, "Comparative Analysis of Dual and Single Axis Solar Tracking System Considering Cloud Cover," 2019 International Conference on Energy and Power Engineering (ICEPE), pp. 1-5, 2019, https://doi.org/10.1109/CEPE.2019.8726646.
[113] I. A. Ayoade, O. A. Adeyemi, O. A. Adeaga, R. O. Rufai and S. B. Olalere, "Development of Smart (Light Dependent Resistor, LDR) Automatic Solar Tracker," 2022 5th Information Technology for Education and Development (ITED), pp. 1-7, 2022, https://doi.org/10.1109/ITED56637.2022.10051239.
[114] L. Sun, J. Bai, R. Kumar, and S. Wang, “A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules,†Renewable Energy, vol. 221, p. 119762, 2024, https://doi.org/10.1016/j.renene.2023.119762.
[115] N. Hadroug, A. Iratni, A. Hafaifa, A. Boudjemline, and O. S. Alshammari, “Energy Efficiency Improvement in Photovoltaic Installation Using a Twin ‑ Axis Solar Tracking Mechanism with LDR Sensors Compared with Neuro ‑ Fuzzy Adaptive Inference Structure,†Journal of Electrical Engineering & Technology, vol. 18, no. 4, pp. 2943-2967, 2023, https://doi.org/10.1007/s42835-023-01411-4.
[116] I. Anshory et al., “Case Studies in Thermal Engineering Monitoring solar heat intensity of dual axis solar tracker control system: New approach,†Case Studies in Thermal Engineering, vol. 53, p. 103791, 2024, https://doi.org/10.1016/j.csite.2023.103791.
[117] Y. K. Jayam, V. Tunuguntla, J. B. Sreehari, and S. Harinarayanan, “Artificial photosynthesis using LDR controlled solar relay circuit,†Materialstoday: Proceedings, vol. 43, pp. 3837-3841, 2021, https://doi.org/10.1016/j.matpr.2020.11.1020.
[118] C. Jamroen, C. Fongkerd, W. Krongpha, P. Komkum, A. Pirayawaraporn, and N. Chindakham, “A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis,†Applied Energy, vol. 299, p. 117295, 2021, https://doi.org/10.1016/j.apenergy.2021.117295.
[119] R. Kent, “Renewables,†Plastics Engineering, vol. 74, no. 9, pp. 56-57, 2018, https://doi.org/10.1002/peng.20026.
[120] W. L. Prasetya, A. Ma’arif, H. M. Marhoon, R. Alayi, and A.-N. Sharkawy, “Monitoring of Water Flow on Solar-Powered Pump for IoT-Based Agriculture,†Journal of Science in Agrotechnology, vol. 1, no. 1, pp. 23-35, 2023, https://doi.org/10.21107/jsa.v1i1.6.
[121] S. B. Artaş, E. Kocaman, H. H. Bilgiç, H. Tutumlu, H. Yağlı, and R. Yumrutaş, “Why PV panels must be recycled at the end of their economic life span? A case study on recycling together with the global situation,†Process Safety and Environmental Protection, vol. 174, pp. 63-78, 2023, https://doi.org/10.1016/j.psep.2023.03.053.
[122] S. Kumar, N. Agarwal, S. K. Anand, and B. K. Rajak, “E-waste management in India: A strategy for the attainment of SDGs 2030,†Materialstoday: Proceedings, vol. 60, pp. 811-814, 2022, https://doi.org/10.1016/j.matpr.2021.09.296.
[123] S. Mahmoudi, N. Huda, and M. Behnia, “Critical assessment of renewable energy waste generation in OECD countries: Decommissioned PV panels,†Resources, Conservation and Recycling, vol. 164, p. 105145, 2021, https://doi.org/10.1016/j.resconrec.2020.105145.
[124] M. Peplow, “Solar Panels Face Recycling Challenge,†ACS Central Science, vol. 8, no. 3, pp. 299-302, 2022, https://doi.org/10.1021/acscentsci.2c00214.
[125] M. R. Islam, F. Rahman, and W. Xu, “Green Energy and Technology Advances in Solar Photovoltaic Power Plants,†Springer Berlin, 2016, https://doi.org/10.1007/978-3-662-50521-2.
[126] M. Bošnjaković, R. Santa, Z. Crnac, and T. Bošnjaković, “Environmental Impact of PV Power Systems,†Sustainability, vol. 15, no. 15, p. 11888, 2023, https://doi.org/10.3390/su151511888.
[127] S. K. Kurinec, “Emerging Photovoltaic Materials,†John Wiley & Sons, 2018, https://doi.org/10.1002/9781119407690.
[128] A. Sharkawy, M. Hasanin, M. Sharf, M. Mohamed, and A. Elsheikh, “Development of Smart Home Applications Based on Arduino and Android Platforms: An Experimental Work,†Automation, vol. 3, no. 4, pp. 579-595, 2022, https://doi.org/10.3390/automation3040029.
[129] A. Sharkawy, and J. M. Nazzal, “Design and Manufacturing Using 3D Printing Technology of A 5-DOF Manipulator for Industrial Tasks,†International Journal of Robotics and Control Systems, vol. 4, no. 2, pp. 893-909, 2024, https://doi.org/10.31763/ijrcs.v4i2.1456.
[130] A. A. Mahfouz, A. A. Aly, and F. A. Salem, “Mechatronics Design of a Mobile Robot System,†International Journal Intelligent Systems and Applications, vol. 5, no. 3, pp. 23-36, 2013, https://doi.org/10.5815/ijisa.2013.03.03.
[131] E. Kiyak and G. Gol, “A comparison of fuzzy logic and PID controller for a single-axis solar tracking system,†Renewables: Wind, Water, and Solar, vol. 3, 2016, https://doi.org/10.1186/s40807-016-0023-7.
[132] A. Latif, A. Z. Arfianto, H. A. Widodo, R. Rahim, and E. T. Helmy, “Motor DC PID system regulator for mini conveyor drive based-on matlab,†Journal of Robotics and Control, vol. 1, no. 6, pp. 185-190, 2020, https://doi.org/10.18196/jrc.1636.
[133] R. G. Vieira, F. K. O. M. V. Guerra, M. R. B. G. Vale, and M. M. Araújo, “Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator,†Renewable and Sustainable Energy Reviews, vol. 64, pp. 672–681, 2016, https://doi.org/10.1016/j.rser.2016.06.089.
[134] S. Kumar, B. Singh, S. Banerjee, A. Raj, Devansh, and A. Gupta, “Performance comparison between Arduino based dual axis solar tracker and fixed module,†Journal of Information and Optimization Sciences, vol. 43, no. 3, pp. 475-480, 2022, https://doi.org/10.1080/02522667.2022.2044000.
[135] F. Z. Baouche et al., “Design and Simulation of a Solar Tracking System for PV,†Applied Science, vol. 12, no. 19, p. 9682, 2022, https://doi.org/10.3390/app12199682.
[136] A. Karabiber and Y. Gun̈es, “Single-Motor and Dual-Axis Solar Tracking System for Micro Photovoltaic Power Plants,†Journal of Solar Energy Engineering, vol. 145, no. 5, 2023, https://doi.org/10.1115/1.4056739.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ahmed Hassan Hamed, Abdel-Nasser Sharkawy, I. Hamdan, Hussein M. Maghrabie

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE), Peneliti Teknologi Teknik Indonesia, Department of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia