Adaptive Controller Based on Estimated Parameters for Quadcopter Trajectory Tracking

(1) * Sophyn Srey Mail (Institute of Technology of Cambodia, Cambodia)
(2) Sarot Srang Mail (Institute of Technology of Cambodia, Cambodia)
*corresponding author

Abstract


This paper presents a trajectory control system design for a quadcopter, an unmanned aerial vehicle (UAV), which is based on estimated parameters that are assumed to exhibit random walk behavior. Initially, the rotational dynamic model of the UAV is formulated using the Newton Euler method in terms of angular velocity about the x, y, and z axes. This model is then simplified into three separated-first-order linear differential equations, with coefficients derived from the combined effects of inertia, aerodynamic drag, and gyroscopic effects, referred to as lumped parameters. A Proportional-Integral (PI) controller with feed-forward design is then developed to control this simplified model. To adapt the controller to the lumped parameters that exhibit random walk behavior, each simplified equation is restructured into a processing and measurement model. The states of these models are estimated by using the Unscented Kalman Filter (UKF). These estimated values are then utilized to adjust the PI gains and compensate the signal of the designed angular velocity controller, transforming it into an adaptive controller. The entire UAV controller comprises two main parts, an inner loop for adaptive angular rate control and an outer loop serving as an attitude-thrust controller. The proposed controller is simulated using Simulink, with circular and square trajectories. The simulation results demonstrate that the quadcopter successfully follows the desired circular and square paths. The steady-state error for the x and y axes in the square trajectory is less than 0.05 meters within 5 seconds, and for the z axis, it is less than 0.02 meters within 2.5 seconds. The controller gains do not require adjustment when changing trajectories. Moreover, the estimated parameters remain nearly constant at steady state.

Keywords


Quadcopter; Simplified Rotational Dynamics; Lumped Parameter; UKF; Estimation; Adaptive Controller; Trajectory Tracking

   

DOI

https://doi.org/10.31763/ijrcs.v4i2.1342
      

Article metrics

10.31763/ijrcs.v4i2.1342 Abstract views : 1498 | PDF views : 290

   

Cite

   

Full Text

Download

References


[1] F. Ahmed, J. C. Keshari, and Pankaj Singh Yadav, “Recent Advances in Unmanned Aerial Vehicles: A Review,†Arabian Journal for Science and Engineering, vol. 47, pp. 7963–7984, 2022, https://doi.org/10.1007/s13369-022-06738-0.

[2] J. Kim, S. A. Gadsden and S. A. Wilkerson, “A Comprehensive Survey of Control Strategies for Autonomous Quadrotors,†in Canadian Journal of Electrical and Computer Engineering, vol. 43, no. 1, pp. 3-16, 2020, https://doi.org/10.1109/CJECE.2019.2920938.

[3] S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif and M. A. Khan, “Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends,†Intelligent Service Robotics, vol. 16, pp.109–137, 2023, https://doi.org/10.1007/s11370-022-00452-4.

[4] N. Mohamed, J. Al-Jaroodi, I. Jawhar, A. Idries and F. Mohammed, “Unmanned aerial vehicles applications in future smart cities,†Technological Forecasting and Social Change, vol. 153, 2020, https://doi.org/10.1016/j.techfore.2018.05.004.

[5] M. Idrissi, M. Salami, and F. Annaz, “A Review of Quadrotor Unmanned Aerial Vehicles: Applications, Architectural Design and Control Algorithms,†Journal of Intelligent & Robotic Systems, vol. 104, no. 22, 2022, https://doi.org/10.1007/s10846-021-01527-7.

[6] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review,†Progress in Aerospace Sciences, vol. 91, pp. 99-131, 2017, https://doi.org/10.1016/j.paerosci.2017.04.003.

[7] H. Shraim, A. Awada and R. Youness, “A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control,†in IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 7, pp. 14-33, 2018, https://doi.org/10.1109/MAES.2018.160246.

[8] M. Maaruf, M. S. Mahmoud and A. Ma’arif, “A Survey of Control Methods for Quadrotor UAV,†International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 652-665, 2022, https://doi.org/10.31763/ijrcs.v2i4.743.

[9] S. Abdelhay and A. Zakriti, “Modeling of a Quadcopter Trajectory Tracking System Using PID Controller,†Procedia Manufacturing, vol. 32, pp. 564-571, 2019, https://doi.org/10.1016/j.promfg.2019.02.253.

[10] R. Mahony, V. Kumar and P. Corke, “Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor,†in IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 20-32, 2012, https://doi.org/10.1109/MRA.2012.2206474.

[11] I. S. Leal, C. Abeykoon, and Y. S. Perera, “Design, Simulation, Analysis and Optimization of PID and Fuzzy Based Control Systems for a Quadcopter,†Electronics, vol. 10, no. 18, 2021, https://doi.org/10.3390/electronics10182218.

[12] O. Doukhi, A. Razzaq Fayjie, and D. J. Lee, “Intelligent Controller Design for Quad-Rotor Stabilization in Presence of Parameter Variations,†Journal of Advanced Transportation, vol. 2017, 2017, https://doi.org/10.1155/2017/4683912.

[13] A. A. Najm and I. K. Ibraheem, “Nonlinear PID controller design for a 6-DOF UAV quadrotor system,†International Journal of Engineering Science and Technology, vol. 22, pp. 1087-1097, 2019, https://doi.org/10.1016/j.jestch.2019.02.005.

[14] A. Abdulkareem, V. Oguntosin, O. M. Popoola, and A. A. Idowu, “Modeling and Nonlinear Control of a Quadcopter for Stabilization and Trajectory Tracking,†Journal of Engineering, vol. 2022, pp. 1–19, 2022, https://doi.org/10.1155/2022/2449901.

[15] Z. Cai, S. Zhang and X. Jing, “Model Predictive Controller for Quadcopter Trajectory Tracking Based on Feedback Linearization,†in IEEE Access, vol. 9, pp. 162909-162918, 2021, https://doi.org/10.1109/ACCESS.2021.3134009.

[16] J. C. Pereira, V. J. S. Leite, and G. V. Raffo, “Nonlinear Model Predictive Control on SE(3) for Quadrotor Aggressive Maneuvers,†Journal of robotic and Intelligent system, vol. 62, no. 101, 2021, https://doi.org/10.1007/s10846-021-01310-8.

[17] A. T. Nguyen, N. X. Mung, and S. K. Hong, “Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique,†Applied Sciences, vol. 9, no. 18, 2019, https://doi.org/10.3390/app9183873.

[18] A. Noordin, M. A. Mohd Basri, and Z. Mohamed, “Adaptive PID Control via Sliding Mode for Position Tracking of Quadrotor MAV: Simulation and Real-Time Experiment Evaluation,†Aerospace, vol. 10, no. 6, 2023, https://doi.org/10.3390/aerospace10060512.

[19] M. Vahdanipour, and M. Khodabandeh, “Adaptive fractional order sliding mode control for a quadrotor with a varying load,†Aerospace Science and Technology, vol. 86, pp. 737-747, 2019, https://doi.org/10.1016/j.ast.2019.01.053.

[20] A. Saibi, R. Boushaki, and H. Belaidi, “Backstepping Control of Drone,†Engineering Proceedings, vol. 14, no. 1, 2022, https://doi.org/10.3390/engproc2022014004.

[21] Z. Li, X. Ma and Y. Li, “Robust trajectory tracking control for a quadrotor subject to disturbances and model uncertainties,†International Journal of Systems Science, vol. 51, no. 5, pp. 839-851, 2020, https://doi.org/10.1080/00207721.2020.1746430.

[22] A. Daadi, H. Boulebtinai, S. H. Derrouaoui and F. Boudjema, “Sliding Mode Controller Based on the Sliding Mode Observer for a QBall 2+ Quadcopter with Experimental Validation,†International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 332-356, 2022, https://doi.org/10.31763/ijrcs.v2i2.693.

[23] H. Coppejans and H. Myburgh, “A Primer on Autonomous Aerial Vehicle Design,†Sensors, vol. 15, no. 12, pp. 30033–30061, 2015, https://doi.org/10.3390/s151229785.

[24] M. Karahan, M. Inal and C. Kasnakoglu, “Fault Tolerant Super Twisting Sliding Mode Control of a Quadrotor UAV Using Control Allocation,†International Journal of Robotics and Control Systems, vol. 3, no. 2, pp. 270-285, 2023, https://doi.org/10.31763/ijrcs.v3i2.994.

[25] E. Morelli and V. Klein, “Aircraft System Identification: Theory And Practice,†AIAA (American Institute of Aeronautics & Astronautics), pp. 27-38, 2016, https://doi.org/10.2514/4.861505.

[26] A. T. E. Fraire, A. E. D. López, R. P. P. Morado, and J. A. S. Esqueda, “Design of Control Laws and State Observers for Fixed-Wing UAVs: Simulation and Experimental Approaches,†Elsevier, pp. 24-30, 2023, https://doi.org/10.1016/C2021-0-02985-0.

[27] M. N. Shauqee, P. Rajendran and N. M. Suhadis, “An effective proportional-double derivative-linear quadratic regulator controller for quadcopter attitude and altitude control,†Automatika, vol. 62, no. 3-4, pp. 415–433, 2021, https://doi.org/10.1080/00051144.2021.1981527.

[28] R. W. Beard and T. W. McLain, “Small Unmanned Aircraft: Theory and Practice,†Princeton University Press 2012, pp. 8-28, 2023, https://doi.org/10.1515/9781400840601.

[29] S. Srey, V. Chhour and S. Srang, “Lumped Parameter Estimation of a Low Cost DC Motor for Position Controller Design,†2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation, pp. 1-6, 2021, http://doi.org/10.1109/ICAMIMIA54022.2021.9807810.

[30] S. Yean, T. Peou, B. Sethy and S. Srang, “PD Controller and Dynamic Compensation Design for a DC Motor based on Estimated Parameters,†2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation, pp. 7-12, 2021, http://doi.org/10.1109/ICAMIMIA54022.2021.9807796.

[31] N. S. Nise, “Control Systems Engineering,†John Wiley & Sons, 8th edition, pp. 160-180, 2019, https://www.wiley.com/en-us/Control+Systems+Engineering%2C+8th+Edition-p-9781119474227.

[32] M. A. Haidekker, “Chapter 3 - Solving Differential Equations in the Laplace Domain,†Linear Feedback Controls, pp. 27–56, 2013, https://doi.org/10.1016/B978-0-12-405875-0.00003-6.

[33] M. A. Tahir, I. Mir, and T. U. Islam, “Control Algorithms, Kalman Estimation and Near Actual Simulation for UAVs: State of Art Perspective,†Drones, vol. 7, no. 6, 2023, https://doi.org/10.1016/B978-0-12-405875-0.00003-6.

[34] H. G. de Marina, F. J. Pereda, J. M. Giron-Sierra and F. Espinosa, “UAV Attitude Estimation Using Unscented Kalman Filter and TRIAD,†in IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4465-4474, 2012, https://doi.org/10.1109/TIE.2011.2163913.

[35] J. L. Crassidis and F. L. Markley, “Unscented Filtering for Spacecraft Attitude Estimation,†Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 536-542, 2012, https://doi.org/10.2514/2.5102.

[36] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,†Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 153-158, 2000, https://doi.org/10.1109/ASSPCC.2000.882463.

[37] C. Urrea, and R. Agramonte, “Kalman Filter: Historical Overview and Review of Its Use in Robotics 60 Years after Its Creation,†Journal of Sensors, vol. 2021, 2021, https://doi.org/10.1155/2021/9674015.

[38] R. Zanetti and K. J. DeMars, “Fully Multiplicative Unscented Kalman Filter for Attitude Estimation,†Journal of Guidance, Control, and Dynamics, vol. 41, no. 5, pp. 1183-1189, 2018, https://doi.org/10.2514/1.G003221.

[39] B. Gao, S. Gao, G. Hu, Y. Zhong, and C. Gu, “Maximum likelihood principle and moving horizon estimation based adaptive unscented Kalman filter,†Science and Technology, vol. 73, pp. 184-196, 2018, https://doi.org/10.1016/j.ast.2017.12.007.

[40] A. Piwowar and D. Grabowski, “Modelling of the First-Order Time-Varying Filters with Periodically Variable Coefficients,†Mathematical Problems in Engineering, vol. 2017, 2017, https://doi.org/10.1155/2017/9621651.

[41] R. M. Colorado and L. T. Aguilar, “Robust PID control of quadrotors with power reduction analysis,†ISA Transactions, vol. 98, pp. 47-62, 2020, https://doi.org/%2010.1016/j.isatra.2019.08.045.

[42] S. Park, J. Deyst, and J. How, “A new nonlinear guidance logic for trajectory tracking,†AIAA guidance, navigation, and control conference and exhibi, 2004, https://doi.org/10.2514/6.2004-4900.

[43] W. Hao, B. Xian and T. Xie, “Fault-Tolerant Position Tracking Control Design for a Tilt Tri-Rotor Unmanned Aerial Vehicle,†in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 604-612, 2022, https://doi.org/10.1109/TIE.2021.3050384.

[44] A. L. Salih, M. Moghavvemi, H. A. F. Mohamed and K. S. Gaeid, â€Modelling and PID controller design for a quadrotor unmanned air vehicle,†2010 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1-5, 2010, https://doi.org/10.1109/AQTR.2010.5520914.

[45] S. K. Singh, A. Sinha and S. R. Kumar, “Nonlinear Control Design for an Unmanned Aerial Vehicle for Path Following,†IFAC-PapersOnLine, vol. 55, no. 1, pp. 592-597, 2022, https://doi.org/10.1016/j.ifacol.2022.04.097.

[46] A. Eltayeb, M. F. Rahmat, M. A. M. Basri, M. A. M. Eltoum and S. El-Ferik, “An Improved Design of an Adaptive Sliding Mode Controller for Chattering Attenuation and Trajectory Tracking of the Quadcopter UAV,†in IEEE Access, vol. 8, pp. 205968-205979, 2020, https://doi.org/10.1109/ACCESS.2020.3037557.

[47] H. Bouadi and F. Mora-Camino, “Direct Adaptive Backstepping Flight Control for Quadcopter Trajectory Tracking,†2018 IEEE/AIAA 37th Digital Avionics Systems Conference, pp. 1-8, 2018, https://doi.org/10.1109/DASC.2018.8569628.

[48] M. S. Mahmoud and M. Maaruf, “Robust Adaptive Multilevel Control of a Quadrotor,†in IEEE Access, vol. 8, pp. 167684-167692, 2020, https://doi.org/10.1109/ACCESS.2020.3022724.

[49] T. V. Glazkov and A. E. Golubev, “Using Simulink Support Package for Parrot Minidrones in nonlinear control education,†Second international conference on material science, smart structures and application(ICMSS), vol. 2195, 2019, https://doi.org/10.1063/1.5140107.

[50] C. S. Subudhi and D. Ezhilarasi, “Modeling and Trajectory Tracking with Cascaded PD Controller for Quadrotor,†Procedia Computer Science, vol. 133, pp. 952-959, 2018, https://doi.org/10.1016/j.procs.2018.07.082.

[51] E. H. Kadhim and A. T. Abdulsadda, “Improving the Size of the Propellers of the Parrot Mini-Drone and an Impact Study on its Flight Controller System,†International Journal of Robotics and Control Systems, vol. 3, no. 2 pp. 171-186, 2023, https://doi.org/10.31763/ijrcs.v3i2.933.

[52] A. Baharuddin and M. A. M. Basrii, “Self-Tuning PID Controller for Quadcopter using Fuzzy Logic,†International Journal of Robotics and Control Systems, vol. 3, no. 3 pp. 728-748, 2023, https://doi.org/10.31763/ijrcs.v3i4.1127.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sophyn Srey

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia