Indonesian Waste Database: Smart Mechatronics System

(1) * Haris Imam Karim Fathurrahman Mail (Universitas Ahmad Dahlan, Indonesia)
(2) Ahmad Azhari Mail (Universitas Ahmad Dahlan, Indonesia)
(3) Tole Sutikno Mail (Universitas Ahmad Dahlan, Indonesia)
(4) Li-yi Chin Mail (Applied Materials, Taiwan)
(5) Prasetya Murdaka Putra Mail (Universitas Ahmad Dahlan, Indonesia)
(6) Isro Dwian Yunandha Mail (Universitas Ahmad Dahlan, Indonesia)
(7) Gralo Yopa Rahmat Pratama Mail (Universitas Ahmad Dahlan, Indonesia)
(8) Beni Purnomo Mail (Universitas Ahmad Dahlan, Indonesia)
*corresponding author

Abstract


Waste management is an essential component of urban management. As a waste solution, waste management is critical. The goal of this research is to develop a waste management database that is coupled with a mechatronic robot system. Compiling and gathering data on the sorts of garbage found in Indonesia is the starting point for this research. Indonesian waste is classified into six groups: cardboard, paper, metal, plastic, medical, and organic. The total images of the six groups are estimated at 1880 pictures. According to this picture database, Artificial Intelligence (AI) training was used to create the classification system. In the final AI process, the test method was performed using DenseNet121, DenseNet169, and DenseNet201. Testing using artificial intelligence DenseNet201 across 40 epochs yields the best 92,7% accuracy rate. Simultaneously with Artificial Intelligence testing, a mechatronic system is created as a direct implementation of the Artificial Intelligence output model. A four-servo arm robot with dc motor wheel mobility is included in the mechatronic system. According to these findings, the Indonesian waste database can be categorized correctly using Artificial Intelligence and the mechatronics system. This higher accuracy of the artificial intelligence model may be used to create a waste-sorting robot prototype.

Keywords


Artificial Intelligence;Database;Indonesia;Waste

   

DOI

https://doi.org/10.31763/ijrcs.v3i2.999
      

Article metrics

10.31763/ijrcs.v3i2.999 Abstract views : 1124 | PDF views : 362

   

Cite

   

Full Text

Download

References


[1] C. Ellis, “World Bank: Global waste generation could increase 70% by 2050,” WasteDive, 2018. https://www.wastedive.com/news/world-bank-global-waste-generation-2050/533031/ (accessed Nov. 17, 2021).

[2] A. Keskisaari and T. Kärki, “The use of waste materials in wood-plastic composites and their impact on the profitability of the product,” Resour. Conserv. Recycl., vol. 134, pp. 257–261, 2018, https://doi.org/10.1016/j.resconrec.2018.03.023.

[3] H. L. Chen, T. K. Nath, S. Chong, V. Foo, C. Gibbins, and A. M. Lechner, “The plastic waste problem in Malaysia: management, recycling and disposal of local and global plastic waste,” SN Appl. Sci., vol. 3, no. 4, p. 437, 2021, https://doi.org/10.1007/s42452-021-04234-y.

[4] A. Maalouf and H. Maalouf, “Impact of COVID-19 pandemic on medical waste management in Lebanon,” Waste Manag. Res. J. a Sustain. Circ. Econ., vol. 39, no. 1, pp. 45–55, 2021, https://doi.org/10.1177/0734242X211003970.

[5] M. R. Capoor and A. Parida, “Current perspectives of biomedical waste management in context of COVID-19",” Indian J. Med. Microbiol., vol. 39, no. 2, pp. 171–178, 2021, https://doi.org/10.1016/j.ijmmb.2021.03.003.

[6] S. Sangkham, “Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia,” Case Stud. Chem. Environ. Eng., vol. 2, p. 100052, 2020, https://doi.org/10.1016/j.cscee.2020.100052.

[7] D. Ddiba, E. Ekener, M. Lindkvist, and G. Finnveden, “Sustainability assessment of increased circularity of urban organic waste streams,” Sustain. Prod. Consum., vol. 34, pp. 114-129, 2022, https://doi.org/10.1016/j.spc.2022.08.030.

[8] Y. Zhou et al., “Microplastics as an underestimated emerging contaminant in solid organic waste and their biological products: Occurrence, fate and ecological risks,” J. Hazard. Mater., vol. 445, p. 130596, 2023, https://doi.org/10.1016/j.jhazmat.2022.130596.

[9] W. Pan, H. Xie, Y. Zhou, Q. Wu, J. Zhou, and X. Guo, “Simultaneous adsorption removal of organic and inorganic phosphorus from discharged circulating cooling water on biochar derived from agricultural waste,” J. Clean. Prod., vol. 383, p. 135496, 2023, https://doi.org/10.1016/j.jclepro.2022.135496.

[10] D. Dahiya, H. Sharma, A. K. Rai, and P. S. Nigam, “Application of biological systems and processes employing microbes and algae to Reduce, Recycle, Reuse (3Rs) for the sustainability of circular bioeconomy,” AIMS Microbiol., vol. 8, no. 1, pp. 83–102, 2022, https://doi.org/10.3934/microbiol.2022008.

[11] A. Ilham, M. Rahman, and W. Tune Sumar, “Community Empowerment Through Waste Management With Reduce, Reuse and Recycle System (3r) In Bulota Village,” Devot. J. Community Serv., vol. 3, no. 4, pp. 353–360, 2022, https://doi.org/10.36418/dev.v3i4.123.

[12] T.-D. Bui, J.-W. Tseng, M.-L. Tseng, and M. K. Lim, “Opportunities and challenges for solid waste reuse and recycling in emerging economies: A hybrid analysis,” Resour. Conserv. Recycl., vol. 177, p. 105968, 2022, https://doi.org/10.1016/j.resconrec.2021.105968.

[13] J. Jiang et al., “From plastic waste to wealth using chemical recycling: A review,” J. Environ. Chem. Eng., vol. 10, no. 1, p. 106867, 2022, https://doi.org/10.1016/j.jece.2021.106867

[14] T. A. Kurniawan, C. Meidiana, M. H. Dzarfan Othman, H. H. Goh, and K. W. Chew, “Strengthening waste recycling industry in Malang (Indonesia): Lessons from waste. management in the era of Industry 4.0,” J. Clean. Prod., vol. 382, p. 135296, 2023, https://doi.org/10.1016/j.jclepro.2022.135296

[15] C. Yaqi, H. Xiao, Z. Xiaoning, and Q. Mei, “Influence of social capital on rural household garbage sorting and recycling behavior: The moderating effect of class identity,” Waste Manag., vol. 158, pp. 84–92, 2023, https://doi.org/10.1016/j.wasman.2022.12.036.

[16] D. Mangindaan, A. Adib, H. Febrianta, and D. J. C. Hutabarat, “Systematic Literature Review and Bibliometric Study of Waste Management in Indonesia in the COVID-19 Pandemic Era,” Sustainability, vol. 14, no. 5, p. 2556, 2022, https://doi.org/10.3390/su14052556.

[17] P. Lestari and Y. Trihadiningrum, “The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment,” Mar. Pollut. Bull., vol. 149, p. 110505, 2019, https://doi.org/10.1016/j.marpolbul.2019.110505.

[18] G. A. Kristanto and W. Koven, “Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia,” City Environ. Interact., vol. 4, p. 100027, 2019, https://doi.org/10.1016/j.cacint.2020.100027.

[19] A. R. Mishra et al., “Assessing the Adaptation of Internet of Things (IoT) Barriers for Smart Cities’ Waste Management Using Fermatean Fuzzy Combined Compromise Solution Approach,” IEEE Access, vol. 10, pp. 37109–37130, 2022, https://doi.org/10.1109/ACCESS.2022.3164096.

[20] C. Wang, J. Qin, C. Qu, X. Ran, C. Liu, and B. Chen, .“A smart municipal waste management system based on deep-learning and Internet of Things,” Waste Manag., vol. 135, pp. 20–29, 2021, https://doi.org/10.1016/j.wasman.2021.08.028.

[21] T. J. Sheng et al., “An Internet of Things Based Smart Waste Management System Using LoRa and Tensorflow Deep Learning Model,” IEEE Access, vol. 8, pp. 148793–148811, 2020, https://doi.org/10.1109/ACCESS.2020.3016255.

[22] X. Chen, H. Huang, Y. Liu, J. Li, and M. Liu, “Robot for automatic waste sorting on construction sites,” Autom. Constr., vol. 141, p. 104387, 2022, https://doi.org/10.1016/j.autcon.2022.104387

[23] R. Sarc, A. Curtis, L. Kandlbauer, K. Khodier, K. E. Lorber, and R. Pomberger, “Digitalisation and .intelligent robotics in value chain of circular economy oriented waste management – A review,” Waste Manag., vol. 95, pp. 476–492, 2019, https://doi.org/10.1016/j.wasman.2019.06.035

[24] B. Engelen, D. De Marelle, J. R. Peeters, and K. Kellens, “High airflow vertical conveying gripper for robotic sorting of shredded metal residues,” Procedia CIRP, vol. 116, pp. 396–401, 2023, https://doi.org/10.1016/j.procir.2023.02.067.

[25] D. Aschenbrenner, J. Gros, N. Fangerow, T. Werner, C. Colloseus, and I. Taha, “Recyclebot – using robots for sustainable plastic recycling,” Procedia CIRP, vol. 116, pp. 275–280, 2023, https://doi.org/10.1016/j.procir.2023.02.047

[26] T. Kiyokawa, J. Takamatsu, and S. Koyanaka, “Challenges for Future Robotic Sorters of Mixed Industrial Waste: A Survey,” IEEE Trans. Autom. Sci. Eng., pp. 1–18, 2022, https://doi.org/10.1109/TASE.2022.3221969.

[27] D. Rutqvist, D. Kleyko, and F. Blomstedt, “An Automated Machine Learning Approach for Smart Waste Management Systems,” IEEE Trans. Ind. Informatics, vol. 16, no. 1, pp. 384–392, 2020, https://doi.org/10.1109/TII.2019.2915572.

[28] P. Moral et al., “Towards automatic waste containers management in cities via computer vision: containers localization and geo-positioning in city maps,” Waste Manag., vol. 152, pp. 59–68, 2022, https://doi.org/10.1016/j.wasman.2022.08.007.

[29] W.-L. Mao, W.-C. Chen, H. I. K. Fathurrahman, and Y.-H. Lin, “Deep learning networks for real-time regional domestic waste detection,” J. Clean. Prod., vol. 344, p. 131096, 2022, https://doi.org/10.1016/j.jclepro.2022.131096.

[30] W.-L. Mao, W.-C. Chen, C.-T. Wang, and Y.-H. Lin, “Recycling waste classification using optimized convolutional neural network,” Resour. Conserv. Recycl., vol. 164, p. 105132, 2021, https://doi.org/10.1016/j.resconrec.2020.105132.

[31] H. I. K. Fathurrahman, A. Ma’arif, and L.-Y. Chin, “The Development of Real-Time Mobile Garbage Detection Using Deep Learning,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 3, p. 472, 2022, https://doi.org/10.26555/jiteki.v7i3.22295.

[32] W. Lu and J. Chen, “Computer vision for solid waste sorting: A critical review of academic research,” Waste Manag., vol. 142, pp. 29–43, Apr. 2022, https://doi.org/10.1016/j.wasman.2022.02.009

[33] S. Dey, S. Saha, A. K. Singh, and K. McDonald-Maier, “SmartNoshWaste: Using Blockchain, Machine Learning, Cloud Computing and QR Code to Reduce Food Waste in Decentralized Web 3.0 Enabled Smart Cities,” Smart Cities, vol. 5, no. 1, pp. 162–176, 2022, https://doi.org/10.3390/smartcities5010011.

[34] S.-J. Yu, Y.-L. Hsueh, J. C.-Y. Sun, and H.-Z. Liu, “Developing an intelligent virtual reality interactive system based on the ADDIE model for learning pour-over coffee brewing,” Comput. Educ. Artif. Intell., vol. 2, p. 100030, 2021, https://doi.org/10.1016/j.caeai.2021.100030.

[35] R. M. Branch, Instructional Design: The ADDIE Approach. Boston, MA: Springer US, 2009, https://doi.org/10.1007/978-0-387-09506-6.

[36] T. T. Tung, N. Van Tinh, D. T. Phuong Thao, and T. V. Minh, “Development of a prototype 6 degree of freedom robot arm,” Results Eng., vol. 18, p. 101049, 2023, https://doi.org/10.1016/j.rineng.2023.101049.

[37] J. P. A. Joel, R. J. S. Raj, and N. Muthukumaran, “Review on Gait Rehabilitation Training using Human Adaptive Mechatronics System in Biomedical Engineering,” in 2022 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5, 2022, https://doi.org/10.1109/ICCCI54379.2022.9740794.

[38] G. Pereira das Neves and B. Augusto Angélico, “Model‐free control of mechatronic systems based on algebraic estimation,” Asian J. Control, vol. 24, no. 4, pp. 1575–1584, 2022, https://doi.org/10.1002/asjc.2596.

[39] E. Windisch, C. Mandel, S. Rapp, N. Bursac, and A. Albers, “Approach for model-based requirements engineering for the planning of engineering generations in the agile development of mechatronic systems,” Procedia CIRP, vol. 109, pp. 550–555, 2022, https://doi.org/10.1016/j.procir.2022.05.293.

[40] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017, pp. 2261–2269, 2017, https://doi.org/10.1109/CVPR.2017.243.

[41] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv Prepr. arXiv1704.04861, 2017, https://doi.org/10.48550/arXiv.1704.04861.

[42] C. Wang, J. Qin, C. Qu, X. Ran, C. Liu, and B. Chen, “A smart municipal waste management system based on deep-learning and Internet of Things,” Waste Manag., vol. 135, pp. 20–29, 2021, https://doi.org/10.1016/j.wasman.2021.08.028.

[43] A. Howard et al., “Searching for MobileNetV3,” In Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314-1324, 2019, https://doi.org/10.1109/ICCV.2019.00140.

[44] W. Liu et al., “SSD: Single shot multibox detector,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9905, pp. 21–37, 2016, https://doi.org/10.1007/978-3-319-46448-0_2.

[45] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD : Deconvolutional Single Shot Detector,” arXiv preprint arXiv:1701.06659, 2017, https://doi.org/10.48550/arXiv.1701.06659.

[46] S. Jain, R. Rathi, and R. K. Chaurasiya, “Indian Vehicle Number-Plate Recognition using Single Shot Detection and OCR,” in 2021 IEEE India Council International Subsections Conference (INDISCON), pp. 1–5, 2021, https://doi.org/10.1109/INDISCON53343.2021.9582216.

[47] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, https://doi.org/10.1109/CVPR.2016.91.

[48] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017, pp. 6517–6525, 2017, https://doi.org/10.1109/CVPR.2017.690.

[49] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv preprint arXiv:1804.02767, 2018, https://doi.org/10.48550/arXiv.1804.02767

[50] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv preprint arXiv:2004.10934, 2020, https://doi.org/10.48550/arXiv.2004.10934.

[51] S. Targ, D. Almeida, and K. Lyman, “Resnet in Resnet: Generalizing Residual Architectures,” arXiv preprint arXiv:1603.08029, 2016, https://doi.org/10.48550/arXiv.1603.08029.

[52] O. Adedeji and Z. Wang, “Intelligent waste classification system using deep learning convolutional neural network,” Procedia Manuf., vol. 35, pp. 607–612, 2019, https://doi.org/10.1016/j.promfg.2019.05.086.

[53] H. Hua, M. Liu, Y. Li, S. Deng, and Q. Wang, “An ensemble framework for short-term load forecasting based on parallel CNN and GRU with improved ResNet,” Electr. Power Syst. Res., vol. 216, p. 109057, 2023, https://doi.org/10.1016/j.epsr.2022.109057.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Haris Imam Karim Fathurrahman, Ahmad Azhari, Tole Sutikno, Li-yi Chin, Prasetya Murdaka Putra, Isro Dwian Yunandha, Gralo Yopa Rahmat Pratama, Beni Purnomo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia