Stabilizing of Inverted Pendulum System Using Robust Sliding Mode Control

(1) * Magdi S. Mahmoud Mail (Control and Instrumentation Engineering Department, KFUPM, Dhahran, Saudi Arabia)
(2) Radhwan A. A. Saleh Mail (Computer Engineering Department, KFUPM, Saudi Arabia)
(3) Alfian Ma’arif Mail (Universitas Ahmad Dahlan, Yogyakarta, Indonesia)
*corresponding author

Abstract


The Inverted Pendulum is a highly nonlinear, unstable, and fast dynamic system. These characteristics make it a popular benchmark for building and testing novel controllers. Therefore, in this study, a sliding mode controller is proposed and tested on the inverted pendulum system. According to the results of the simulation experiments with a sine signal as a reference, the proposed controller can stabilize the system well and has so fast response. Moreover, we have tuned the parameters of the proposed sliding mode controller in order to eliminate the chattering effect, the overshoot, and the steady
state error.

Keywords


Inverted Pendulum; Sliding Mode Control; Robust Control; Nonlinear

   

DOI

https://doi.org/10.31763/ijrcs.v2i2.594
      

Article metrics

10.31763/ijrcs.v2i2.594 Abstract views : 2402 | PDF views : 1285

   

Cite

   

Full Text

Download

References


[1] M. F. Hamza, H. J. Yap, I. A. Choudhury, A. I. Isa, A. Y. Zimit, and T. Kumbasar, “Current development on using rotary inverted pendulum as a benchmark for testing linear and nonlinear control algorithms,” Mechanical Systems and Signal Processing, vol. 116, pp. 347–369, feb 2019, https://doi.org/10.1016/j.ymssp.2018.06.054.

[2] J. Huang, T. Zhang, Y. Fan, and J.-Q. Sun, “Control of rotary inverted pendulum using model-free backstepping technique,” IEEE Access, vol. 7, pp. 96965–96973, 2019, https://doi.org/10.1109/ACCESS.2019.2930220.

[3] A. de Carvalho, J. F. Justo, B. A. Angelico, A. M. de Oliveira, and J. I. da Silva Filho, “Rotary inverted pendulum identification for control by paraconsistent neural network,” IEEE Access, vol. 9, pp. 74155–74167, 2021, https://doi.org/10.1109/access.2021.3080176.

[4] P. Dwivedi, S. Pandey, and A. S. Junghare, “Stabilization of unstable equilibrium point of rotary inverted pendulum using fractional controller,” Journal of the Franklin Institute, vol. 354, no. 17, pp. 7732–7766, 2017, https://doi.org/10.1016/j.jfranklin.2017.09.013.

[5] X. Chen, R. Yu, K. Huang, S. Zhen, H. Sun, and K. Shao, “Linear motor driven double inverted pendulum: A novel mechanical design as a testbed for control algorithms,” Simulation Modelling Practice and Theory, vol. 81, pp. 31–50, 2018, https://doi.org/10.1016/j.simpat.2017.11.009.

[6] A. Ma’arif, M. A. M. Vera, M. S. Mahmoud, S. Ladaci, A. C¸ akan, and J. N. Parada, “Backstepping sliding mode control for inverted pendulum system with disturbance and parameter uncertainty,” Journal of Robotics and Control (JRC), vol. 3, no. 1, pp. 86–92, 2021, https://doi.org/10.18196/jrc.v3i1.12739.

[7] L. B. Prasad, B. Tyagi, and H. O. Gupta, “Modelling and simulation for optimal control of nonlinear inverted pendulum dynamical system using pid controller and lqr,” in 2012 Sixth Asia Modelling Symposium, 2012, pp. 138–143, https://doi.org/10.1109/AMS.2012.21.

[8] Y. Rizal, M. Wahyu, I. Noor, J. Riadi, F. Feriyadi, and R. Mantala, “Design of an adaptive super-twisting control for the cart-pole inverted pendulum system,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 1, pp. 161–174, 2021, http://dx.doi.org/10.26555/jiteki.v7i1.20420.

[9] E. Kennedy, E. King, and H. Tran, “Real-time implementation and analysis of a modified energy based controller for the swing-up of an inverted pendulum on a cart,” European Journal of Control, vol. 50, pp. 176–187, 2019, https://doi.org/10.1016/j.ejcon.2019.05.002.

[10] J. F. S. Trentin, S. Da Silva, J. M. De Souza Ribeiro, and H. Schaub, “Inverted pendulum nonlinear controllers using two reaction wheels: Design and implementation,” IEEE Access, vol. 8, pp. 74922–74932, 2020, https://doi.org/10.1109/ACCESS.2020.2988800.

[11] A. C¸ akan, F. M. Botsalı, and M. Tınkır, “Pid control of inverted pendulum using adams and matlab cosimulation,” in Proceedings of the 4th International Conference on Control, Mechatronics and Automation, ser. ICCMA ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 136–139, https://doi.org/10.1145/3029610.3029643.

[12] M. Waszak and R. Łangowski, “An automatic self-tuning control system design for an inverted pendulum,” IEEE Access, vol. 8, pp. 26 726–26 738, 2020, https://doi.org/10.1109/ACCESS.2020.2971788.

[13] Y. Silik and U. Yaman, “Control of rotary inverted pendulum by using on–off type of cold gas thrusters,” Actuators, vol. 9, no. 4, 2020, https://doi.org/10.3390/act9040095.

[14] A. T. Azar, H. H. Ammar, M. H. Barakat, M. A. Saleh, and M. A. Abdelwahed, “Self-balancing robot modeling and control using two degree of freedom pid controller,” in Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, A. E. Hassanien, M. F. Tolba, K. Shaalan, and A. T. Azar, Eds. Cham: Springer International Publishing, 2019, pp. 64–76, https://doi.org/10.1007/978-3-319-9010-1_6.

[15] I. Gandarilla, V. Santibanez, and J. Sandoval, “Control of a self-balancing robot with two degrees of freedom via ida-pbc,” ISA Transactions, vol. 88, pp. 102–112, 2019, https://doi.org/10.1016/j.isatra.2018.12.014.

[16] I. Siradjuddin, Z. Amalia, B. Setiawan, F. Ronilaya, E. Rohadi, A. Setiawan, C. Rahmad, and S. Adhisuwignjo, “Stabilising a cart inverted pendulum with an augmented PID control scheme,” MATEC Web of Conferences, vol. 197, p. 11013, 2018, https://doi.org/10.1051/matecconf%2F201819711013.

[17] E. S. Varghese, A. K. Vincent, and V. Bagyaveereswaran, “Optimal control of inverted pendulum system using PID controller, LQR and MPC,” IOP Conference Series: Materials Science and Engineering, vol. 263, p. 052007, nov 2017, https://doi.org/10.1088/1757-899x/263/5/052007.

[18] J.-J. Wang, “Simulation studies of inverted pendulum based on pid controllers,” Simulation Modelling Practice and Theory, vol. 19, no. 1, pp. 440–449, 2011, https://doi.org/10.1016/j.simpat.2010.08.003.

[19] M. Fauziyah, Z. Amalia, I. Siradjuddin, D. Dewatama, R. P. Wicaksono, and E. Yudaningtyas, “Linear quadratic regulator and pole placement for stabilizing a cart inverted pendulum system,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 3, pp. 914–923, 2020, https://doi.org/10.11591/eei.v9i3.2017.

[20] N. Tahir, M. Muhammad, M. Idi, S. Buyamin, L. Maijama’a, and S. Yarima, “Comparative analysis of observer-based lqr and lmi controllers of an inverted pendulum,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 6, pp. 2244–2252, 2020, https://doi.org/10.11591/eei.v9i6.2271.

[21] E. Susanto, A. Surya Wibowo, and E. Ghiffary Rachman, “Fuzzy swing up control and optimal state feedback stabilization for self-erecting inverted pendulum,” IEEE Access, vol. 8, pp. 6496–6504, 2020, https://doi.org/10.1109/ACCESS.2019.2963399.

[22] Umit Onen and A. Cakan, “Multibody modeling and balance control of a reaction wheel inverted pendulum using lqr controller,” International Journal of Robotics and Control Systems, vol. 1, no. 1, pp. 84–89, 2021, https://doi.org/10.31763/ijrcs.v1i1.296.

[23] Y. Liu, Z. Chen, D. Xue, and X. Xu, “Real-time controlling of inverted pendulum by fuzzy logic,” in 2009 IEEE International Conference on Automation and Logistics, 2009, pp. 1180–1183, https://doi.org/10.1109/ICAL.2009.5262618.

[24] C. Tao, J. Taur, C. Wang, and U. Chen, “Fuzzy hierarchical swing-up and sliding position controller for the inverted pendulum–cart system,” Fuzzy Sets and Systems, vol. 159, no. 20, pp. 2763–2784, 2008, https://doi.org/10.1016/j.fss.2008.02.005.

[25] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. Prentice hall Englewood Cliffs, NJ, 1991, https://books.google.co.id/books?id=cwpRAAAAMAAJ.

[26] A. Concha, S. Thenozhi, R. J. Betancourt, and S. Gadi, “A tuning algorithm for a sliding mode controller of buildings with atmd,” Mechanical Systems and Signal Processing, vol. 154, p. 107539, 2021, https://doi.org/10.1016/j.ymssp.2020.107539.

[27] Y. Ouberri, H. Yatimi, and E. Aroudam, “Design of a robust sliding mode controller for mppt based on automation plc for pv applications,” International Transactions on Electrical Energy Systems, vol. 30, no. 4, p. e12296, 2020, https://doi.org/10.1002/2050-7038.12296.

[28] Y.-J. Huang, T.-C. Kuo, and S.-H. Chang, “Adaptive sliding-mode control for nonlinearsystems with uncertain parameters,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 2, pp. 534–539, 2008, https://doi.org/10.1109/TSMCB.2007.910740.

[29] A. Sabanovic, “Variable structure systems with sliding modes in motion control—a survey,” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 212–223, 2011, https://doi.org/10.1109/TII.2011.2123907.

[30] A. Bavarsad, A. Fakharian, and M. B. Menhaj, “Optimal sliding mode controller for an active transfemoral prosthesis using state-dependent riccati equation approach,” Arabian Journal for Science and Engineering, vol. 45, no. 8, pp. 6559–6572, may 2020, https://doi.org/10.1007/s13369-020-04563-x.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 MagdiSadek Mostafa Mahmoud, Radhwan A. A. Saleh

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia