Stability Analysis of a Fractional-Order Lengyel–Epstein Chemical Reaction Model

(1) Khelifa Bouaziz Mail (Larbi Tebessi University, Algeria)
(2) Nadhir Djeddi Mail (Larbi Tebessi University, Algeria)
(3) Osama Ogilat Mail (Al-Ahliyya Amman University, Jordan)
(4) * Iqbal M. Batiha Mail (1) Department of Mathematics, Al Zaytoonah University of Jordan, Amman 11733, Jordan. 2) Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE)
(5) Nidal Anakira Mail (Sohar University, Oman)
(6) Tala Sasa Mail (Applied Science Private University, Jordan)
*corresponding author

Abstract


In this paper, we stady a mathematical model based on a system of fractional-order differential equations to describe the dynamics of the Lengyel–Epstein chemical reaction, which is well known for exhibiting oscillatory behavior. The use of fractional derivatives allows in chemical processes compared to classical integer-order models. We specifically focus on analyzing the stability of the system’s positive equilibrium point by applying fractional calculus techniques. The stability conditions are derived and discussed in the context of the fractional-order parameters. To validate the theoretical findings, we perform numerical simulations using the Forward Euler method adapted for fractional-order systems. These simulations illustrate the impact of the fractional order on the system’s dynamic behavior and confirm the analytical results regarding equilibrium stability.


Keywords


Lengyel-Epstein Chemical; Oscillatory Chemical Reactions; Stability Analysis; Equilibrium Points; Numerical Simulation; Forward Euler Method

   

DOI

https://doi.org/10.31763/ijrcs.v5i2.1848
      

Article metrics

10.31763/ijrcs.v5i2.1848 Abstract views : 38 | PDF views : 5

   

Cite

   

Full Text

Download

References


[1] G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,†International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, pp. 187–196, 2023, https://doi.org/10.15849/IJASCA.230320.13.

[2] N. R. Anakira et al., “An algorithm for solving linear and non-linear Volterra Integro-differential equations,†International Journal of Advances in Soft Computing & Its Applications, vol. 15, no. 3, pp. 77–83, 2023, https://doi.org/10.15849/IJASCA.231130.05.

[3] M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,†International Journal of Advances in Soft Computing and its Applications, vol. 16, no. 3, pp. 294–306, 2024, https://doi.org/10.15849/IJASCA.241130.16.

[4] I. M. Batiha, H. F. Abdalsmad, I. H. Jebril, H. O. Al-Khawaldeh, W. A. A. AlKasasbeh, and S. Momani, “Trapezoidal scheme for the numerical solution of fractional initial value problems,†International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 1238–1253, 2025, http://dx.doi.org/10.31763/ijrcs.v5i2.1795.

[5] I. Batiha, A. Abdelnebi, M. Shqair, I. H. Jebril, S. Alkhazaleh, and S. Momani, “Computational approaches to two-energy group neutron diffusion in cylindrical reactors,†Journal of Robotics and Control (JRC), vol. 5, no. 6, pp. 1980–1989, 2024, https://doi.org/10.18196/jrc.v5i6.23392.

[6] N. Djeddi, I. Batiha, N. Harrouche, M. Al-Smadi, and S. Momani, “Advanced solutions for nonlinear fractional equations: a Laplace–Caputo–RKDM approach,†Gulf Journal of Mathematics, vol. 19, no. 2, pp. 93–110, 2025, https://doi.org/10.56947/gjom.v19i2.2575.

[7] A. Boudjedour, I. Batiha, S. Boucetta, M. Dalah, K. Zennir, and A. Ouannas, “A finite difference method on uniform meshes for solving the time-space fractional advection–diffusion equation,†Gulf Journal of Mathematics, vol. 19, no. 1, pp. 156–168, 2025, https://doi.org/10.56947/gjom.v19i1.2524.

[8] M. Shqair et al., “Numerical solutions for fractional multi-group neutron diffusion system of equations,†International Journal of Neutrosophic Science, vol. 24, no. 4, pp. 8–38, 2024, https://doi.org/10.54216/IJNS.240401.

[9] S. Alshorm and I. M. Batiha, “Stochastic population growth model using three-point fractional formula,†in Mathematical Analysis and Numerical Methods, vol. 466, pp. 457–465, 2024, https://doi.org/10.1007/978-981-97-4876-1_31.

[10] A. Bouchenak, I. M. Batiha, I. H. Jebril, M. Aljazzazi, H. Alkasasbeh, and L. Rabhi, “Generalization of the nonlinear Bernoulli conformable fractional differential equations with applications,†WSEAS Transactions on Mathematics, vol. 24, pp. 168–180, 2025, https://doi.org/10.37394/23206.2025.24.17.

[11] A. Bouchenak, I. M. Batiha, R. Hatamleh, M. Aljazzazi, I. H. Jebril, and M. Al-Horani, “Study and analysis of the second order constant coefficients and Cauchy–Euler equations via modified conformable operator,†International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 794–812, 2025, https://doi.org/10.31763/ijrcs.v5i2.1577.

[12] A. Lamamri, I. Jebril, Z. Dahmani, A. Anber, M. Rakah, and S. Alkhazaleh, “Fractional calculus in beam deflection: analyzing nonlinear systems with Caputo and conformable derivatives,†AIMS Mathematics, vol. 9, no. 8, pp. 21609–21627, 2024, http://dx.doi.org/%2010.3934/math.20241050.

[13] I. M. Batiha, O. Ogilat, I. Bendib, A. Ouannas, I. H. Jebril, and N. Anakira, “Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations,†Chaos, Solitons & Fractals: X, vol. 13, p. 100118, 2024, https://doi.org/10.1016/j.csfx.2024.100118.

[14] I. M. Batiha et al., “On discrete FitzHugh–Nagumo reaction–diffusion model: Stability and simulations,†Partial Differential Equations in Applied Mathematics, vol. 11, p. 100870, 2024, https://doi.org/10.1016/j.padiff.2024.100870.

[15] I. Lengyel and I. R. Epstein, “Modeling of Turing structures in the chlorite–iodide–malonic acid–starch reaction system,†Science, vol. 251, no. 4994, pp. 650–652, 1991, https://doi.org/10.1126/science.251.4994.650.

[16] I. Lengyel and I. R. Epstein, “A chemical approach to designing Turing patterns in reaction–diffusion systems,†Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 9, pp. 3977–3979, 1992, https://doi.org/10.1073/pnas.89.9.3977.

[17] R. J. Field and R. M. Noyes, “Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction,†The Journal of Chemical Physics, vol. 60, no. 5, pp. 1877–1884, 1974, https://doi.org/10.1063/1.1681288.

[18] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, Oxford University Press, 1998, https://books.google.co.id/books?id=ci4MNrwSlo4C&hl=id&source=gbs_navlink_s.

[19] W.-M. Ni and M. Tang, “Turing patterns in the Lengyel–Epstein system for the CIMA reaction,†Transactions of the American Mathematical Society, vol. 357, no. 9, pp. 3953–3969, 2005, https://doi.org/10.1090/S0002-9947-05-04010-9s.

[20] F. Yi, J. Wei, and J. Shi, “Diffusion-driven instability and bifurcation in the Lengyel–Epstein system,†Nonlinear Analysis: Real World Applications, vol. 9, no. 3, pp. 1038–1051, 2008, https://doi.org/10.1016/j.nonrwa.2007.02.005.

[21] F. Yi, J. Wei, and J. Shi, “Global asymptotic behavior of the Lengyel–Epstein reaction–diffusion system,†Applied Mathematics Letters, vol. 22, no. 1, pp. 52–55, 2009, https://doi.org/10.1016/j.aml.2008.02.003.

[22] B. Lisena, “On the global dynamics of the Lengyel–Epstein system,†Applied Mathematics and Computation, vol. 249, pp. 67–75, 2014, https://doi.org/10.1016/j.amc.2014.10.005.

[23] K. Bouaziz, R. Douaifia, and S. Abdelmalek, “Asymptotic stability of solutions for a diffusive epidemic model,†Demonstratio Mathematica, vol. 55, no. 1, pp. 553–573, 2022, https://doi.org/10.1515/dema-2022-0150.

[24] l. Wang et al., “A rigorous theoretical and numerical analysis of a nonlinear reaction-diffusion epidemic model pertaining dynamics of COVID-19,†Scientific Reports, vol. 14, no. 7902, 2024, https://doi.org/10.1038/s41598-024-56469-5.

[25] S. Henshaw and C. C. McCluskey, “Global stability of a vaccination model with immigration,†Electronic Journal of Differential Equations, vol. 2015, no. 92, pp. 1–10, 2015, https://ejde.math.txstate.edu/Volumes/2015/92/henshaw.pdf.

[26] S. Abdelmalek and S. Bendoukha, “On the global asymptotic stability of solutions to a generalised Lengyel–Epstein system,†Nonlinear Analysis: Real World Applications, vol. 35, pp. 397–413, 2017, https://doi.org/10.1016/j.nonrwa.2016.11.007.

[27] D. Mansouri, S. Abdelmalek, and S. Bendoukha, “On the asymptotic stability of the time-fractional Lengyel–Epstein system,†Computers and Mathematics with Applications, vol. 78, no. 5, pp. 1415–1430, 2019, https://doi.org/10.1016/j.camwa.2019.04.015.

[28] O. A. Almatroud, A. Hioual, A. Ouannas, and I. M. Batiha, “Asymptotic stability results of generalized discrete time reaction-diffusion system applied to Lengyel–Epstein and Dagn Harrison models,†Computers and Mathematics with Applications, vol. 170, pp. 25–32, 2024, https://doi.org/10.1016/j.camwa.2024.06.028.

[29] M. Chen and T. Wang, “Qualitative analysis and Hopf bifurcation of a generalized Lengyel–Epstein model,†Journal of Mathematical Chemistry, vol. 61, no. 1, pp. 166–192, 2023, https://doi.org/10.1007/s10910-022-01418-8.

[30] N. Ahmed et al., “Analytical study of reaction diffusion Lengyel–Epstein system by generalized Riccati equation mapping method,†Scientific Reports, vol. 13, no. 20033, 2023, https://doi.org/10.1038/s41598-023-47207-4.

[31] E. Balcı, “Predation fear and its carry-over effect in a fractional order prey–predator model with prey refuge,†Chaos, Solitons & Fractals, vol. 175, p. 114016, 2023, https://doi.org/10.1016/j.chaos.2023.114016.

[32] S. Bılazeroğlu, H. Merdan, and L. Guerrini, “Hopf bifurcations of a Lengyel–Epstein model involving two discrete time delays,†Discrete & Continuous Dynamical Systems – Series S, vol. 15, no. 3, pp. 855–873, 2022, https://doi.org/10.3934/dcdss.2021150.

[33] L. Wang and H. Zhao, “Hopf bifurcation and Turing instability of 2–D Lengyel–Epstein system with reaction–diffusion terms,†Applied Mathematics and Computation, vol. 219, no. 17, pp. 9229–9244, 2013, https://doi.org/10.1016/j.amc.2013.03.071.

[34] F. A. dos S. Silva, R. L. Viana, and S. R. Lopes, “Pattern formation and Turing instability in an activator–inhibitor system with power–law coupling,†Physica A: Statistical Mechanics and its Applications, vol. 419, pp. 487–497, 2015, https://doi.org/10.1016/j.physa.2014.09.059.

[35] J. Jang, W.-M. Ni, and M. Tang, “Global bifurcation and structure of Turing patterns in the 1D Lengyel–Epstein model,†Journal of Dynamics and Differential Equations, vol. 16, no. 2, pp. 297–320, 2004, https://doi.org/10.1007/s10884-004-2782-x.

[36] P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,†Mathematical Biosciences, vol. 180, pp. 29–48, 2002, https://doi.org/10.1016/S0025-5564(02)00108-6.

[37] Z. U. A. Zafar, “Fractional order Lengyel–Epstein chemical reaction model,†Computational and Applied Mathematics, vol. 38, no. 131, 2019, https://doi.org/10.1007/s40314-019-0887-4.

[38] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, and Z. Teng, “Dynamical analysis of a fractional-order predator–prey model incorporating a prey refuge,†Journal of Applied Mathematics and Computing, vol. 54, no. 1–2, pp. 435–449, 2017, https://doi.org/10.1007/s12190-016-1017-8.

[39] M. R. Ammi, M. Tahiri, M. Tilioua, A. Zeb, I. Khan, and M. Andualem, “Global analysis of a time fractional order spatio-temporal SIR model,†Scientific Reports, vol. 12, no. 5751, 2022, https://doi.org/10.1038/s41598-022-08992-6.

[40] C. Chicone, Mathematical Modeling and Chemical Kinetics, A module on chemical kinetics for the University of Missouri Mathematics in Life Science Program, vol. 8, 2010, https://www.researchgate.net/profile/Carmen-Chicone/publication/265666972_Mathematical_Modeling_and_Chemical_Kinetics/links/54d2538e0cf2b0c614693410/Mathematical-Modeling-and-Chemical-Kinetics.pdf.

[41] M. M. El-Borai, “Some probability densities and fundamental solutions of fractional evolution equations,†Chaos, Solitons & Fractals, vol. 14, no. 3, pp. 433–440, 2002, https://doi.org/10.1016/S0960-0779(01)00208-9.

[42] J. P. Tripathi, J. S. Tyagi, and S. Abbas, “Dynamical analysis of a predator-prey interaction model with time delay and prey refuge,†Nonautonomous Dynamical Systems, vol. 5, no. 1, pp. 138–151, 2018, https://doi.org/10.1515/msds-2018-0011.

[43] R. G. Casten and C. J. Holland, “Stability properties of solutions to systems of reaction-diffusion equations,†SIAM Journal on Applied Mathematics, vol. 33, no. 2, pp. 353–364, 1977, https://doi.org/10.1137/0133023.

[44] K. Diethelm and N. Ford, “The Analysis of Fractional Differential Equations,†Journal of Mathematical Analysis and Applications, 2002, https://doi.org/10.1006/jmaa.2000.7194.

[45] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent: II,†Geophysical Journal of the Royal Astronomical Society, vol. 13, no. 5, pp. 529–539, 1967, https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.

[46] B. Jin, Fractional Differential Equations, Spring Cham, 2021, https://doi.org/10.1007/978-3-030-76043-4.

[47] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, vol. 204, 2006, https://books.google.co.id/books?id=uxANOU0H8IUC&hl=id&source=gbs_navlinks_s.

[48] D. Matignon, “Stability results for fractional differential equations with applications to control processing,†in Proceedings of the IMACS–IEEE Symposium on Signals, Sys- tems and Control (IMACS–SMC), vol. 2, pp. 963–968, 1996, https://www.researchgate.net/profile/Denis-Matignon/publication/2581881_Stability_Results_For_Fractional_Differential_Equations_With_Applications_To_Control_Processing/links/00b7d52dd1c17e4b1a000000/Stability-Results-For-Fractional-Differential-Equations-With-Applications-To-Control-Processing.pdf.

[49] S. Ahmad and A. Ambrosetti, A Textbook on Ordinary Differential Equations, SpringerBriefs in Mathematics, vol. 88, 2015, https://link.springer.com/content/pdf/10.1007/978-3-319-02129-4_14?pdf=chapter%20toc.

[50] Z. M. Odibat, “Analytic study on linear systems of fractional differential equations,†Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1171–1183, 2010, https://doi.org/10.1016/j.camwa.2009.06.035.

[51] Z. U. A. Zafar, Z. Shah, N. Ali, P. Kumam, and E. O. Alzahrani, “Numerical study and stability of the Lengyel–Epstein chemical model with diffusion,†Advances in Difference Equations, vol. 2020, no. 427, 2020, https://doi.org/10.1186/s13662-020-02877-6.

[52] S. Abdelmalek and S. Bendoukha, “The Lengyel–Epstein reaction diffusion system,†in Applied Mathematical Analysis: Theory, Methods, and Applications, vol. 177, pp. 311–351, 2020, https://doi.org/10.1007/978-3-319-99918-0_10.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Khelifa Bouaziz, Nadhir Djeddi, Iqbal Batiha

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia