Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems

(1) * Iqbal M. Batiha Mail (1) Department of Mathematics, Al Zaytoonah University of Jordan, Amman 11733, Jordan. 2) Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, United Arab Emirates)
(2) Hebah F. Alsamad Mail (Al Zaytoonah University of Jordan, Jordan)
(3) Iqbal H. Jebril Mail (Al Zaytoonah University of Jordan, Jordan)
(4) Hamzah O. Al-Khawaldeh Mail (Al Al-Bayt University, Jordan)
(5) Wala’a A. Al Kasasbeh Mail (Al Zaytoonah University of Jordan, Jordan)
(6) Shaher Momani Mail (1) Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, United Arab Emirates. 2) Department of Mathematics, University of Jordan, Amman, Jordan)
*corresponding author

Abstract


The purpose of this study is to recall the main concepts and definitions in relation to the fractional calculus. In light of this overview, we will propose a novel fractional version of the so-called Trapezoid method named by the fractional Trapezoid method. Such a method will then be used to numerically solve the analog version of the initial value problems called fractional initial value problem FIVPs. As consequences of the proposed numerical approach, several numerical examples will be illustrated to verify the efficiency of the proposed numerical approach.


Keywords


Fractional Calculus; Fractional Initial Value Problem; Fractional Taylor Formula; Fractional Trapezoid Method

   

DOI

https://doi.org/10.31763/ijrcs.v5i2.1795
      

Article metrics

10.31763/ijrcs.v5i2.1795 Abstract views : 62 | PDF views : 2

   

Cite

   

Full Text

Download

References


[1] G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, 2023, https://doi.org/10.15849/IJASCA.230320.13.

[2] M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and its Applications, vol. 16, no. 3, pp. 294–306, 2024, https://doi.org/10.15849/IJASCA.241130.16.

[3] N. R. Anakira, A. Almalki, D. Katatbeh, G. B. Hani, A. F. Jameel, K. S. Al Kalbani, and M. Abu-Dawas, “An algorithm for solving linear and non-linear Volterra Integro-differential equations,” International Journal of Advances in Soft Computing & Its Applications, vol. 15, no. 3, pp. 77–83, 2023, https://doi.org/10.15849/IJASCA.231130.05.

[4] A. Bouchenak, I. M. Batiha, I. H. Jebril, M. Aljazzazi, H. Alkasasbeh, and L. Rabhi, “Generalization of the nonlinear Bernoulli conformable fractional differential equations with applications,” WSEAS Transactions on Mathematics, vol. 24, pp. 168–180, 2025, https://doi.org/10.37394/23206.2025.24.17.

[5] A. Bouchenak, I. M. Batiha, R. Hatamleh, M. Aljazzazi, I. H. Jebril, and M. Al-Horani, “Study and analysis of the second order constant coefficients and Cauchy-Euler equations via modified conformable operator,” International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 794–812, 2025, https://doi.org/10.31763/ijrcs.v5i2.1577.

[6] H. Qawaqneh, H. A. Jari, A. Altalbe, and A. Bekir, “Stability analysis, modulation instability, and the analytical wave solitons to the fractional Boussinesq–Burgers system,” Physica Scripta, vol. 99, no. 12, p. 125235, 2024, https://doi.org/10.1088/1402-4896/ad8e07.

[7] A. Boudjedour, I. Batiha, S. Boucetta, M. Dalah, K. Zennir, and A. Ouannas, “A finite difference method on uniform meshes for solving the time-space fractional advection-diffusion equation,” Gulf Journal of Mathematics, vol. 19, no. 1, pp. 156–168, 2025, https://doi.org/10.56947/gjom.v19i1.2524.

[8] N. Allouch, I. M. Batiha, I. H. Jebril, S. Hamani, A. Al-Khateeb, and S. Momani, “A new fractional approach for the higher-order q-Taylor method,” Image Analysis and Stereology, vol. 43, no. 3, pp. 249–257, 2024, https://doi.org/10.5566/ias.3286.

[9] A. Zraiqat, I. M. Batiha, and S. Alshorm, “Numerical comparisons between some recent modifications of fractional Euler methods,” WSEAS Transactions on Mathematics, vol. 23, no. 1, pp. 529–535, 2024, https://doi.org/10.37394/23206.2024.23.55.

[10] S. Momani, N. Djenina, A. Ouannas, and I. M. Batiha, “Stability results for nonlinear fractional differential equations with incommensurate orders,” IFAC-PapersOnLine, vol. 58, no. 12, pp. 286–290, 2024, https://doi.org/10.1016/j.ifacol.2024.08.204.

[11] C. B. Boyer and U. C. Merzbach, A History of Mathematics, John Wiley & Sons, 2011, https://books.google.co.id/books?id=V6RUDwAAQBAJ&hl=id&source=gbs_navlinks_s.

[12] I. M. Batiha, I. H. Jebril, N. Anakira, A. A. Al-Nana, R. Batyha, and S. Momani, “Two-dimensional fractional wave equation via a new numerical approach,” International Journal of Innovative Computing, Information & Control, vol. 20, no. 4, pp. 1045–1059, 2024, https://doi.org/10.24507/ijicic.20.04.1045.

[13] S. Momani, M. Shqair, I. M. Batiha, M. H. E. Abu-Sei’leek, S. Alshorm, and S. A. Abd El-Azeem, “Two-energy group neutron diffusion model in spherical reactors,” Results in Nonlinear Analysis, vol. 7, no. 2, pp. 160–173, 2024, https://doi.org/10.31838/rna/2024.07.02.013.

[14] S. Momani, I. M. Batiha, A. Abdelnebi, and I. H. Jebril, “A powerful tool for dealing with high-dimensional fractional-order systems with applications to fractional Emden–Fowler systems,” Chaos, Solitons & Fractals: X, vol. 12, p. 100110, 2024, https://doi.org/10.1016/j.csfx.2024.100110.

[15] K. Diethelm and N. J. Ford, “The Analysis of Fractional Differential Equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002, https://doi.org/10.1006/jmaa.2000.7194.

[16] I. Podlubny, Fractional Differential Equations, Elsevier, 1998, https://books.google.co.id/books?id=K5FdXohLto0C&hl=id&source=gbs_navlinks-s.

[17] Z. M. Odibat and S. Momani, “An algorithm for the numerical solution of differential equations of fractional order,” Journal of Applied Mathematics and Informatics, vol. 26, no. 1-2, pp. 15–27, 2008, https://koreascience.kr/article/JAKO200833338752380.pdf.

[18] W. Gauts, Numerical Analysis, Springer Science & Business Media, 2011, https://books.google.co.id/books?id=-fgjJF9yAIwC&hl=id&source=gbs_navlinks_s.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Iqbal Batiha, Hebah F. Alsamad, Hamzah O. Al-Khawaldeh, Shaher Momani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia