
(2) Hebah F. Alsamad

(3) Iqbal H. Jebril

(4) Hamzah O. Al-Khawaldeh

(5) Wala’a A. Al Kasasbeh

(6) Shaher Momani

*corresponding author
AbstractThe purpose of this study is to recall the main concepts and definitions in relation to the fractional calculus. In light of this overview, we will propose a novel fractional version of the so-called Trapezoid method named by the fractional Trapezoid method. Such a method will then be used to numerically solve the analog version of the initial value problems called fractional initial value problem FIVPs. As consequences of the proposed numerical approach, several numerical examples will be illustrated to verify the efficiency of the proposed numerical approach. KeywordsFractional Calculus; Fractional Initial Value Problem; Fractional Taylor Formula; Fractional Trapezoid Method
|
DOIhttps://doi.org/10.31763/ijrcs.v5i2.1795 |
Article metrics10.31763/ijrcs.v5i2.1795 Abstract views : 62 | PDF views : 2 |
Cite |
Full Text![]() |
References
[1] G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, 2023, https://doi.org/10.15849/IJASCA.230320.13.
[2] M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and its Applications, vol. 16, no. 3, pp. 294–306, 2024, https://doi.org/10.15849/IJASCA.241130.16.
[3] N. R. Anakira, A. Almalki, D. Katatbeh, G. B. Hani, A. F. Jameel, K. S. Al Kalbani, and M. Abu-Dawas, “An algorithm for solving linear and non-linear Volterra Integro-differential equations,” International Journal of Advances in Soft Computing & Its Applications, vol. 15, no. 3, pp. 77–83, 2023, https://doi.org/10.15849/IJASCA.231130.05.
[4] A. Bouchenak, I. M. Batiha, I. H. Jebril, M. Aljazzazi, H. Alkasasbeh, and L. Rabhi, “Generalization of the nonlinear Bernoulli conformable fractional differential equations with applications,” WSEAS Transactions on Mathematics, vol. 24, pp. 168–180, 2025, https://doi.org/10.37394/23206.2025.24.17.
[5] A. Bouchenak, I. M. Batiha, R. Hatamleh, M. Aljazzazi, I. H. Jebril, and M. Al-Horani, “Study and analysis of the second order constant coefficients and Cauchy-Euler equations via modified conformable operator,” International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 794–812, 2025, https://doi.org/10.31763/ijrcs.v5i2.1577.
[6] H. Qawaqneh, H. A. Jari, A. Altalbe, and A. Bekir, “Stability analysis, modulation instability, and the analytical wave solitons to the fractional Boussinesq–Burgers system,” Physica Scripta, vol. 99, no. 12, p. 125235, 2024, https://doi.org/10.1088/1402-4896/ad8e07.
[7] A. Boudjedour, I. Batiha, S. Boucetta, M. Dalah, K. Zennir, and A. Ouannas, “A finite difference method on uniform meshes for solving the time-space fractional advection-diffusion equation,” Gulf Journal of Mathematics, vol. 19, no. 1, pp. 156–168, 2025, https://doi.org/10.56947/gjom.v19i1.2524.
[8] N. Allouch, I. M. Batiha, I. H. Jebril, S. Hamani, A. Al-Khateeb, and S. Momani, “A new fractional approach for the higher-order q-Taylor method,” Image Analysis and Stereology, vol. 43, no. 3, pp. 249–257, 2024, https://doi.org/10.5566/ias.3286.
[9] A. Zraiqat, I. M. Batiha, and S. Alshorm, “Numerical comparisons between some recent modifications of fractional Euler methods,” WSEAS Transactions on Mathematics, vol. 23, no. 1, pp. 529–535, 2024, https://doi.org/10.37394/23206.2024.23.55.
[10] S. Momani, N. Djenina, A. Ouannas, and I. M. Batiha, “Stability results for nonlinear fractional differential equations with incommensurate orders,” IFAC-PapersOnLine, vol. 58, no. 12, pp. 286–290, 2024, https://doi.org/10.1016/j.ifacol.2024.08.204.
[11] C. B. Boyer and U. C. Merzbach, A History of Mathematics, John Wiley & Sons, 2011, https://books.google.co.id/books?id=V6RUDwAAQBAJ&hl=id&source=gbs_navlinks_s.
[12] I. M. Batiha, I. H. Jebril, N. Anakira, A. A. Al-Nana, R. Batyha, and S. Momani, “Two-dimensional fractional wave equation via a new numerical approach,” International Journal of Innovative Computing, Information & Control, vol. 20, no. 4, pp. 1045–1059, 2024, https://doi.org/10.24507/ijicic.20.04.1045.
[13] S. Momani, M. Shqair, I. M. Batiha, M. H. E. Abu-Sei’leek, S. Alshorm, and S. A. Abd El-Azeem, “Two-energy group neutron diffusion model in spherical reactors,” Results in Nonlinear Analysis, vol. 7, no. 2, pp. 160–173, 2024, https://doi.org/10.31838/rna/2024.07.02.013.
[14] S. Momani, I. M. Batiha, A. Abdelnebi, and I. H. Jebril, “A powerful tool for dealing with high-dimensional fractional-order systems with applications to fractional Emden–Fowler systems,” Chaos, Solitons & Fractals: X, vol. 12, p. 100110, 2024, https://doi.org/10.1016/j.csfx.2024.100110.
[15] K. Diethelm and N. J. Ford, “The Analysis of Fractional Differential Equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002, https://doi.org/10.1006/jmaa.2000.7194.
[16] I. Podlubny, Fractional Differential Equations, Elsevier, 1998, https://books.google.co.id/books?id=K5FdXohLto0C&hl=id&source=gbs_navlinks-s.
[17] Z. M. Odibat and S. Momani, “An algorithm for the numerical solution of differential equations of fractional order,” Journal of Applied Mathematics and Informatics, vol. 26, no. 1-2, pp. 15–27, 2008, https://koreascience.kr/article/JAKO200833338752380.pdf.
[18] W. Gauts, Numerical Analysis, Springer Science & Business Media, 2011, https://books.google.co.id/books?id=-fgjJF9yAIwC&hl=id&source=gbs_navlinks_s.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Iqbal Batiha, Hebah F. Alsamad, Hamzah O. Al-Khawaldeh, Shaher Momani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE), Peneliti Teknologi Teknik Indonesia, Department of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia