The Utilization of Fuzzy Logic Controllers in Steering Control Systems for Electric Ambulance Golf Carts

(1) Rawiphon Chotikunnan Mail (Rangsit University, Thailand)
(2) * Phichitphon Chotikunnan Mail (Rangsit University, Thailand)
(3) Pariwat Imura Mail (Rangsit University, Thailand)
(4) Yutthana Pititheeraphab Mail (Rangsit University, Thailand)
(5) Nuntachai Thongpance Mail (Rangsit University, Thailand)
*corresponding author

Abstract


This study investigates methods to improve steering control for electric ambulance golf carts by conducting a comparative analysis of fuzzy logic controllers. The research assesses four control systems, PD controller, fuzzy PD controller, fuzzy PD+I controller, and PBC and PD+I type fuzzy logic controller, to determine their effectiveness in enhancing steering control. Simulink simulations are employed to evaluate the performance of these controllers under various conditions. Results indicate that the PBC and PD+I type fuzzy logic controller demonstrates superior performance, showing significant reductions in both rise time and settling time with minimal overshoot compared to other controllers. The findings underscore the potential of fuzzy logic controllers in enhancing steering control for electric vehicles. Future research should explore alternative control strategies and assess controller robustness under diverse operating conditions.

Keywords


Steering Control; Fuzzy Logic Controller; SIMULINK; PD Controller

   

DOI

https://doi.org/10.31763/ijrcs.v4i1.1333
      

Article metrics

10.31763/ijrcs.v4i1.1333 Abstract views : 102 | PDF views : 40

   

Cite

   

Full Text

Download

References


[1] M. Khristamto, A. Praptijanto, and S. Kaleg, “Measuring geometric and kinematic properties to design steering axis to angle turn of the electric golf car,” Energy Procedia, vol. 68, pp. 463-470, 2015, https://doi.org/10.1016/j.egypro.2015.03.278.

[2] C. Li, Y. F. Xie, G. Wang, S. Q. Liu, B. Kuang, and H. Jing, “Experimental study of electric vehicle yaw rate tracking control based on differential steering,” Journal of Advanced Transportation, vol. 2021, 2021, https://doi.org/10.1155/2021/6668091.

[3] H. Zhou, A. Pang, J. Yang, and Z. He, “Structured H∞ Control of an Electric Power Steering System,” Complexity, vol. 2020, 2020, https://doi.org/10.1155/2020/9371327.

[4] S. Wang, X. Zhao, and Q. Yu, “Vehicle stability control strategy based on recognition of driver turning intention for dual-motor drive electric vehicle,” Mathematical Problems in Engineering, vol. 2020, 2020, https://doi.org/10.1155/2020/3143620.

[5] J. Susilo, A. Febriani, U. Rahmalisa, and Y. Irawan, “Car parking distance controller using ultrasonic sensors based on Arduino Uno,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 353-356, 2021, https://doi.org/10.18196/jrc.25106.

[6] E. S. Rahayu, A. Ma'arif, and A. Çakan, “Particle swarm optimization (PSO) tuning of PID control on DC motor,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 435-447, 2022, https://doi.org/10.31763/ijrcs.v2i2.476.

[7] E. W. Suseno and A. Ma'arif, “Tuning of PID controller parameters with genetic algorithm method on DC motor,” International Journal of Robotics and Control Systems, vol. 1, no. 1, pp. 41-53, 2021, https://doi.org/10.31763/ijrcs.v1i1.249.

[8] D. S. Febriyan and R. D. Puriyanto, “Implementation of DC motor PID control on conveyor for separating potato seeds by weight,” International Journal of Robotics and Control Systems, vol. 1, no. 1, pp. 15-26, 2021, https://doi.org/10.31763/ijrcs.v1i1.221.

[9] P. Chotikunnan and R. Chotikunnan, “Dual design PID controller for robotic manipulator application,” Journal of Robotics and Control (JRC), vol. 4, no. 1, pp. 23-34, 2023, https://doi.org/10.18196/jrc.v4i1.16990.

[10] E. S. Ghith and F. A. A. Tolba, “Design and optimization of PID controller using various algorithms for micro-robotics system,” Journal of Robotics and Control (JRC), vol. 3, no. 3, pp. 244-256, 2022, https://doi.org/10.18196/jrc.v3i3.14827.

[11] A. K. Hado, B. S. Bashar, M. M. A. Zahra, R. Alayi, Y. Ebazadeh, and I. Suwarno, “Investigating and optimizing the operation of microgrids with intelligent algorithms,” Journal of Robotics and Control (JRC), vol. 3, no. 3, pp. 279-288, 2022, https://doi.org/10.18196/jrc.v3i3.14772.

[12] E. H. Kadhim and A. T. Abdulsadda, “Mini drone linear and nonlinear controller system design and analyzing,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 212-218, 2022, https://doi.org/10.18196/jrc.v3i2.14180.

[13] D. Kumar, R. Malhotra, and S. R. Sharma, “Design and construction of a smart wheelchair,” Procedia Computer Science, vol. 172, pp. 302-307, 2020, https://doi.org/10.1016/j.procs.2020.05.048.

[14] K. Rahimunnisa, M. Atchaiya, B. Arunachalam, and V. Divyaa, “AI-based smart and intelligent wheelchair,” Journal of applied research and technology, vol. 18, no. 6, pp. 362-367, 2020, https://doi.org/10.22201/icat.24486736e.2020.18.6.1351.

[15] M. A. Awais, M. Z. Yusoff, N. Yahya, S. Z. Ahmed, and M. U. Qamar, “Brain controlled wheelchair: a smart prototype,” Journal of Physics: Conference Series, vol. 1529, no. 4, p. 042075, 2020, https://doi.org/10.1088/1742-6596/1529/4/042075.

[16] M. R. Islam, M. R. T. Hossain, and S. C. Banik, “Synchronizing of stabilizing platform mounted on a two-wheeled robot,” Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 552-558, 2021, https://doi.org/10.18196/jrc.26136.

[17] F. Jiménez, I. Ruge, and A. Jiménez, “Modeling and Control of a Two Wheeled Self-Balancing Robot: a didactic platform for control engineering education,” LACCEI, 2020, https://doi.org/10.18687/LACCEI2020.1.1.556.

[18] M. A. Al Mamun, M. T. Nasir, and A. Khayyat, “Embedded System for Motion Control of an Omnidirectional Mobile Robot,” IEEE Access, vol. 6, no. 8, pp. 86722–6739, 2018, https://doi.org/10.1109/ACCESS.2018.2794441.

[19] P. Shen, X. Zhang and Y. Fang, “Complete and Time-Optimal Path-Constrained Trajectory Planning With Torque and Velocity Constraints: Theory and Applications,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 735-746, 2018, https://doi.org/10.1109/TMECH.2018.2810828.

[20] H. Maghfiroh, A. Ramelan, and F. Adriyanto, “Fuzzy-PID in BLDC motor speed control using MATLAB/Simulink,” Journal of Robotics and Control (JRC), vol. 3, no. 1, pp. 8-13, 2022, https://doi.org/10.18196/jrc.v3i1.10964.

[21] S. Gobinath and M. Madheswaran, “Deep Perceptron Neural Network with Fuzzy PID Controller for Speed Control and Stability Analysis of BLDC Motor,” Soft Computing, vol. 24, no. 13, pp. 10161-10180, 2020, https://doi.org/10.1007/s00500-019-04532-z.

[22] K. Vanchinathan and N. Selvaganesan, “Adaptive Fractional Order PID Controller Tuning for Brushless DC Motor Using Artificial Bee Colony Algorithm,” Results in Control and Optimization, vol. 4, p. 100032, 2021, https://doi.org/10.1016/j.rico.2021.100032.

[23] P. Dutta and S. K. Nayak, “Grey Wolf Optimizer Based PID Controller for Speed Control of BLDC Motor,” Journal of Electrical Engineering & Technology, vol. 16, no. 2, pp. 955-961, 2021, https://doi.org/10.1007/s42835-021-00660-5.

[24] A. Ma'arif and A. Çakan, “Simulation and arduino hardware implementation of dc motor control using sliding mode controller,” Journal of Robotics and Control (JRC), vol. 2, no. 6, p. 582, 2021, https://doi.org/10.18196/jrc.26140.

[25] A. Latif, A. Z. Arfianto, H. A. Widodo, R. Rahim, and E. T. Helmy, “Motor DC PID System Regulator for Mini Conveyor Drive Based on MATLAB,” Journal of Robotics and Control (JRC), vol. 1, no. 6, pp. 185-190, 2020, https://doi.org/10.18196/jrc.1636.

[26] B. Hekimoğlu, “Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm,” IEEE Access, vol. 7, pp. 38100-38114, 2019, https://doi.org/10.1109/ACCESS.2019.2905961.

[27] A. Ma'arif and N. R. Setiawan, “Control of DC motor using integral state feedback and comparison with PID: simulation and Arduino implementation,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 456-461, 2021, https://doi.org/10.18196/jrc.25122.

[28] M. S. Kumar, G. Satheesh, S. Peddakotla, “Design of optimal PI controller for torque ripple minimization of SVPWM-DTC of BLDC motor,” International Journal of Power Electronics and Drive Systems, vol. 14, no. 1, pp. 283-293, 2023, http://doi.org/10.11591/ijpeds.v14.i1.pp283-293.

[29] C. T. Chao, N. Sutarna, J. S. Chiou, and C. J. Wang, “An optimal fuzzy PID controller design based on conventional PID control and nonlinear factors,” Applied Sciences, vol. 9, no. 6, p. 1224, 2019, https://doi.org/10.3390/app9061224.

[30] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, tuning methods and applications,” International Journal of Dynamics and Control, vol. 9, no. 2, pp. 818-827, 2021, https://doi.org/10.1007/s40435-020-00665-4.

[31] S. J. Hammoodi, K. S. Flayyih, and A. R. Hamad, “Design and Implementation of Speed Control System for DC Motor Based on PID Control and Matlab Simulink,” International Journal of Power Electronics and Drive Systems, vol. 11, no. 1, pp. 127-134, 2020, http://doi.org/10.11591/ijpeds.v11.i1.pp127-134.

[32] D. Somwanshi, M. Bundele, G. Kumar, and G. Parashar, “Comparison of Fuzzy-PID and PID Controller for Speed Control of DC Motor Using LabVIEW,” Procedia Computer Science, vol. 152, pp. 252-260, 2019, https://doi.org/10.1016/j.procs.2019.05.019.

[33] V. V. Patel, “Ziegler-Nichols Tuning Method,” Resonance, vol. 25, no. 10, pp. 1385-1397, 2020, https://doi.org/10.1007/s12045-020-1058-z.

[34] T. Y. Wu, Y. Z. Jiang, Y. Z. Su, and W. C. Yeh, “Using Simplified Swarm Optimization on Multiloop Fuzzy PID Controller Tuning Design for Flow and Temperature Control System,” Applied Sciences, vol. 10, no. 23, p. 8472, 2020, https://doi.org/10.3390/app10238472.

[35] R. R. Alla, N. Lekyasri, and K. Rajani, “PID Control Design for Second Order Systems,” International Journal of Engineering and Manufacturing, vol. 9, no. 4, pp. 45-56, 2019, https://doi.org/10.5815/ijem.2019.04.04.

[36] E. Bashier and O. Mohammed, “Optimally Tuned Proportional Integral Derivatives (PID) Controllers for Set-Point,” Journal of Engineering and Computer Science (JECS), vol. 13, no. 1, pp. 48-53, 2019, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=05bb7f4a2cad4c9bd569f26420651b834886e883.

[37] S. Jain and Y. V. Hote, “Design of FOPID Controller Using BBBC via ZN Tuning Approach: Simulation and Experimental Validation,” IETE Journal of Research, vol. 68, no. 5, pp. 3356-3370, 2022, https://doi.org/10.1080/03772063.2020.1756937.

[38] V. Dubey, “Comparative Analysis of PID Tuning Techniques for Blood Glucose Level of Diabetic Patient,” Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 12, no. 11, pp. 2948-2953, 2021, https://doi.org/10.17762/turcomat.v12i2.2334.

[39] A. O. Amole, O. E. Olabode, D. O. Akinyele, and S. G. Akinjobi, “Optimal Temperature Control Scheme for Milk Pasteurization Process Using Different Tuning Techniques for a Proportional Integral Derivative Controller,” Iranian Journal of Electrical and Electronic Engineering, vol. 18, no. 3, pp. 2170-2170, 2022, https://doi.org/10.22068/IJEEE.18.3.2170.

[40] K. Sayed, H. H. El-Zohri, A. Ahmed, and M. Khamies, “Application of Tilt Integral Derivative for Efficient Speed Control and Operation of BLDC Motor Drive for Electric Vehicles,” Fractal and Fractional, vol. 8, no. 1, p. 61, 2024, https://doi.org/10.3390/fractalfract8010061.

[41] P. Saini and C. Sharma, “Comparative Analysis of Controller Tuning Techniques for Dead Time Processes,” International Journal of Mathematical, Engineering and Management Sciences, vol. 4, no. 3, p. 803, 2019, https://dx.doi.org/10.33889/IJMEMS.2019.4.3-063.

[42] B. Song, R. Wang, and L. Xu, “Design of PMSM Dual-Loop Control Systems Integrating LADRC and PI Controllers via an Improved PSO Algorithm,” International Transactions on Electrical Energy Systems, vol. 2024, 2024, https://doi.org/10.1155/2024/9378284.

[43] Z. Qi, Q. Shi and H. Zhang, “Tuning of Digital PID Controllers Using Particle Swarm Optimization Algorithm for a CAN-Based DC Motor Subject to Stochastic Delays,” IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5637-5646, 2020, https://doi.org/10.1109/TIE.2019.2934030.

[44] M. M. Nishat, F. Faisal, A. J. Evan, M. M. Rahaman, M. S. Sifat, and H. F. Rabbi, “Development of Genetic Algorithm (GA) Based Optimized PID Controller for Stability Analysis of DC-DC Buck Converter,” Journal of Power and Energy Engineering, vol. 8, no. 09, pp. 8-19, 2020, https://doi.org/10.4236/jpee.2020.89002.

[45] S. Mahfoud, A. Derouich, N. El Ouanjli, M. El Mahfoud, and M. Taoussi, “A New Strategy-Based PID Controller Optimized by Genetic Algorithm for DTC of the Doubly Fed Induction Motor,” Systems, vol. 9, no. 2, p. 37, 2021, https://doi.org/10.3390/systems9020037.

[46] A. Wongkamhang et al., “Design and Develop a Non-Invasive Pulmonary Vibration Device for Secretion Drainage in Pediatric Patients with Pneumonia,” Journal of Robotics and Control (JRC), vol. 4, no. 5, pp. 632-642, 2023, https://doi.org/10.18196/jrc.v4i5.19588.

[47] O. T. Altinoz and A. E. Yilmaz, “Investigation of the Optimal PID-Like Fuzzy Logic Controller for Ball and Beam System with Improved Quantum Particle Swarm Optimization,” International Journal of Computational Intelligence and Applications, vol. 21, no. 04, p. 2250025, 2022, https://doi.org/10.1142/S1469026822500250.

[48] L. Peng and Peng-Yung Woo, “Neural-fuzzy control system for robotic manipulators,” IEEE Control Systems Magazine, vol. 22, no. 1, pp. 53-63, 2002, https://doi.org/10.1109/37.980247.

[49] N. S. A. Aziz, N. Ishak, R. Adnan, and M. Tajjudin, “Hybrid fuzzy PID controller design for ball and beam system,” Journal of Electrical and Electronic Systems Research (JEESR), vol. 15, pp. 47-51, 2019, https://ir.uitm.edu.my/id/eprint/48855.

[50] J. S. Wang and C. S. G. Lee, “Self-adaptive neuro-fuzzy inference systems for classification applications,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6, pp. 790-802, 2002, https://doi.org/10.1109/TFUZZ.2002.805880.

[51] Z. Namadchian, A. Shoeibi, A. Zare, J. M. Gorriz, H. -K. Lam and S. H. Ling, “Stability Analysis of Dynamic General Type-2 Fuzzy Control System With Uncertainty,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 3, pp. 1755-1767, 2024, https://doi.org/10.1109/TSMC.2023.3330389.

[52] M. Kiew-ong-art et al., “Comparative Study of Takagi-Sugeno-Kang and Madani Algorithms in Type-1 and Interval Type-2 Fuzzy Control for Self-Balancing Wheelchairs,” International Journal of Robotics and Control Systems, vol. 3, no. 4, pp. 643-657, 2023, https://doi.org/10.31763/ijrcs.v3i4.1154.

[53] P. Chotikunnan, R. Chotikunnan, A. Nirapai, A. Wongkamhang, P. Imura, and M. Sangworasil, “Optimizing Membership Function Tuning for Fuzzy Control of Robotic Manipulators Using PID-Driven Data Techniques,” Journal of Robotics and Control (JRC), vol. 4, no. 2, pp. 128-140, 2023, https://doi.org/10.18196/jrc.v4i2.18108.

[54] R. Barua, M. M. Rahman, M. T. Islam, S. M. Ahmmad, S. Dutta, and R. Sen, “Electro-Hydraulic Power Steering System for an Automobile,” 5th International Conference in Industrial and Mechanical Engineering and Operations Management, pp. P96-P108, 2023, https://doi.org/10.46254/BD05.20220047.

[55] N. Rinanto, I. Marzuqi, A. Khumaidi, and S. T. Sarena, “Obstacle Avoidance using Fuzzy Logic Controller on Wheeled Soccer Robot,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 5, no. 1, pp. 26-35, 2019, http://dx.doi.org/10.26555/jiteki.v5i1.13298.

[56] M. Z. Dini, A. Rakhmatsyah, and A. A. Wardana, “Detection of Oxygen Levels (SpO2) and Heart Rate Using a Pulse Oximeter for Classification of Hypoxemia Based on Fuzzy Logic,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 8, no. 1, p. 17, 2022, http://dx.doi.org/10.26555/jiteki.v8i1.22139.

[57] F. Umam, A. Dafid, and A. D. Cahyani, “Implementation of Fuzzy Logic Control Method on Chilli Cultivation Technology Based Smart Drip Irrigation System,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 1, pp. 132-141, 2023, http://dx.doi.org/10.26555/jiteki.v9i1.25878.

[58] J. Eliyanto and S. Surono, “Distance Functions Study in Fuzzy C-Means Core and Reduct Clustering,” Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 7, no. 1, p. 118, 2021, http://dx.doi.org/10.26555/jiteki.v7i1.20516.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Assist. Prof. Dr. Phichitphon Chotikunnan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia