The hybrid metaheuristic scheduling model for garment manufacturing on-demand

(1) * Мoch Sаiful Umam Mail (Diponegoro University, Indonesia)
*corresponding author

Abstract


The latest technology milestone drives the fashion industry to implement on-demand production services. This study introduces a decision-making scheme in the manufacturing on-demand production scheduling of the garment industry using a hybrid metaheuristic model to meet consumer demand in the digital economy as quickly as possible. Then we conduct computational experiments based on the real-world case study and compare the hybrid metaheuristic method with existing approaches. The experimental results demonstrate that the hybrid metaheuristic approach can yield very efficient solutions to the scheduling problem; it can save production completion time by 22.6%; it shows promising performance compared to the existing methods.

Keywords


Hybrid Metaheuristic; Scheduling; Manufacturing On-Demand

   

DOI

https://doi.org/10.31763/sitech.v2i2.504
      

Article metrics

10.31763/sitech.v2i2.504 Abstract views : 1299 | PDF views : 172

   

Cite

   

Full Text

Download

References


[1] BOF & McKinsey, “The state of fashion 2021: In search of promise in perilous times,” 2021. Available at : businessoffashion.com.

[2] A. B. Mahmoud et al., “Pandemic pains to Instagram gains! COVID-19 perceptions effects on behaviours towards fashion brands on Instagram in Sub-Saharan Africa: Tech-native vs non-native generations,” J. Mark. Commun., pp. 1–25, Sep. 2021, doi: 10.1080/13527266.2021.1971282.

[3] W. Pang, J. Ko, S. J. Kim, and E. Ko, “Impact of COVID-19 pandemic upon fashion consumer behavior: focus on mass and luxury products,” Asia Pacific J. Mark. Logist., vol. ahead-of-p, no. ahead-of-print, Dec. 2021, doi: 10.1108/APJML-03-2021-0189.

[4] P. Gazzola, E. Pavione, R. Pezzetti, and D. Grechi, “Trends in the fashion industry. The perception of sustainability and circular economy: A gender/generation quantitative approach,” Sustain., vol. 12, no. 7, pp. 1–19, Apr. 2020, doi: 10.3390/su12072809.

[5] A. Firdaus and L. Kusdibyo, “The influence of social media marketing activities on Indonesian local apparel brand purchase intentions,” in Proceedings of the 2nd International Seminar of Science and Applied Technology (ISSAT 2021), 2021. doi: 10.2991/aer.k.211106.089.

[6] A. T. L. Chan, E. W. T. Ngai, and K. K. L. Moon, “The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry,” Eur. J. Oper. Res., vol. 259, no. 2, pp. 486–499, Jun. 2017, doi: 10.1016/j.ejor.2016.11.006.

[7] J. Huang, Q. Chang, and J. Arinez, “Distributed production scheduling for multi-product flexible production lines,” in IEEE International Conference on Automation Science and Engineering, IEEE, Aug. 2020, pp. 1473–1478. doi: 10.1109/CASE48305.2020.9216944.

[8] T. Ahmed, S. M. Hossain, and M. A. Hossain, “Reducing completion time and optimizing resource use of resource-constrained construction operation by means of simulation modeling,” Int. J. Constr. Manag., vol. 21, no. 4, 2018, doi: 10.1080/15623599.2018.1543109.

[9] H. Goworek, L. Oxborrow, S. Claxton, A. McLaren, T. Cooper, and H. Hill, “Managing sustainability in the fashion business: Challenges in product development for clothing longevity in the UK,” J. Bus. Res., vol. 117, pp. 629–641, 2020, doi: 10.1016/j.jbusres.2018.07.021.

[10] I. Paprocka, “The model of maintenance planning and production scheduling for maximising robustness,” Int. J. Prod. Res., vol. 57, no. 14, pp. 4480–4501, Jul. 2019, doi: 10.1080/00207543.2018.1492752.

[11] M. R. Bowers and A. Agarwal, “Hierarchical production planning scheduling in the apparel industry,” Int. J. Cloth. Sci. Technol., vol. 5, no. 3–4, pp. 36–43, Mar. 1993, doi: 10.1108/eb003018.

[12] M. M. Dessouky, M. I. Dessouky, and S. K. Verma, “Flowshop scheduling with identical jobs and uniform parallel machines,” Eur. J. Oper. Res., vol. 109, no. 3, pp. 620–631, Sep. 1998, doi: 10.1016/S0377-2217(97)00194-X.

[13] X. Shang, D. Shen, F. Y. Wang, and T. R. Nyberg, “A heuristic algorithm for the fabric spreading and cutting problem in apparel factories,” IEEE/CAA J. Autom. Sin., vol. 6, no. 4, pp. 961–968, 2019, doi: 10.1109/JAS.2019.1911573.

[14] C. E. Nugraheni, L. Abednego, and M. Widyarini, “A combination of Palmer algorithm and Gupta algorithm for scheduling problem in apparel industry,” Int. J. Fuzzy Log. Syst., vol. 11, no. 1, pp. 1–12, Jan. 2021, doi: 10.5121/ijfls.2021.11101.

[15] M. Sharma, M. Sharma, and S. Sharma, “An improved NEH heuristic to minimize makespan for flow shop scheduling problems,” Decis. Sci. Lett., vol. 10, no. 3, pp. 311–322, 2021, doi: 10.5267/j.dsl.2021.2.006.

[16] H. Wang, M. Huang, and J. Wang, “An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs,” J. Intell. Manuf., vol. 30, no. 7, pp. 2733–2742, Oct. 2019, doi: 10.1007/s10845-018-1425-8.

[17] G. M. Komaki, S. Sheikh, and B. Malakooti, “Flow shop scheduling problems with assembly operations: a review and new trends,” Int. J. Prod. Res., vol. 57, no. 10, pp. 2926–2955, May 2019, doi: 10.1080/00207543.2018.1550269.

[18] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed. Tools Appl., vol. 80, no. 5, pp. 8091–8126, 2021, doi: 10.1007/s11042-020-10139-6.

[19] B. Gonzalez, M. Torres, and J. A. Moreno, “Hybrid genetic algorithm approach for the `no-wait’ flowshop scheduling problem,” in IEE Conference Publication, IEE, 1995, pp. 59–64. doi: 10.1049/cp:19951025.

[20] F. Glover, J. P. Kelly, and M. Laguna, “Genetic Algorithms and Tabu Search: Hybrids for Optimization,” Comput. Oper. Res., vol. 22, no. 1, pp. 111–134, Jan. 1995, doi: 10.1016/0305-0548(93)E0023-M.

[21] M. Amirghasemi and R. Zamani, “An effective evolutionary hybrid for solving the permutation flowshop scheduling problem,” Evol. Comput., vol. 25, no. 1, pp. 87–111, Mar. 2017, doi: 10.1162/EVCO_a_00162.

[22] H. Wei, S. Li, H. Jiang, J. Hu, and J. Hu, “Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion,” Appl. Sci., vol. 8, no. 12, 2018, doi: 10.3390/app8122621.

[23] B. Khurshid, S. Maqsood, M. Omair, B. Sarkar, I. Ahmad, and K. Muhammad, “An improved evolution strategy hybridization with simulated annealing for permutation flow shop scheduling problems,” IEEE Access, vol. 9, pp. 94505–94522, 2021, doi: 10.1109/ACCESS.2021.3093336.

[24] Y. Tian, N. Sannomiya, and Y. Xu, “A tabu search with a new neighborhood search technique applied to flow shop scheduling problems,” Proc. IEEE Conf. Decis. Control, vol. 5, pp. 4606–4611, 2000, doi: 10.1109/cdc.2001.914642.

[25] J. Grabowski and J. Pempera, “The permutation flow shop problem with blocking. A tabu search approach,” Omega, vol. 35, no. 3, pp. 302–311, Jun. 2007, doi: 10.1016/j.omega.2005.07.004.

[26] A. Gümüşçü, S. Kaya, M. E. Tenekeci, İ. H. Karaçizmeli, and İ. B. Aydilek, “The impact of local search strategies on chaotic hybrid firefly particle swarm optimization algorithm in flow-shop scheduling,” J. King Saud Univ. - Comput. Inf. Sci., Jul. 2021, doi: 10.1016/j.jksuci.2021.07.017.

[27] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893.

[28] P. Preux and E. G. Talbi, “Towards hybrid evolutionary algorithms,” Int. Trans. Oper. Res., vol. 6, no. 6, pp. 557–570, Nov. 1999, doi: 10.1111/j.1475-3995.1999.tb00173.x.

[29] F. Z. Boumediene, Y. Houbad, A. Hassam, and L. Ghomri, “A new hybrid genetic algorithm to deal with the flow shop scheduling problem for makespan minimization,” IFIP Adv. Inf. Commun. Technol., vol. 522, pp. 399–410, 2018, doi: 10.1007/978-3-319-89743-1_35.

[30] B. Kiraz, A. A. Bidgoli, H. Ebrahimpour-Komleh, and S. Rahnamayan, “A novel collective crossover operator for genetic algorithms,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 2020-Octob, pp. 4204–4209, 2020, doi: 10.1109/SMC42975.2020.9282841.

[31] A. Ait-Alla, M. Teucke, M. Lütjen, S. Beheshti-Kashi, and H. R. Karimi, “Robust production planning in fashion apparel industry under demand uncertainty via conditional value at risk,” Math. Probl. Eng., vol. 2014, 2014, doi: 10.1155/2014/901861.

[32] M. Bruce, L. Daly, and N. Towers, “Lean or agile: A solution for supply chain management in the textiles and clothing industry?,” Int. J. Oper. Prod. Manag., vol. 24, no. 1–2, pp. 151–170, Feb. 2004, doi: 10.1108/01443570410514867.

[33] E. Ardjmand, W. A. Young II, I. Ghalehkhondabi, and G. R. Weckman, “A scheduling and rescheduling decision support system for apparel manufacturing,” Int. J. Oper. Res. Inf. Syst., vol. 12, no. 4, pp. 1–19, Oct. 2021, doi: 10.4018/ijoris.20211001.oa4.

[34] M. L. Pinedo, Scheduling: Theory, algorithms, and systems, fifth edition. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-26580-3.

[35] A. Afolalu, O. Ikumapayi, S. Ongbali, and S. Afolabi, “Analysis of production scheduling initiatives in the manufacturing systems,” J. Mech. Prod., vol. 10, no. 3, pp. 1301–1318, 2020, doi: 10.24247/ijmperdjun2020113.

[36] S. A. Khan, T. Islam, S. Elahi, M. N. Sharif, and M. M. Mollik, “An Attempt to Increase Agility of Garment Industry,” J. Text. Eng. Fash. Technol., vol. 5, no. 3, pp. 154–161, Jun. 2019, doi: 10.15406/jteft.2019.05.00196.

[37] R. Ramezanian, M. B. Aryanezhad, and M. Heydari, “A mathematical programming model for flow shop scheduling problems for considering just in time production,” Int. J. Ind. Eng. Prod. Res., vol. 21, pp. 97–104, 2008. Available at : semanticscholar.org.

[38] K. L. K. Moon, J. Y. Lee, and S. yeung C. Lai, “Key drivers of an agile, collaborative fast fashion supply chain: Dongdaemun fashion market,” J. Fash. Mark. Manag., vol. 21, no. 3, pp. 278–297, Jul. 2017, doi: 10.1108/JFMM-07-2016-0060.

[39] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, M. Sterna, and J. Weglarz, Handbook on scheduling: From theory to practice. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-319-99849-7.

[40] G. R. Raidl, J. Puchinger, and C. Blum, “Metaheuristic hybrids,” in International Series in Operations Research and Management Science, 2019, pp. 385–417. doi: 10.1007/978-3-319-91086-4_12.

[41] A. Krishnamurthy, “From just in time manufacturing to on-demand services,” 2007, pp. 1–37. doi: 10.1007/978-0-387-46364-3_1.

[42] Y. Shimizu et al., “On-demand production system of apparel on the basis of Kansei engineering,” Int. J. Cloth. Sci. Technol., vol. 16, no. 1–2, pp. 32–42, Feb. 2004, doi: 10.1108/09556220410520333.

[43] F. Dababneh, L. Li, R. Shah, and C. Haefke, “Demand response-driven production and maintenance decision-making for cost-effective manufacturing,” J. Manuf. Sci. Eng. Trans. ASME, vol. 140, no. 6, Jun. 2018, doi: 10.1115/1.4039197.

[44] J. A. Fehrer et al., “Future scenarios of the collaborative economy: Centrally orchestrated, social bubbles or decentralized autonomous?,” J. Serv. Manag., vol. 29, no. 5, pp. 859–882, Nov. 2018, doi: 10.1108/JOSM-04-2018-0118.

[45] R. Singh et al., “Cloud manufacturing, internet of things-assisted manufacturing and 3D printing technology: Reliable tools for sustainable construction,” Sustain., vol. 13, no. 13, p. 7327, Jun. 2021, doi: 10.3390/su13137327.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Мoch Sаiful Umam

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
Science in Information Technology Letters
ISSN 2722-4139
Published by Association for Scientific Computing Electrical and Engineering (ASCEE)
W : http://pubs2.ascee.org/index.php/sitech
E : sitech@ascee.org, andri@ascee.org, andri.pranolo.id@ieee.org

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

View My Stats