The hybrid metaheuristic scheduling model for garment manufacturing on-demand

(1) * Мoch Sаiful Umam Mail (Diponegoro University, Indonesia)
*corresponding author


The latest technology milestone drives the fashion industry to implement on-demand production services. This study introduces a decision-making scheme in the manufacturing on-demand production scheduling of the garment industry using a hybrid metaheuristic model to meet consumer demand in the digital economy as quickly as possible. Then we conduct computational experiments based on the real-world case study and compare the hybrid metaheuristic method with existing approaches. The experimental results demonstrate that the hybrid metaheuristic approach can yield very efficient solutions to the scheduling problem; it can save production completion time by 22.6%; it shows promising performance compared to the existing methods.


Hybrid Metaheuristic; Scheduling; Manufacturing On-Demand



Article metrics

10.31763/sitech.v2i2.504 Abstract views : 485





BOF & McKinsey, “The state of fashion 2021: In search of promise in perilous times,” 2021. (accessed Jun. 21, 2021).

P. Gazzola, E. Pavione, R. Pezzetti, and D. Grechi, “Trends in the fashion industry. The perception of sustainability and circular economy: A gender/generation quantitative approach,” Sustain., vol. 12, no. 7, pp. 1–19, Apr. 2020, doi: 10.3390/su12072809.

R. J. Van der Burg, K. Ahaus, H. Wortmann, and G. B. Huitema, “Investigating the on-demand service characteristics: An empirical study,” J. Serv. Manag., vol. 30, no. 6, pp. 739–765, Dec. 2019, doi: 10.1108/JOSM-01-2019-0025.

N. Joglekar, G. Parker, and J. Srai, “Winning the race for survival: How advanced manufacturing technologies are driving business-model innovation,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3604242.

H. Goworek, L. Oxborrow, S. Claxton, A. McLaren, T. Cooper, and H. Hill, “Managing sustainability in the fashion business: Challenges in product development for clothing longevity in the UK,” J. Bus. Res., vol. 117, pp. 629–641, 2020, doi: 10.1016/j.jbusres.2018.07.021.

Mustafid, S. A. Karimariza, and F. Jie, “Supply chain agility information systems with key factors for fashion industry competitiveness,” Int. J. Agil. Syst. Manag., vol. 11, no. 1, pp. 1–22, 2018, doi: 10.1504/ijasm.2018.091352.

A. T. L. Chan, E. W. T. Ngai, and K. K. L. Moon, “The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry,” Eur. J. Oper. Res., vol. 259, no. 2, pp. 486–499, Jun. 2017, doi: 10.1016/j.ejor.2016.11.006.

J. Huang, Q. Chang, and J. Arinez, “Distributed production scheduling for multi-product flexible production lines,” in IEEE International Conference on Automation Science and Engineering, Aug. 2020, vol. 2020-Augus, pp. 1473–1478, doi: 10.1109/CASE48305.2020.9216944.

T. Ahmed, S. M. Hossain, and M. A. Hossain, “Reducing completion time and optimizing resource use of resource-constrained construction operation by means of simulation modeling,” Int. J. Constr. Manag., vol. 21, no. 4, 2018, doi: 10.1080/15623599.2018.1543109.

I. Paprocka, “The model of maintenance planning and production scheduling for maximising robustness,” Int. J. Prod. Res., vol. 57, no. 14, pp. 4480–4501, Jul. 2019, doi: 10.1080/00207543.2018.1492752.

D. Rothman, Artificial Intelligence By Example: Acquire Advanced AI, Machine Learning and Deep Learning design skills - Second Edition. Mumbai: Packt Publishing, 2020.

M. Bruce, L. Daly, and N. Towers, “Lean or agile: A solution for supply chain management in the textiles and clothing industry?,” Int. J. Oper. Prod. Manag., vol. 24, no. 1–2, pp. 151–170, Feb. 2004, doi: 10.1108/01443570410514867.

E. Ardjmand, W. A. Young II, I. Ghalehkhondabi, and G. R. Weckman, “A scheduling and rescheduling decision support system for apparel manufacturing,” Int. J. Oper. Res. Inf. Syst., vol. 12, no. 4, pp. 1–19, Oct. 2021, doi: 10.4018/ijoris.20211001.oa4.

M. L. Pinedo, Scheduling: Theory, algorithms, and systems, fifth edition. Cham: Springer International Publishing, 2016.

A. Afolalu, O. Ikumapayi, S. Ongbali, and S. Afolabi, “Analysis of production scheduling initiatives in the manufacturing systems,” J. Mech. Prod., vol. 10, no. 3, pp. 1301–1318, 2020, doi: 10.24247/ijmperdjun2020113.

S. A. Khan, T. Islam, S. Elahi, M. N. Sharif, and M. M. Mollik, “An Attempt to Increase Agility of Garment Industry,” J. Text. Eng. Fash. Technol., vol. 5, no. 3, pp. 154–161, Jun. 2019, doi: 10.15406/jteft.2019.05.00196.

R. Ramezanian, M. B. Aryanezhad, and M. Heydari, “A mathematical programming model for flow shop scheduling problems for considering just in time production,” Int. J. Ind. Eng. Prod. Res., vol. 21, pp. 97–104, 2008.

K. L. K. Moon, J. Y. Lee, and S. yeung C. Lai, “Key drivers of an agile, collaborative fast fashion supply chain: Dongdaemun fashion market,” J. Fash. Mark. Manag., vol. 21, no. 3, pp. 278–297, Jul. 2017, doi: 10.1108/JFMM-07-2016-0060.

J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, M. Sterna, and J. Weglarz, Handbook on scheduling: From theory to practice. Cham: Springer International Publishing, 2019.

G. R. Raidl, J. Puchinger, and C. Blum, “Metaheuristic hybrids,” in International Series in Operations Research and Management Science, vol. 272, 2019, pp. 385–417.

P. B. Shola and A. L. aro Bolaji, “A metaheuristic for solving flowshop problem,” Int. J. Adv. Comput. Res., vol. 8, no. 37, pp. 180–190, Jul. 2018, doi: 10.19101/IJACR.2018.835001.

Ö. Tosun, M. K. Marichelvam, and N. Tosun, “A literature review on hybrid flow shop scheduling,” Int. J. Adv. Oper. Manag., vol. 12, no. 2, pp. 156–194, 2020, doi: 10.1504/IJAOM.2020.108263.

H. Wang, M. Huang, and J. Wang, “An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs,” J. Intell. Manuf., vol. 30, no. 7, pp. 2733–2742, Oct. 2019, doi: 10.1007/s10845-018-1425-8.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893.

H. Wei, S. Li, H. Jiang, J. Hu, and J. Hu, “Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion,” Appl. Sci., vol. 8, no. 12, 2018, doi: 10.3390/app8122621.

L. Zhang, Y. Yu, Y. Luo, and S. Zhang, “Improved cuckoo search algorithm and its application to permutation flow shop scheduling problem,” J. Algorithms Comput. Technol., vol. 14, pp. 1–12, Jan. 2020, doi: 10.1177/1748302620962403.

M. B. Shareh, S. H. Bargh, A. A. R. Hosseinabadi, and A. Slowik, “An improved bat optimization algorithm to solve the tasks scheduling problem in open shop,” Neural Comput. Appl., vol. 33, no. 5, pp. 1559–1573, Mar. 2021, doi: 10.1007/s00521-020-05055-7.

M. K. Marichelvam, M. Geetha, and Ö. Tosun, “An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors – A case study,” Comput. Oper. Res., vol. 114, p. 104812, Feb. 2020, doi: 10.1016/j.cor.2019.104812.

N. Chmait and K. Challita, “Using simulated annealing and ant-colony optimization algorithms to solve the scheduling problem,” Comput. Sci. Inf. Technol., vol. 1, no. 3, pp. 208–224, Nov. 2013, doi: 10.13189/csit.2013.010307.

M. Gen, L. Lin, and W. Zhang, “Multiobjective hybrid genetic algorithms for manufacturing scheduling: Part I models and algorithms,” in Advances in Intelligent Systems and Computing, vol. 362, 2015, pp. 3–25.

M. S. Umam, M. Mustafid, and S. Suryono, “A hybrid genetic algorithm and tabu search for minimizing makespan in flow shop scheduling problem,” J. King Saud Univ. - Comput. Inf. Sci., Sep. 2021, doi: 10.1016/j.jksuci.2021.08.025.

A. Ait-Alla, M. Teucke, M. Lütjen, S. Beheshti-Kashi, and H. R. Karimi, “Robust production planning in fashion apparel industry under demand uncertainty via conditional value at risk,” Math. Probl. Eng., vol. 2014, 2014, doi: 10.1155/2014/901861.

P. M. Rath, S. Bay, Petrizzi R., and P. Gill, The why of the buy : Consumer behavior and fashion marketing. New York, NY, USA: Bloomsbury Publishing, Inc., 2015.

S. Kader and M. M. Khairul Akter, “Analysis of the factors affecting the lead time for export of readymade apparels from Bangladesh: Proposals for strategic reduction of lead time,” Eur. Sci. J., vol. 10, no. 33, pp. 1857–7881, 2014.

A. Krishnamurthy, “From just in time manufacturing to on-demand services,” 2007, pp. 1–37.

Y. Shimizu et al., “On-demand production system of apparel on the basis of Kansei engineering,” Int. J. Cloth. Sci. Technol., vol. 16, no. 1–2, pp. 32–42, Feb. 2004, doi: 10.1108/09556220410520333.

F. Dababneh, L. Li, R. Shah, and C. Haefke, “Demand response-driven production and maintenance decision-making for cost-effective manufacturing,” J. Manuf. Sci. Eng. Trans. ASME, vol. 140, no. 6, Jun. 2018, doi: 10.1115/1.4039197.

R. Singh et al., “Cloud manufacturing, internet of things-assisted manufacturing and 3D printing technology: Reliable tools for sustainable construction,” Sustain., vol. 13, no. 13, p. 7327, Jun. 2021, doi: 10.3390/su13137327.

A. Barni, D. Corti, P. Pedrazzoli, D. Rovere, and G. Lucisano, “Mini-factories for close-to-customer manufacturing of customized furniture: From concept to real demo,” Procedia Manuf., vol. 11, pp. 854–862, 2017, doi: 10.1016/j.promfg.2017.07.188.

J. A. Fehrer et al., “Future scenarios of the collaborative economy: Centrally orchestrated, social bubbles or decentralized autonomous?,” J. Serv. Manag., vol. 29, no. 5, pp. 859–882, Nov. 2018, doi: 10.1108/JOSM-04-2018-0118.


  • There are currently no refbacks.

Copyright (c) 2021 Мoch Sаiful Umam

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Science in Information Technology Letters
ISSN 2722-4139
Published by Association for Scientific Computing Electrical and Engineering (ASCEE)
W :
E :,

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

View My Stats