Forging a learner-centric blended-learning framework via an adaptive content-based architecture

(1) * Arnold Adimabua Ojugo Mail (Department of Computer Science Federal University of Petroleum Resources Effurun, Nigeria)
(2) Christopher Chukwufunaya Odiakaose Mail (Department of Computer Science, Dennis Osadebay University, Nigeria)
(3) Frances Uche Emordi Mail (Department of CyberSecurity, Dennis Osadebay University, Nigeria)
(4) Patrick O. Ejeh Mail (Department of Computer Science, Dennis Osadebay University, Nigeria)
(5) Winifred Adigwe Mail (Department of Computer Science, University of Science and Technology, Nigeria)
(6) Kizito Eluemonor Anazia Mail (Department of Information Technology, University of Science and Technology, Nigeria)
(7) Blessing Nwozor Mail (Department of Computer Science, Federal University of Petroleum Resources, Nigeria)
*corresponding author

Abstract


The covid-19 pandemic was reported with significant negative impact on global education with shocks that disrupted the learning processes via the closure of traditional classrooms/schools from 2020 to March 2022. These effects have continued to ripple across even with advances in media literacy. The Nigerian frontier has also witnessed a paradigm shift in the adoption/integration of the information and communication tech as tools for both digital revolution and advancement of alternative education delivery. Today’s education which aspires for growth and progressive development is assured of positive changes if priority for educational values and ICT is harnessed. Past educational theories seem not to cope with the ever-changing, information society. Nigeria must develop strategies to address education reforms with frameworks to bridge these gaps vid post covid-19 era. Our study implements a hybrid a(synchronous) learning framework for Nigerian Tertiary education. Result shows improved learner cognition, engaged qualitative learning, and a learning scenario that ensures a power shift in the educational structure that will further equip learners to become knowledge producer, help teachers to emancipate students academically, in a framework that measures quality of engaged student’s learning

Keywords


Learning Styles; E-learning frameworks; A(synchronous) learning design; Adaptive learning architecture; Blended-Learning

   

DOI

https://doi.org/10.31763/sitech.v4i1.1186
      

Article metrics

10.31763/sitech.v4i1.1186 Abstract views : 1113 | PDF views : 297

   

Cite

   

Full Text

Download

References


[1] F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “Sentiment Analysis in Detecting Sophistication and Degradation Cues in Malicious Web Contents,” Kongzhi yu Juece/Control Decis., vol. 38, no. 01, pp. 653–665, 2023. [Online]. Available at: https://www.kzyjc.org/article/sentiment-analysis-in-detecting-sophistication-and-degradation-cues-in-malicious-web-contents.

[2] A. A. Ojugo and R. E. Yoro, “Predicting Futures Price And Contract Portfolios Using The ARIMA Model: A Case of Nigeria’s Bonny Light and Forcados,” Quant. Econ. Manag. Stud., vol. 1, no. 4, pp. 237–248, Aug. 2020, doi: 10.35877/454RI.qems139.

[3] S. R. Guntur, R. R. Gorrepati, and V. R. Dirisala, “Internet of Medical Things,” in Medical Big Data and Internet of Medical Things, no. October 2018, Boca Raton : Taylor & Francis, [2019]: CRC Press, 2018, pp. 271–297, doi: 10.1201/9781351030380-11.

[4] J. H. Joloudari, R. Alizadehsani, and I. Nodehi, “Resource allocation optimization using artificial intelligence methods in various computing paradigms : A Review,” no. March, p. 20, 2022. [Online]. Available at: https://www.researchgate.net/publication/359435036_ .

[5] N. Shamsuddin and J. Kaur, “Students’ learning style and its effect on blended learning, does it matter?,” Int. J. Eval. Res. Educ., vol. 9, no. 1, p. 195, Mar. 2020, doi: 10.11591/ijere.v9i1.20422.

[6] A. O. Eboka and A. A. Ojugo, “Mitigating technical challenges via redesigning campus network for greater efficiency, scalability and robustness: A logical view,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 6, pp. 29–45, 2020, doi: 10.5815/ijmecs.2020.06.03.

[7] A. Ojugo and A. O. Eboka, “Signature-Based Malware Detection Using Approximate Boyer Moore String Matching Algorithm,” Int. J. Math. Sci. Comput., vol. 5, no. 3, pp. 49–62, Jul. 2019, doi: 10.5815/ijmsc.2019.03.05.

[8] M. Dominic and S. Francis, “An Adaptable E-Learning Architecture Based on Learners’ Profiling,” Int. J. Mod. Educ. Comput. Sci., vol. 7, no. 3, pp. 26–31, 2015, doi: 10.5815/ijmecs.2015.03.04.

[9] A. Hidayat and V. G. Utomo, “Adaptive Online Module Prototype for Learning Unified Modelling Language (UML),” Int. J. Electr. Comput. Eng., vol. 6, no. 6, p. 2931, Dec. 2016, doi: 10.11591/ijece.v6i6.pp2931-2938.

[10] E. D. Ananga, “Gender Responsive Pedagogy for Teaching and Learning: The Practice in Ghana’s Initial Teacher Education Programme,” Creat. Educ., vol. 12, no. 04, pp. 848–864, 2021, doi: 10.4236/ce.2021.124061.

[11] M. Belot and D. Webbink, “Do Teacher Strikes Harm Educational Attainment of Students?,” LABOUR, vol. 24, no. 4, pp. 391–406, Dec. 2010, doi: 10.1111/j.1467-9914.2010.00494.x.

[12] F. Borgonovi and A. Ferrara, “A Longitudinal Perspective on the Effects of COVID-19 on Students’ Resilience. The Effect of the Pandemic on the Reading and Mathematics Achievement of 8th and 5th Graders in Italy,” SSRN Electron. J., p. 50, 2022, doi: 10.2139/ssrn.4025865.

[13] F. Agostinelli, M. Doepke, G. Sorrenti, and F. Zilibotti, “When the great equalizer shuts down: Schools, peers, and parents in pandemic times,” J. Public Econ., vol. 206, p. 104574, Feb. 2022, doi: 10.1016/j.jpubeco.2021.104574.

[14] R. Amelia, G. Kadarisma, N. Fitriani, and Y. Ahmadi, “The effect of online mathematics learning on junior high school mathematic resilience during covid-19 pandemic,” J. Phys. Conf. Ser., vol. 1657, no. 1, p. 012011, Oct. 2020, doi: 10.1088/1742-6596/1657/1/012011.

[15] H. Patrinos, E. Vegas, and R. Carter-Rau, “An Analysis of COVID-19 Student Learning Loss,” Educ. Glob. Pract. Policy Res. Work. Pap. 10033, vol. 10033, no. May, pp. 1–31, 2022, doi: 10.1596/1813-9450-10033.

[16] M. Brindlmayer, R. Khadduri, A. Osborne, A. Briansó, and E. Cupito, “Prioritizing learning during covid-19: The Most Effective Ways to Keep Children Learning During and Post-Pandemic,” Glob. Educ. Evid. Advis. Panel, no. January, pp. 1–21, 2022. [Online]. Available at: https://reliefweb.int/report/world/prioritizing-learning-during-covid-19-most-effective-ways-keep-children-learning-during.

[17] A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve service delivery and performance dependability on a campus network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp623-635.

[18] F. S. Hilyana, “Implementation of Schoology-based E-Learning to Improve the ANEKA-based Character,” pp. 8-15 2018, doi: 10.4108/eai.24-10-2018.2280558.

[19] J. M. Jiménez-Olmedo, A. Penichet-Tomás, B. Pueo, and S. Sebastiá-Amat, “Comparative Analysis of Content Learning Through Schoology and Micro-Teaching in Higher Education,” EDULEARN18 Proc., vol. 1, no. July, pp. 6348–6352, 2018, doi: 10.21125/edulearn.2018.1507.

[20] F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 6, pp. 94–100, 2023, doi: 10.14569/IJACSA.2023.0140610.

[21] A. A. Ojugo and D. O. Otakore, “Redesigning Academic Website for Better Visibility and Footprint: A Case of the Federal University of Petroleum Resources Effurun Website,” Netw. Commun. Technol., vol. 3, no. 1, pp. 33–44, Jul. 2018, doi: 10.5539/nct.v3n1p33.

[22] A. A. Ojugo and A. O. Eboka, “Assessing Users Satisfaction and Experience on Academic Websites: A Case of Selected Nigerian Universities Websites,” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 10, pp. 53–61, 2018, doi: 10.5815/ijitcs.2018.10.07.

[23] D. Nilam, W. Sari, and M. Mulu, “Explorative study on the application of learning model in virtual classroom during Covid-19 pandemic at the school of Yogyakarta Province,” in Proceeding of International Webinar on Education 2020 Umsurabaya, 2020, pp. 54–64. [Online]. Available at: https://journal.um-surabaya.ac.id/index.php/Pro/article/view/5951.

[24] B. O. Malasowe, M. I. Akazue, E. A. Okpako, F. O. Aghware, A. A. Ojugo, and D. V. Ojie, “Adaptive Learner-CBT with Secured Fault-Tolerant and Resumption Capability for Nigerian Universities,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 135–142, 2023, doi: 10.14569/IJACSA.2023.0140816.

[25] A. A. Ojugo and R. E. Yoro, “Extending the three-tier constructivist learning model for alternative delivery: ahead the COVID-19 pandemic in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1673, Mar. 2021, doi: 10.11591/ijeecs.v21.i3.pp1673-1682.

[26] J. Crawford, K. Butler-Henderson, and J. Rudolph, “COVID-19: 20 countries’ higher education intra-period digital pedagogy responses,” J. Appl. Learn. Teach., vol. 3, no. 1, Apr. 2020, doi: 10.37074/jalt.2020.3.1.7.

[27] D. L. Chen, S. Ertac, T. Evgeniou, X. Miao, A. Nadaf, and E. Yilmaz, “Grit and Academic Resilience During the Covid-19 Pandemic,” SSRN Electron. J., p. 17, 2022, doi: 10.2139/ssrn.4001431.

[28] R. E. Yoro, F. O. Aghware, B. O. Malasowe, O. Nwankwo, and A. A. Ojugo, “Assessing contributor features to phishing susceptibility amongst students of petroleum resources varsity in Nigeria,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1922, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1922-1931.

[29] R. E. Yoro, F. O. Aghware, M. I. Akazue, A. E. Ibor, and A. A. Ojugo, “Evidence of personality traits on phishing attack menace among selected university undergraduates in Nigerian,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1943, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1943-1953.

[30] H. H. Yang, “New World, New Learning: Trends and Issues of E-Learning,” Procedia - Soc. Behav. Sci., vol. 77, pp. 429–442, Apr. 2013, doi: 10.1016/j.sbspro.2013.03.098.

[31] M. I. Akazue, A. A. Ojugo, R. E. Yoro, B. O. Malasowe, and O. Nwankwo, “Empirical evidence of phishing menace among undergraduate smartphone users in selected universities in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1756–1765, Dec. 2022, doi: 10.11591/ijeecs.v28.i3.pp1756-1765.

[32] A. A. Ojugo and D. A. Oyemade, “Boyer Moore string-match framework for a hybrid short message service spam filtering technique,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 519, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp519-527.

[33] D. G. H. Divayana, “Aneka-based asynchronous and synchronous learning design and its evaluation as efforts for improving cognitive ability and positive character of students,” Int. J. Mod. Educ. Comput. Sci., vol. 13, no. 5, pp. 14–22, 2021, doi: 10.5815/ijmecs.2021.05.02.

[34] E. Haipinge, N. Kadhila, and L. M. Josua, “Using Digital Technology in Transforming Assessment in Higher Education Institutions beyond COVID-19,” Creat. Educ., vol. 13, no. 07, pp. 2157–2167, 2022, doi: 10.4236/ce.2022.137136.

[35] B. F. Komolafe, O. T. Fakayode, A. Osidipe, F. Zhang, and X. Qian, “Evaluation of Online Pedagogy among Higher Education International Students in China during the COVID-19 Outbreak,” Creat. Educ., vol. 11, no. 11, pp. 2262–2279, 2020, doi: 10.4236/ce.2020.1111166.

[36] A. A. Ojugo and A. O. Eboka, “Extending Campus Network Via Intranet and IP-Telephony For Better Performance and Service Delivery: Meeting Organizational Goals,” J. Appl. Sci. Eng. Technol. Educ., vol. 1, no. 2, pp. 94–104, 2019, doi: 10.35877/454ri.asci12100.

[37] M. R. Mahendra, Supriansyah, and Zulherman, “Development of Macromedia Flash-Based Mathematics Learning for Elementary School Students,” J. Phys. Conf. Ser., vol. 1783, no. 1, p. 012006, Feb. 2021, doi: 10.1088/1742-6596/1783/1/012006.

[38] Y. S. Rizvi and A. Nabi, “Transformation of learning from real to virtual: an exploratory-descriptive analysis of issues and challenges,” J. Res. Innov. Teach. Learn., vol. 14, no. 1, pp. 5–17, Mar. 2021, doi: 10.1108/JRIT-10-2020-0052.

[39] A. Almusaed, A. Almssad, I. Yitmen, and R. Z. Homod, “Enhancing Student Engagement: Harnessing ‘AIED’’s Power in Hybrid Education—A Review Analysis,” Educ. Sci., vol. 13, no. 7, p. 632, Jun. 2023, doi: 10.3390/educsci13070632.

[40] M. . Rufai, S. O. Alebiosu, and O. A. . Adeakin, “A Conceptual Model for Virtual Classroom Management,” Int. J. Comput. Sci. Eng. Inf. Technol., vol. 5, no. 1, pp. 27–32, Feb. 2015, doi: 10.5121/ijcseit.2015.5103.

[41] M. S. Trigui and D. M. Algh, “Learning the Related Mathematics to Cryptography by Interactive Way,” Int. J. Mod. Educ. Comput. Sci., vol. 4, no. 2, pp. 8–14, 2012, doi: 10.5815/ijmecs.2012.02.02.

[42] I. M. Ugochukwu-Ibe and E. Ibeke, “E-learning and Covid-19 - The Nigerian experience: Challenges of teaching technical courses in tertiary institutions,” CEUR Workshop Proc., vol. 2872, no. May, pp. 46–51, 2021. [Online]. Available at: https://rgu-repository.worktribe.com/output/1317762/e-learning-and-covid-19-the-nigerian-experience-challenges-of-teaching-technical-courses-in-tertiary-institutions.

[43] S. A. Zelick, “The Perception of Web 2.0 Technologies on Teaching and Learning in Higher Education: A Case Study,” Creat. Educ., vol. 04, no. 07, pp. 53–93, 2013, doi: 10.4236/ce.2013.47A2010.

[44] A. A. Ojugo and R. E. Yoro, “Forging a deep learning neural network intrusion detection framework to curb the distributed denial of service attack,” Int. J. Electr. Comput. Eng., vol. 11, no. 2, pp. 1498–1509, 2021, doi: 10.11591/ijece.v11i2.pp1498-1509.

[45] A. A. Ojugo and O. D. Otakore, “Intelligent cluster connectionist recommender system using implicit graph friendship algorithm for social networks,” IAES Int. J. Artif. Intell., vol. 9, no. 3, p. 497~506, 2020, doi: 10.11591/ijai.v9.i3.pp497-506.

[46] D. A. Oyemade, R. J. Ureigho, F. . Imouokhome, E. U. Omoregbee, J. Akpojaro, and A. A. Ojugo, “A Three Tier Learning Model for Universities in Nigeria,” J. Technol. Soc., vol. 12, no. 2, pp. 9–20, 2016, doi: 10.18848/2381-9251/CGP/v12i02/9-20.

[47] G. W. Soad, N. F. Duarte Filho, and E. F. Barbosa, “Quality evaluation of mobile learning applications,” in 2016 IEEE Frontiers in Education Conference (FIE), Oct. 2016, pp. 1–8, doi: 10.1109/FIE.2016.7757540.

[48] O. S. Adewale, E. O. Ibam, and B. K. Alese, “A web-based virtual classroom system model,” Turkish Online J. Distance Educ., vol. 13, no. 1, pp. 211–223, 2012. [Online]. Available at: https://eric.ed.gov/?id=EJ976952.

[49] Y. Wu et al., “Large scale incremental learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 374–382, 2019, doi: 10.1109/CVPR.2019.00046.

[50] S. Fabriz, J. Mendzheritskaya, and S. Stehle, “Impact of Synchronous and Asynchronous Settings of Online Teaching and Learning in Higher Education on Students’ Learning Experience During COVID-19,” Front. Psychol., vol. 12, no. October, pp. 1–16, Oct. 2021, doi: 10.3389/fpsyg.2021.733554.

[51] D. A. Oyemade and A. A. Ojugo, “An Optimized Input Genetic Algorithm Model for the Financial Market,” Int. J. Innov. Sci. Eng. Technol., vol. 8, no. 2, pp. 408–419, 2021. [Online]. Available at: https://ijiset.com/vol8/v8s2/IJISET_V8_I02_41.pdf.

[52] A. A. Ojugo, A. O. Eboka, E. O. Okonta, R. E. Yoro, and F. O. Aghware, “Predicting Behavioural Evolution on a Graph-Based Model,” Adv. Networks, vol. 3, no. 2, p. 8, 2015, doi: 10.11648/j.net.20150302.11.

[53] E. Hamed Mahvelati, “Learners’ perceptions and performance under peer versus teacher corrective feedback conditions,” Stud. Educ. Eval., vol. 70, p. 100995, Sep. 2021, doi: 10.1016/j.stueduc.2021.100995.

[54] R. G. Brockett and R. Hiemstra, “Self-Direction in Adult Learning,” London and New York: Routledge, p. 290, 2018, doi: 10.4324/9780429457319.

[55] D. N. D. N. Roberson, S. Zach, N. Choresh, and I. Rosenthal, “Self Directed Learning: A Longstanding Tool for Uncertain Times,” Creat. Educ., vol. 12, no. 05, pp. 1011–1026, 2021, doi: 10.4236/ce.2021.125074.

[56] A. M. Flanagan, D. C. Cormier, and O. Bulut, “Achievement may be rooted in teacher expectations: examining the differential influences of ethnicity, years of teaching, and classroom behaviour,” Soc. Psychol. Educ., vol. 23, pp. 1429–1448, 2020, doi: 10.1007/s11218-020-09590-y.

[57] J. Emudianughe, G. I. Alaminioukuma, and A. A. Ojugo, “Computer-Simulated Delta (δ) For Vertical Transversely Isotropic (VTI) Media in Two Depobelts of the Niger Delta,” Int. J. Eng. Sci., vol. 3, no. 9, pp. 43–48, 2014. [Online]. Available at: https://www.researchgate.net/publication/268502508_Computer-Simulated_Delta_d_For_Vertical_Transversely_Isotropic_VTI_Media_in_Two_Depobelts_of_the_Niger_Delta.

[58] D. A. Oyemade and A. A. Ojugo, “A Property Oriented Pandemic Surviving Trading Model,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, pp. 7397–7404, 2020, doi: 10.30534/ijatcse/2020/71952020.

[59] O. Núñez-Mata, R. Palma-Behnke, F. Valencia, A. Urrutia-Molina, P. Mendoza-Araya, and G. Jiménez-Estévez, “Coupling an adaptive protection system with an energy management system for microgrids,” Electr. J., vol. 32, no. 10, p. 106675, Dec. 2019, doi: 10.1016/j.tej.2019.106675.

[60] F. Reichert, D. Lange, and L. Chow, “Educational beliefs matter for classroom instruction: A comparative analysis of teachers’ beliefs about the aims of civic education,” Teach. Teach. Educ., vol. 98, pp. 1–13, 2020, doi: 10.1016/j.tate.2020.103248.

[61] F. Baier, A.-T. Decker, T. Voss, T. Kleickmann, U. Klusmann, and M. Kunter, “What makes a good teacher? The relative importance of mathematics teachers’ cognitive ability, personality, knowledge, beliefs, and motivation for instructional quality,” Br. J. Educ. Psychol., vol. 89, no. 4, pp. 767–786, 2019, doi: 10.1111/bjep.12256.

[62] A. E. Ibor, E. B. Edim, and A. A. Ojugo, “Secure Health Information System with Blockchain Technology,” J. Niger. Soc. Phys. Sci., vol. 5, no. 992, pp. 1–8, 2023, doi: 10.46481/jnsps.2022.992.

[63] S. Geng, K. M. Y. Law, and B. Niu, “Investigating self-directed learning and technology readiness in blending learning environment,” Int. J. Educ. Technol. High. Educ., vol. 16, no. 17, pp. 1–22, 2019, doi: 10.1186/s41239-019-0147-0.

[64] H. M. Ismail and B. M. Soye, “Biometric Enabled Computer-Based Testing System ( CBT ) With Advanced Encryption Standard ( AES ),” J. Emerg. Technol. Innov. Res., vol. 5, no. 8, pp. 579–585, 2018. [Online]. Available at: https://www.jetir.org/view?paper=JETIR1808841.

[65] F. M. van der Kleij, “Comparison of teacher and student perceptions of formative assessment feedback practices and association with individual student characteristics,” Teach. Teach. Educ., vol. 85, no. 1, pp. 175–189, 2019, doi: 10.1016/j.tate.2019.06.010.

[66] M. I. Akazue, R. E. Yoro, B. O. Malasowe, O. Nwankwo, and A. A. Ojugo, “Improved services traceability and management of a food value chain using block-chain network : a case of Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 29, no. 3, pp. 1623–1633, 2023, doi: 10.11591/ijeecs.v29.i3.pp1623-1633.

[67] H. Vonkova and J. Hrabak, “The (in) comparability of ICT knowledge and skill self-assessments among upper secondary school students: The use of the anchoring vignette method,” Comput. Educ., vol. 85, pp. 191–202, 2015, doi: 10.1016/j.compedu.2015.03.003.

[68] J. Roick and T. Ringeisen, “Students’ math performance in higher education: examining the role of self-regulated learning and self-efficacy,” Learn. Individ. Differ., vol. 65, no. 7, pp. 148–158, 2018, doi: 10.1016/j.lindif.2018.05.018.

[69] T. J. Cleary and A. Kitsantas, “Motivation and self-regulated learning influences on middle school mathematics achievement,” School Psych. Rev., vol. 46, no. 1, pp. 88–107, 2017, doi: 10.1080/02796015.2017.12087607.

[70] A. L. Dent and A. C. Koenka, “The relation between self-regulated learning and academic achievement across childhood and adolescence: a meta-analysis,” Educ. Psychol. Rev., vol. 28, no. 3, pp. 425–474, 2015, doi: 10.1007/s10648-015-9320-8.

[71] R. E. Yoro and A. A. Ojugo, “An Intelligent Model Using Relationship in Weather Conditions to Predict Livestock-Fish Farming Yield and Production in Nigeria,” Am. J. Model. Optim., vol. 7, no. 2, pp. 35–41, 2019, doi: 10.12691/ajmo-7-2-1.[Online]. Available at: https://www.researchgate.net/publication/342889479_An_Intelligent_Model_Using_Relationship_in_Weather_Conditions_to_Predict_Livestock-Fish_Farming_Yield_and_Production_in_Nigeria.

[72] D. Allenotor, D. A. Oyemade, and A. A. Ojugo, “A Financial Option Model for Pricing Cloud Computational Resources Based on Cloud Trace Characterization,” African J. Comput. ICT, vol. 8, no. 2, pp. 83–92, 2015. [Online]. Available at: https://www.researchgate.net/publication/319506038_A_Financial_Option_Model_for_Pricing_Cloud_Computational_Resources_Based_on_Cloud_Trace_Characterization.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Arnold Adimabua Ojugo, Christopher Chukwufunaya Odiakaose, Frances Uche Emordi, Patrick O. Ejeh, Winifred Adigwe, Kizito Eluemonor Anazia, Blessing Nwozor

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
Science in Information Technology Letters
ISSN 2722-4139
Published by Association for Scientific Computing Electrical and Engineering (ASCEE)
W : http://pubs2.ascee.org/index.php/sitech
E : sitech@ascee.org, andri@ascee.org, andri.pranolo.id@ieee.org

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

View My Stats