Machine learning-based residential load demand forecasting: Evaluating ELM, XGBoost, RF, and SVM for enhanced energy system and sustainability

(1) Modawy Adam Ali Abdalla Mail (Department of Electrical and Electronic Engineering, College of Engineering Science, Nyala University, Nyala 63311, Sudan, Sudan)
(2) * Ahmed Mohamed Ishaga Mail (School of Engineering and Applied Science, Kampala International University, Kampala, P.O. Box 20000, Uganda, Uganda)
(3) Hassan Ahmed Osman Mail (Department of Chemistry, College of Education, Nyala University, Nyala 63311, Sudan, Sudan)
(4) Mohamed Elhindi Mail (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China, China)
(5) Nasreldin Ibrahim Mail (School of Electrical and Information Engineering, Tianjin University, Tianjin, Tianjin 300072, China, China)
(6) Aissa Snani Mail (LabGED, Department of Computer Science, University of Badji Mokhtar, Annaba 23000, Algeria, Algeria)
(7) Gomaa Haroun Ali Hamid Mail (Department of Electrical and Electronic Engineering, College of Engineering Science, Nyala University, Nyala 63311, Sudan, Sudan)
(8) Abdallah Hammad Mail (Department of Electrical Engineering, College of Engineering, University of Bisha, P.O. Box 551, 61922, Bisha, Saudi Arabia, Saudi Arabia)
*corresponding author

Abstract


Accurate forecasting of electrical power load is essential for properly planning, operating, and integrating energy systems to accommodate renewables and achieve environmental sustainability. Therefore, this study introduces different machine learning (ML) methods, including support vector machines (SVM), random forests (RF), extreme learning machines (ELM), and extreme gradient boosting (XGBoost) to predict hourly electricity demand using electricity consumption and temperature data for train and test ML models. The data is processed by autocorrelation function (ACF) and cross-correlation function (CCF) to determine the appropriate lag time for the inputs. Furthermore, ML model accuracy is assessed using coefficient of determination (R²), mean absolute error (MAE), and root mean square error (RMSE). Results show that the ELM model achieved the highest R² in both summer (0.971) and winter (0.868), outperforming the other models in accuracy R² and error reduction (MAE and RMSE). ELM also more effectively captured load fluctuations. The result of this research has applications for load demand forecasting in the proper planning and operation of the residential grid. The results help estimate load demand and provide useful guidance for residential grid planning and management by determining the best techniques for precisely estimating load demand and identifying domestic energy consumption patterns

Keywords


Residential Energy Consumption; Sustainable Energy System; Load Forecasting; Extreme Learning Machines; Machine Learning Algorithms

   

DOI

https://doi.org/10.31763/sitech.v6i1.1866
      

Article metrics

10.31763/sitech.v6i1.1866 Abstract views : 55 | PDF views : 1

   

Cite

   

Full Text

Download

References


[1] M. Wang and M. A. A. Abdalla, “Optimal Energy Scheduling Based on Jaya Algorithm for Integration of Vehicle-to-Home and Energy Storage System with Photovoltaic Generation in Smart Home,†Sensors, vol. 22, no. 4, p. 1306, Feb. 2022, doi: 10.3390/s22041306.

[2] M. A. A. Abdalla, W. Min, A. H. Gomaa Haroun, and M. Elhindi, “Optimal Energy Scheduling Strategy for Smart Charging of Electric Vehicles from Grid-Connected Photovoltaic System,†in 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Oct. 2021, pp. 37–42, doi: 10.1109/ICEEIE52663.2021.9616634.

[3] A. Rehman, A. Rauf, M. Ahmad, A. A. Chandio, and Z. Deyuan, “The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: evidence from Pakistan,†Environ. Sci. Pollut. Res., vol. 26, no. 21, pp. 21760–21773, Jul. 2019, doi: 10.1007/s11356-019-05550-y.

[4] A. Hossain Bagdadee, Z. Li, and M. Adam Ali Abdalla, “Constant &Reliable Power Supply by the Smart Grid Technology in Modern Power System,†IOP Conf. Ser. Mater. Sci. Eng., vol. 561, no. 1, p. 012088, Oct. 2019, doi: 10.1088/1757-899X/561/1/012088.

[5] M. Elhindi, Z. Chen, H. Ma, X. Sun, and M. A. Ali Abdalla, “Characteristic analysis of demagnetization fault in FSCW-PMM with four-layer windings,†J. Magn. Magn. Mater., vol. 623, p. 172990, Jul. 2025, doi: 10.1016/j.jmmm.2025.172990.

[6] M. Shao, X. Wang, Z. Bu, X. Chen, and Y. Wang, “Prediction of energy consumption in hotel buildings via support vector machines,†Sustain. Cities Soc., vol. 57, p. 102128, Jun. 2020, doi: 10.1016/j.scs.2020.102128.

[7] O. Abbaker Ahmed Mohammed et al., “Optimal α-Variable Model-Free Adaptive Barrier Function Fractional Order Nonlinear Sliding Mode Control for Four Area Interconnected Hybrid Power System With Nonlinearities,†IEEE Access, vol. 12, pp. 61586–61609, 2024, doi: 10.1109/ACCESS.2024.3391611.

[8] M. Elhindi, M. A. A. Abdalla, A. Omar, A. Pranolo, A. Mirghani, and A. A. Omer, “Comparative Electromagnetic Performance Analysis of Double Stator and Single Stator Superconducting Generators for Direct-Drive Wind Turbines,†Int. J. Robot. Control Syst., vol. 4, no. 2, pp. 678–690, May 2024, doi: 10.31763/ijrcs.v4i2.1385.

[9] M. A. A. Abdalla et al., “Optimizing Energy Usage and Smoothing Load Profile via a Home Energy Management Strategy with Vehicle-to-Home and Energy Storage System,†Sustainability, vol. 15, no. 20, p. 15046, Oct. 2023, doi: 10.3390/su152015046.

[10] M. Wang, D. Pan, M. A. A. Abdalla, H. Wang, F. Zuo, and X. Sheng, “A Review of Robust State Estimation of Distribution Network,†in 2023 2nd Asian Conference on Frontiers of Power and Energy (ACFPE), Oct. 2023, pp. 475–481, doi: 10.1109/ACFPE59335.2023.10455394.

[11] O. A. A. Mohammed, L. Peng, G. H. A. Hamid, A. M. Ishag, and M. A. A. Abdalla, “Effective Energy Management Strategy with Model-Free DC-Bus Voltage Control for Fuel Cell/Battery/Supercapacitor Hybrid Electric Vehicle System,†Machines, vol. 11, no. 10, p. 944, Oct. 2023, doi: 10.3390/machines11100944.

[12] M. Abdallah, B. Mohammadi, H. Nasiri, O. M. Katipoğlu, M. A. A. Abdalla, and M. M. Ebadzadeh, “Daily global solar radiation time series prediction using variational mode decomposition combined with multi-functional recurrent fuzzy neural network and quantile regression forests algorithm,†Energy Reports, vol. 10, pp. 4198–4217, Nov. 2023, doi: 10.1016/j.egyr.2023.10.070.

[13] F. Kurniawan, S. Sulaiman, S. Konate, and M. A. A. Abdalla, “Deep learning approaches for MIMO time-series analysis,†Int. J. Adv. Intell. Informatics, vol. 9, no. 2, p. 286, Jul. 2023, doi: 10.26555/ijain.v9i2.1092.

[14] M. A. A. Abdalla, W. Min, W. Bing, A. M. Ishag, and B. Saleh, “Double-layer home energy management strategy for increasing PV self-consumption and cost reduction through appliances scheduling, EV, and storage,†Energy Reports, vol. 10, pp. 3494–3518, Nov. 2023, doi: 10.1016/j.egyr.2023.10.019.

[15] S. Khan, A. Abdulsatar, and S. Alsamarai, “Social media and its adverse effect on academic performance of students,†Bull. Soc. Informatics Theory Appl., vol. 3, no. 1, pp. 38–44, May 2019, doi: 10.31763/businta.v3i1.163.

[16] G. R. Sosa, M. Z. Falah, D. F. L, A. P. Wibawa, A. N. Handayani, and J. A. H. Hammad, “Forecasting electrical power consumption using ARIMA method based on kWh of sold energy,†Sci. Inf. Technol. Lett., vol. 2, no. 1, pp. 9–15, May 2021, doi: 10.31763/sitech.v2i1.637.

[17] J. Zhu, H. Dong, W. Zheng, S. Li, Y. Huang, and L. Xi, “Review and prospect of data-driven techniques for load forecasting in integrated energy systems,†Appl. Energy, vol. 321, p. 119269, Sep. 2022, doi: 10.1016/j.apenergy.2022.119269.

[18] D. K. Ranaweera, G. G. Karady, and R. G. Farmer, “Economic impact analysis of load forecasting,†IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1388–1392, 1997, doi: 10.1109/59.630486.

[19] G. Newsom and E. G. Brown, “Improving Solar and Load Forecasts by Reducing Operational Uncertainty,†California, pp. 1-119, 2019. [Online]. Available at: https://www.energy.ca.gov/sites/default/files/2021-06/CEC-500-2019-023.pdf.

[20] Z. Wang, Y. Wang, R. Zeng, R. S. Srinivasan, and S. Ahrentzen, “Random Forest based hourly building energy prediction,†Energy Build., vol. 171, pp. 11–25, Jul. 2018, doi: 10.1016/j.enbuild.2018.04.008.

[21] R. A. Abbasi, N. Javaid, M. N. J. Ghuman, Z. A. Khan, S. Ur Rehman, and Amanullah, “Short Term Load Forecasting Using XGBoost,†in Advances in Intelligent Systems and Computing, vol. 927, Springer, Cham, 2019, pp. 1120–1131, doi: 10.1007/978-3-030-15035-8_108.

[22] S. Li, L. Goel, and P. Wang, “An ensemble approach for short-term load forecasting by extreme learning machine,†Appl. Energy, vol. 170, pp. 22–29, May 2016, doi: 10.1016/j.apenergy.2016.02.114.

[23] T. Khatib, A. Mohamed, and K. Sopian, “A review of photovoltaic systems size optimization techniques,†Renew. Sustain. Energy Rev., vol. 22, pp. 454–465, Jun. 2013, doi: 10.1016/j.rser.2013.02.023.

[24] K. Haruna, A. S. Uju, I. A. Lawal, and R. Abubakar, “Placement model for students into appropriate academic class using machine learning,†Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 1–11, May 2023, doi: 10.31763/sitech.v4i1.1024.

[25] A. Y. Saleh and F. N. Binti Mostapa, “Suicide and self-harm prediction based on social media data using machine learning algorithms,†Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 12–21, May 2023, doi: 10.31763/sitech.v4i1.1181.

[26] M. Klaiber, “A Fundamental Overview of SOTA-Ensemble Learning Methods for Deep Learning: A Systematic Literature Review,†Sci. Inf. Technol. Lett., vol. 2, no. 2, pp. 1–14, Dec. 2021, doi: 10.31763/sitech.v2i2.549.

[27] D. P. Ismi and N. Khoirunnisa, “Enhancing the performance of heart arrhythmia prediction model using Convolutional Neural Network based architectures,†Sci. Inf. Technol. Lett., vol. 5, no. 2, pp. 1–12, Nov. 2024, doi: 10.31763/sitech.v5i2.1794.

[28] C. Cortes and V. Vapnik, “Support-vector networks,†Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

[29] B. Mohammadi and S. Mehdizadeh, “Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm,†Agric. Water Manag., vol. 237, p. 106145, Jul. 2020, doi: 10.1016/j.agwat.2020.106145.

[30] V. H. Quej, J. Almorox, J. A. Arnaldo, and L. Saito, “ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment,†J. Atmos. Solar-Terrestrial Phys., vol. 155, pp. 62–70, Mar. 2017, doi: 10.1016/j.jastp.2017.02.002.

[31] L. Breiman, “Random Forests,†Mach. Learn. 2001 451, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.

[32] A. N. S. Kinasih, A. N. Handayani, J. T. Ardiansah, and N. S. Damanhuri, “Comparative analysis of decision tree and random forest classifiers for structured data classification in machine learning,†Sci. Inf. Technol. Lett., vol. 5, no. 2, pp. 13–24, Nov. 2024, doi: 10.31763/sitech.v5i2.1746.

[33] G. Huang et al., “Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions,†J. Hydrol., vol. 574, pp. 1029–1041, Jul. 2019, doi: 10.1016/j.jhydrol.2019.04.085.

[34] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,†Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006, doi: 10.1016/j.neucom.2005.12.126.

[35] R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization,†Renew. Sustain. Energy Rev., vol. 124, p. 109792, May 2020, doi: 10.1016/j.rser.2020.109792.

[36] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,†Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-August-2016, pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785.

[37] J. Fan et al., “Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China,†Energy Convers. Manag., vol. 164, pp. 102–111, May 2018, doi: 10.1016/j.enconman.2018.02.087.

[38] S. H. Rafi, Nahid-Al-Masood, S. R. Deeba, and E. Hossain, “A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network,†IEEE Access, vol. 9, pp. 32436–32448, 2021, doi: 10.1109/ACCESS.2021.3060654.

[39] R. Munif and A. Prahara, “Betta fish classification using transfer learning and fine-tuning of CNN models,†Sci. Inf. Technol. Lett., vol. 5, no. 1, pp. 16–25, Apr. 2024, doi: 10.31763/sitech.v5i1.1378.

[40] H. Jayadianti, B. A. Arianti, N. H. Cahyana, S. Saifullah, and R. Dreżewski, “Improving sentiment analysis on PeduliLindungi comments: a comparative study with CNN-Word2Vec and integrated negation handling,†Sci. Inf. Technol. Lett., vol. 4, no. 2, pp. 75–89, Nov. 2023, doi: 10.31763/sitech.v4i2.1184.

[41] A. H. Pratomo, N. H. Cahyana, and S. N. Indrawati, “Optimizing CNN hyperparameters with genetic algorithms for face mask usage classification,†Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 54–64, May 2023, doi: 10.31763/sitech.v4i1.1182.

[42] M. A. A. Abdalla, W. Min, and O. A. A. Mohammed, “Two-Stage Energy Management Strategy of EV and PV Integrated Smart Home to Minimize Electricity Cost and Flatten Power Load Profile,†Energies, vol. 13, no. 23, p. 6387, Dec. 2020, doi: 10.3390/en13236387.

[43] M. Elhindi, M. A. A. Abdalla, and D. Liu, “Investigating the impact of magnetic air gap variations on short circuit characteristics of partially high temperature superconducting generator,†Phys. C Supercond. its Appl., vol. 623, p. 1354550, Aug. 2024, doi: 10.1016/j.physc.2024.1354550.

[44] N. Ibrahim, N. Dong, and M. A. A. Abdalla, “On dual-loop model-free adaptive iterative learning control and its application,†J. Process Control, vol. 147, p. 103376, Mar. 2025, doi: 10.1016/j.jprocont.2025.103376.

[45] N. Ibrahim and N. Dong, “A Novel Dualâ€Loop Modelâ€Free Adaptive Iterative Learning Control and Its Application to the Refrigeration Systems,†Int. J. Robust Nonlinear Control, vol. 35, no. 6, pp. 2213–2234, Apr. 2025, doi: 10.1002/rnc.7790.

[46] M. Adam, A. Abdalla, G. Kalcon, and A. Mohammed, “Design of Travelling Wave Relay for Protection of Transmission Lines,†Int. J. Res. Stud. Electr. Electron. Eng., vol. 3, no. 4, pp. 29–41, 2017, doi: 10.20431/2454-9436.0304005.

[47] A. Fithriyyah, T. Purwaningsih, S. Konate, and M. A. A. Abdalla, “Mapping dengue vulnerability: spatial cluster analysis reveals patterns in Central Java, Indonesia,†Sci. Inf. Technol. Lett., vol. 4, no. 2, pp. 109–122, Nov. 2023, doi: 10.31763/sitech.v4i2.1203.

[48] “Hourly electricity consumption varies throughout the day and across seasons,†U.S. Energy Information Administration (EIA), 2020. [Online]. Available at: https://www.eia.gov/todayinenergy/detail.php?id=42915.

[49] E. Jahani, K. Cetin, and I. H. Cho, “City-scale single family residential building energy consumption prediction using genetic algorithm-based Numerical Moment Matching technique,†Build. Environ., vol. 172, p. 106667, Apr. 2020, doi: 10.1016/j.buildenv.2020.106667.

[50] B. Larson et al., “Residential building stock assessment: Metering study,†2014. [Online]. Available at: http://neea.org/docs/default-source/reports/residential-building-stock-assessment--metering-study.pdf?sfvrsn=6.

[51] N. Mims Frick et al., “End-Use Load Profiles for the U.S. Building Stock: Technical Advisory Group Meeting #11.†p. 152, Aug. 02, 2022. [Online]. Available at: https://www.osti.gov/biblio/1880324.

[52] K. P. Sudheer, A. K. Gosain, and K. S. Ramasastri, “A dataâ€driven algorithm for constructing artificial neural network rainfallâ€runoff models,†Hydrol. Process., vol. 16, no. 6, pp. 1325–1330, Apr. 2002, doi: 10.1002/hyp.554.

[53] A. Z. Z. Abidin, M. F. I. Othman, A. Hassan, Y. Murdianingsih, U. T. Suryadi, and T. F. Siallagan, “A comparison of machine learning methods for knowledge extraction model in A LoRa-Based waste bin monitoring system,†Int. J. Adv. Intell. Informatics, vol. 10, no. 1, p. 79, Feb. 2024, doi: 10.26555/ijain.v10i1.1026.

[54] M. A. As’ari, N. A. J. Sufri, and G. S. Qi, “Emergency sign language recognition from variant of convolutional neural network (CNN) and long short term memory (LSTM) models,†Int. J. Adv. Intell. Informatics, vol. 10, no. 1, p. 64, Feb. 2024, doi: 10.26555/ijain.v10i1.1170.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Modawy Adam Ali Abdalla, Ahmed Mohamed Ishaga, Hassan Ahmed Osman, Mohamed Elhindi, Nasreldin Ibrahim, Aissa Snani, Gomaa Haroun Ali Hamid, Abdallah Hammad

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
Science in Information Technology Letters
ISSN 2722-4139
Published by Association for Scientific Computing Electrical and Engineering (ASCEE)
W : http://pubs2.ascee.org/index.php/sitech
E : sitech@ascee.org, andri@ascee.org, andri.pranolo.id@ieee.org

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

View My Stats