
(2) * Rochmad Novian Inderanata

(3) Arif Bintoro Johan

(4) Setuju Setuju

*corresponding author
AbstractComputers often experience damage to the CPU, especially the mainboard and processor, due to several factors, including human error or excessive use and environmental conditions. Component placement is frequently utilized to improve the CPU room conditions to keep it cool. This research numerically investigates desktop PC processors and heatsink configurations for mechanical engineering vocational learning. The kind of metal material, number of fans, and fan arrangement were all tested at three levels. The computer components in this research are the CPU, heatsink, fan, and processor—a 65-watt Thermal Design Power (TDP) CPU with a constant air intake speed of 5 m/s. The criteria investigated include metal type (steel, aluminum, and copper), cooling design (horizontal, vertical, and mixed), and fan count (2-4-8). The methods used in this research are the Computational Fluid Dynamics (CFD) method and the Taguchi method to examine fluid flow characteristics and temperature. Numerical results show the maximum temperature is 123 °C in the vertical, eight-fan, and steel configurations. Minimum temperature 39.22 °C in mixed configuration, eight fans, and copper. These findings reveal that the kind of metal material, number of fans, and fan arrangement all impact the CPU cooler and heatsink configuration. However, the Taguchi method can provide a more detailed understanding of configuration.
KeywordsDesign optimation; Numerical study; Computational fluid dynamic; Taguchi; engineering materials
|
DOIhttps://doi.org/10.31763/aet.v2i3.1207 |
Article metrics10.31763/aet.v2i3.1207 Abstract views : 1167 | PDF views : 705 |
Cite |
Full Text![]() |
References
[1] M. W. Alam et al., “CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study,†Int. Commun. Heat Mass Transf., vol. 112, p. 104455, Mar. 2020, doi: 10.1016/j.icheatmasstransfer.2019.104455.
[2] R. N. Inderanata and T. Sukardi, “Investigation study of integrated vocational guidance on work readiness of mechanical engineering vocational school students,†Heliyon, vol. 9, no. 2, p. e13333, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13333.
[3] R. N. Inderanata, T. Sukardi, P. Sudira, T. Purwaningsih, and S. Priyanto, “Technology integration in mechanical engineering vocational education: Engineering mathematics and engineering physics,†in AIP Conference Proceedings, May 2023, vol. 2720, no. 1, p. 020026, doi: 10.1063/5.0136865.
[4] S. O. O. Al-Omar and O. M. Ali, “Mixed convection from two horizontally aligned hot and cold circular cylinders in a vented square enclosure,†Ain Shams Eng. J., vol. 14, no. 8, p. 102048, Aug. 2023, doi: 10.1016/j.asej.2022.102048.
[5] M. Bahiraei, S. Heshmatian, M. Goodarzi, and H. Moayedi, “CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurations,†Adv. Powder Technol., vol. 30, no. 11, pp. 2503–2516, Nov. 2019, doi: 10.1016/j.apt.2019.07.029.
[6] M. Motevalizadeh, A. Rooberahan, M. Sanaee Namaghi, M. Mohammadi, M. Passandideh-Fard, and M. Sardarabadi, “Cooling enhancement of portable computers processor by a heat pipe assisted with phase change materials,†J. Energy Storage, vol. 56, p. 106074, Dec. 2022, doi: 10.1016/j.est.2022.106074.
[7] Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, Fifth Edition. McGraw-Hill Education, p. 991, 2008. [Online]. Available at: https://ostad.nit.ac.ir/payaidea/ospic/file8973.pdf.
[8] A. M. Haywood, J. Sherbeck, P. Phelan, G. Varsamopoulos, and S. K. S. Gupta, “The relationship among CPU utilization, temperature, and thermal power for waste heat utilization,†Energy Convers. Manag., vol. 95, pp. 297–303, May 2015, doi: 10.1016/j.enconman.2015.01.088.
[9] M. J. Mahmud, A. I. Rais, M. R. Hossain, and S. Saha, “Conjugate mixed convection heat transfer with internal heat generation in a lid-driven enclosure with spinning solid cylinder,†Heliyon, vol. 8, no. 12, p. e11968, Dec. 2022, doi: 10.1016/j.heliyon.2022.e11968.
[10] B. Sun and H. Liu, “Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator,†Appl. Therm. Eng., vol. 115, pp. 435–443, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.12.108.
[11] G. Xiahou, J. Zhang, R. Ma, and Y. Liu, “Novel heat pipe radiator for vertical CPU cooling and its experimental study,†Int. J. Heat Mass Transf., vol. 130, pp. 912–922, Mar. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.002.
[12] R. Boukhanouf and A. Haddad, “A CFD analysis of an electronics cooling enclosure for application in telecommunication systems,†Appl. Therm. Eng., vol. 30, no. 16, pp. 2426–2434, Nov. 2010, doi: 10.1016/J.APPLTHERMALENG.2010.06.012.
[13] S. Lakshmanan and S. Ashok, “CFD analysis for rate of cooling of heat sink for CPU,†Int. J. Adv. Res. Dev., vol. 3, pp. 23–27, 2018, [Online]. Available at: https://www.ijarnd.com/manuscripts/v3i6/V3I6-1150.pdf.
[14] S. Siahchehrehghadikolaei, M. Gholinia, S. S. Ghadikolaei, and C.-X. Lin, “A CFD modeling of CPU cooling by eco-friendly nanofluid and fin heat sink passive cooling techniques,†Adv. Powder Technol., vol. 33, no. 11, p. 103813, Nov. 2022, doi: 10.1016/j.apt.2022.103813.
[15] A. M. Soodmand, S. Nejatbakhsh, H. Pourpasha, H. Aghdasinia, and S. Z. Heris, “Simulation of melting and solidification process of polyethylene glycol 1500 as a PCM in rectangular, triangular, and cylindrical enclosures,†Alexandria Eng. J., vol. 61, no. 11, pp. 8431–8456, Nov. 2022, doi: 10.1016/j.aej.2022.02.011.
[16] A. A. Ganguli, A. B. Pandit, and J. B. Joshi, “CFD simulation of heat transfer in a two-dimensional vertical enclosure,†Chem. Eng. Res. Des., vol. 87, no. 5, pp. 711–727, May 2009, doi: 10.1016/j.cherd.2008.11.005.
[17] A. A. Ganguli, A. B. Pandit, J. B. Joshi, and P. K. Vijayan, “Hydrodynamic and heat transfer characteristics of a centrally heated cylindrical enclosure: CFD simulations and experimental measurements,†Chem. Eng. Res. Des., vol. 89, no. 10, pp. 2024–2037, Oct. 2011, doi: 10.1016/j.cherd.2011.02.003.
[18] P. Shojaee Nasirabadi, M. Jabbari, and J. H. Hattel, “CFD simulation and statistical analysis of moisture transfer into an electronic enclosure,†Appl. Math. Model., vol. 44, pp. 246–260, Apr. 2017, doi: 10.1016/j.apm.2016.09.004.
[19] H.-T. Chen, Y.-J. Chiu, C.-S. Liu, and J.-R. Chang, “Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger,†Int. J. Heat Mass Transf., vol. 109, pp. 378–392, Jun. 2017, doi: 10.1016/j.ijheatmasstransfer.2017.01.122.
[20] H.-T. Chen, W.-Y. Su, Y.-J. Zheng, T.-S. Yang, and K.-X. Chen, “Prediction of 3D natural convection heat transfer characteristics in a shallow enclosure with experimental data,†Prog. Nucl. Energy, vol. 153, p. 104425, Nov. 2022, doi: 10.1016/j.pnucene.2022.104425.
[21] S. S. Ghadikolaei, S. Siahchehrehghadikolaei, M. Gholinia, and M. Rahimi, “A CFD modeling of heat transfer between CGNPs/H2O Eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling,†Therm. Sci. Eng. Prog., vol. 37, p. 101604, Jan. 2023, doi: 10.1016/j.tsep.2022.101604.
[22] D. Gupta, P. Saha, and S. Roy, “Computational analysis of perforation effect on the thermo-hydraulic performance of micro pin-fin heat sink,†Int. J. Therm. Sci., vol. 163, p. 106857, May 2021, doi: 10.1016/j.ijthermalsci.2021.106857.
[23] Y. He, F. Muller, A. Hassanpour, and A. E. Bayly, “A CPU-GPU cross-platform coupled CFD-DEM approach for complex particle-fluid flows,†Chem. Eng. Sci., vol. 223, p. 115712, Sep. 2020, doi: 10.1016/j.ces.2020.115712.
[24] Y.-X. Wang, L.-L. Zhang, W. Liu, X.-H. Cheng, Y. Zhuang, and A. T. Chronopoulos, “Performance optimizations for scalable CFD applications on hybrid CPU+MIC heterogeneous computing system with millions of cores,†Comput. Fluids, vol. 173, pp. 226–236, Sep. 2018, doi: 10.1016/j.compfluid.2018.03.005.
[25] J. W. Elliott, M. T. Lebon, and A. J. Robinson, “Optimising integrated heat spreaders with distributed heat transfer coefficients: A case study for CPU cooling,†Case Stud. Therm. Eng., vol. 38, p. 102354, Oct. 2022, doi: 10.1016/j.csite.2022.102354.
[26] I. W. Kuncoro, N. A. Pambudi, M. K. Biddinika, and C. W. Budiyanto, “Optimization of immersion cooling performance using the Taguchi Method,†Case Stud. Therm. Eng., vol. 21, p. 100729, Oct. 2020, doi: 10.1016/j.csite.2020.100729.
[27] M. Može, A. NemaniÄ, and P. PoredoÅ¡, “Experimental and numerical heat transfer analysis of heat-pipe-based CPU coolers and performance optimization methodology,†Appl. Therm. Eng., vol. 179, p. 115720, Oct. 2020, doi: 10.1016/j.applthermaleng.2020.115720.
[28] S. Suwarno, A. Jabar I’jazurrohman, F. Dwi Yudanto, and V. S. Djanali, “Failure analysis of waste heat boiler tubing caused by a high local heat flux,†Eng. Fail. Anal., vol. 136, p. 106147, Jun. 2022, doi: 10.1016/j.engfailanal.2022.106147.Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Fajar Dwi Yudanto, Rochmad Novian Inderanata, Arif Bintoro Johan, Setuju

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by:Â Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by:Â Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan
View My Stats AET

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.