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1. Introduction  
The rapid growth of electronic health records (HER) and other clinical datasets has opened new 

opportunities for data-driven decision-making in healthcare. However, one of the most commonly found 
challenges in medical data mining is class imbalance or unequal distribution. The difference in prevalence 
between classes in medical dataset often results in reduced model’s sensitivity and ureliable outcomes 
due to bias toward majority cases in diagnosis because minority cases are usually underrepresented 
compared to the common ones [1], [2].  Research by Yuda et al. [3] has shown that early diagnosis of 
Alzheimer’s requires highlt sensitive classifiers, yet traditional supervised learning approach struggle 
when faced with limited samples of positive cases.  
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 The imbalance of clinical datasets remains a challenge in medical data 
mining, often resulting in models biased toward majority outcomes and 
reduced sensitivity to rare but clinically critical cases. This study presents a 
comparative evaluation of three augmentation strategies—Synthetic 
Minority Oversampling Technique (SMOTE), Conditional Tabular GAN 
(CTGAN), and a hybrid SMOTE+CTGAN—on the Framingham Heart 
Study dataset for cardiovascular disease prediction. Augmented datasets 
were evaluated using Decision Tree, Random Forest, and XGBoost 
classifiers across multiple metrics, including accuracy, precision, recall, and 
F1-score. Results demonstrate that classifiers trained on imbalanced data 
achieved high accuracy but poor minority recall (<0.40), confirming model’s 
bias toward majority class. SMOTE yielded the strongest improvements in 
minority recall (up to 0.88 with XGBoost) and balanced F1 across classes, 
though at the cost of reduced majority recall. CTGAN and 
SMOTE+CTGAN delivered more moderate improvements in minority 
recall (0.66–0.77) while preserving higher majority recall (>0.86), providing 
a gentler trade-off. These findings indicate that while SMOTE remains a 
robust baseline for addressing imbalance, hybrid and GAN-based 
approaches offer practical alternatives for preserving majority performance. 
The results highlight that augmentation choice should be informed by 
clinical context. 
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Conventional solutions to class imbalance include resampling strategies such as undersampling the 
majority class and oversampling the minority class. Among these, the Synthetic Minority Over-sampling 
Technique (SMOTE) [4] has been widely used due to its ability to generate synthetic data by 
interpolating between k minority class nearest neighbours. While this method is effective in specific 
domains, SMOTE suffers from key limitations in overgeneralization and increased overlapping especially 
between samples that lie on the border between classes [5]. To address these challenges, researchers have 
increasingly turned toward generative models, particularly Generative Adversarial Networks (GANs) [6], 
which have demonstrated the ability to capture complex distribution and generate realistic synthetic 
samples, despite that it is originally used to generate image data.  

Recent advances in GAN-based data augmentation have shown promising results for diverse 
healthcare applications. Zhang et al. [2] applied a Wasserstein GAN with Gradient Penalty (WGAN-
GP) to one-dimensional clinical radiomics data, demonstrating superior performance ccompared to 
SMOTE and baseline GANs in terms of AUC, sensitivity, accuracy, and specificity. Similarly, Sharma et 
al. [1] introduced SMOTified-GAN, a hybrid model with two phases where the first phase include 
generating sample with SMOTE that further refined using GAN, resulting an increase 9% in F1-scores 
across benchmark datasets.  This result indicate better balance of sensitivity and specificity on the 
proposed method. Other works have adapten GAN architectures to specific healthcare domains, namely 
an enhances conditional GAN was shown to preserve cardiovascular data distribution better than 
CTGAN [7], while WGAN-GP combined with dimensionality reduction via UMAP improved the 
separability of Alzheimer’s diagnostic imaging data [3]. 

GANs have also been evaluated for their utility in generating synthetic medical tabular data. Ahmed 
et al. [8] evaluated six variants of GANs, namelu GAN, CGAN, CTGAN, CRAMER GAN, DRAGAN, 
and WGAN across multiple healthcare datasets such as Breast Cancer Wisconsin, Lung Cander, and 
Fetal Cardiocography. Their study found that advanced architectures like CGAN and CTGAN not only 
increase classification performance in terms of accuracy when combined with classifiers such as XGBoost 
and SVM, but also maintained statistical fidelity and correlation structures within the generated tabular 
data. These findings highlight the dual role of GAN-based augmentation in both addressing imbalance 
dataset and supporting data privacy in medical data analytics. Additionally, other approaches have 
explored the integration of GANs with other oversampling strategies. For example, an enhanced GAN 
(E-GAN) that utilize deep convolutional GAN and modified convolutional neural network (DCG-
MCNN) combined with RSMOTE preprocessing improved the classification of imbalanced medical 
disease datasets [9], while conditional WGAN-GP has been successfully used to augment small clinical 
audio datasets, leading to measurable increment in F1-score [10]. 

Taken together, the growing number in research demonstrates that hybrid approaches integrating 
traditional oversampling method such as SMOTE with GAN-based models can effectively mitigate the 
limitations of each individual technique and enhance predictive performance in medical data mining. 
However, most prior studies have focused on domain-specific datasets such as radiomics, imaging, or 
small-scaled clinical datasets, leaving a gap in the systematic comparison of these approaches on large, 
population-based tabular datasets. 

In this paper, we aim to address this gap by conducting a comparative analysis of three data 
augmentation methods, namely SMOTE, GAN, and a hybrid SMOTE+GAN on the Framingham Heart 
Study dataset. This dataset has been widely used in cardiovascular risk prediction, providing a 
representative case of real-world clinical imbalance, particularly between patients who develop 
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cardiovascular disease and those who do not. By evaluating the performance of these augmentation 
strategies across multiple classifiers, we investigate the effectiveness in improving sensitivity, specificity, 
and overall predictive robustness. Our findings contribute to ongoing efforts to identify practical and 
scalable solutions for handling class imbalance in healthcare analytics. 

2. The Proposed Method/Algorithm  

2.1. Synthetic Minority Over-sampling Technique (SMOTE) 
SMOTE was first introduced by Chawla et al. [4] as a data-level strategy to mitigate class imbalance 

problem in a dataset. Instead of simply duplicating samples from minority class, SMOTE generates 
synthetic samples by interpolating between existing k-nearest neighbours instances. Specifically, for each 
minority instance x, one of its neighbours xnn is selected, and a new sample is generated as follows:  

𝑋𝑛𝑒𝑤 = 𝑋 + 𝜆 × (𝑋𝑛𝑛 − 𝑋), 𝜆 𝜖 [0,1]   () 

where 𝑋 is the original minority sample, 𝑋𝑛𝑛 is one of its nearest neighbours, and λ is a random 
number between 0 and 1. This interpolation ensures that the new minority samples lies somewhere 
along the line segment between x and xnn. This process is illustrated in Fig 1. 

  
(a) Original Samples (b) Original and Synthetic Samples 

Fig. 1. Illustration of the SMOTE Procedure 

By construcing new data points that belong to minority class rather than simply duplicating existing 
minority samples, SMOTE proved its ability in tackling overfitting problem and improving classifier 
robustness. Numerous studies in healthcare and clinical domains have demonstrated the effectiveness of 
SMOTE in handling skewed data distributions, including diabetes prediction [11], [12],  obesity risk 
classification [13], body mass index (BMI) risk stratification [14]. While effective, SMOTE may also 
generate borderline or noisy samples when the minority and majority classes overlap significantly [15], 
[16]. 

2.2. CTGAN 
In contrast to SMOTE, Conditional Tabular GAN (CTGAN) [17] learns and reproduces the 

distribution of tabular data which often includes both continuous and categorical features, handling 
mixed data types, and imbalanced categories more effectively than interpolation-based methods such as 
SMOTE. By introducing mode-specific normalization where each continuous feature is modeled using 
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a variational Gaussian mixture model, CTGAN can generate more realistic and diverse synthetic records 
that are easier for neural networks to learn.  

In addition, CTGAN employs a conditional generator that explicitly incorporates categorical variables 
into the training process. By conditioning the generator and discriminator on selected categorical values, 
and by using a log-frequency sampling strategy, the model ensures that minority categories are presented 
more frequently during training. This conditional sampling is combined with a cross-entropy loss that 
penalizes the generator when it fails to produce samples consistent with the conditioned category. 
Through this mechanism, CTGAN mitigates mode collapse and balances representation across rare 
classes, allowing it to generate synthetic data that reflects both continuous and categorical distributions 
faithfully. Empirical results demonstrate that CTGAN produces higher-quality tabular data than 
traditional GANs or Bayesian network–based models, particularly in cases with strong class imbalance.  

As shown in Fig. 2, CTGAN model consists of three main parts, namely conditional vector, generator 
loss, and training-by-sampling. CTGAN introduces conditional vector (cond) which enables the model 
to explicitly condition on discrete variables during generation process. Each categorical variable D1, ..., 
DNd is transformed into a one-hot encoded vector di = [di

(k)] for k = 1, ..., |Di|. Alongside this 
representation, a corresponding mask vector mi

(k) = 1 if i = i* and k = k* and mi
(k) = 0 otherwise. The 

complete conditional vector is then constructed as: 

𝑐𝑜𝑛𝑑 = 𝑚1 ⊕ … ⊕ 𝑚𝑁𝑑   () 

 
Fig. 2. CTGAN model [17] 

During training, the conditional generator receives this cond vector together with noise input and 
attempts to produce synthetic samples that is consistent with the imposed condition. However, nothing 
in the forward pass prevents the generator from violating the condition. To ensure compliance, CTGAN 
introduces an auxiliary cross-entropy loss between the target mask vector and the generated categorical 
output, averaged across the batch. This penalization forces the generator to replicate the conditioning 
vector faithfully. Furthermore, CTGAN implements a training-by-sampling strategy, where conditional 
vectors are sampled according to the empirical distribution of categorical values in the real dataset. This 
ensures that both frequent and rare categories are adequately represented during training, allowing the 
discriminator to evaluate the divergence between the conditional distribution of generated samples. By 
integrating conditional vectors, cross-entropy regularization, and balanced sampling, CTGAN achieves 
high-quality generation of categorical data even in the presence of strong class imbalance. 
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In medical domain, CTGAN has been effectively used to balance skewed dataset such as generating 
generating synthetic cardiovasculat data to enhance prodictive models [7].  Additionally, CTGAN was 
also used to improve model accuracy and interpretability in cell signaling tasks with significant class 
imbalance [18]. In Parkinson’s disease dementia studies, CTGAN outperformed traditional resampling 
methods like SMOTE in both AUC and F1 metrics, especially under extreme imbalance ratios [19]. A 
mobile healthcare study used CTGAN to synthesize cardiovascular tabular data, successfully preserving 
feature distributions while managing discrete imbalanced classes [7]. A 2025 benchmarking study across 
healthcare datasets including Breast Cancer Wisconsin, Lung Cancer, and CTG, confirming CTGAN’s 
superior impact on classifier accuracy when compared with other GAN variants [8]. Furthermore, a 
combined CTGAN and decision classifier model (CTGAN-DC) significantly enhanced sensitivity and 
specificity in Kawasaki Disease diagnosis, addressing imbalance directly in a clinical setting [20]. 

2.3. SMOTE+GAN 
Hybrid model SMOTE+GAN such as SMOTified-GAN is a two-phase oversampling model that 

utilise SMOTE and GAN where overgeneralized samples produced by SMOTE are transformed into 
more realistic distribution of data by GAN [1]. SMOTified-GAN applied transfer learning approach 
where GAN works on the output generated by SMOTE rather than generating the sample itself.  The 
process of sample generation with SMOTified-GAN is shown in Fig 3. 

 
Fig. 3. Process of generating sample with SMOTified-GAN 

2.4. Machine Learning 
Supervised learning task such as classification plays a crucial role in evaluating the fidelity of synthetic 

or oversampled dataset. Decision tree (DT) which has interpretable structure is a classifier algorithm 
that create partitions of data from bigger set of data [21]. Decision tree’s partition the feature space based 
on simple threshold rules, discrepancies in synthetic data quality often manifest as unstable or overly 
complex trees, which can indicate low fidelity in oversampling approaches [22]. Therefore, this method 
serve as a useful baseline to assess whether the oversampled data preserves the fundamental relationships 
within the original dataset. Apart from this, ensemble methods such as Random Forests (RF) provide a 
more robust way to test fidelity as it aggregates predictions from multiple decision trees trained on the 
subset of dataset. This approach reduce variance and highlights whether generated data preserve 
generalized patterns [23]. On the other hand, Extreme Gradient Boosting (XGBoost) is a classifier that 
excels in supervised learning tasks such as classification and regression that implements gradient-boosted 
decision tree which allow missing values handling automatically [8], [24]. This method offers a more 
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fine-grained evaluation since its sequential boosting mechanism is highly sensitive to distributional 
shifts. 

2.5. Performance Metrics 
To assess the performance of classifiers trained on either original or oversampled dataset, a 

comprehensive set of evaluation metrics was employed. Accuracy measures the overall proportion of 
correctly classified samples among all samples, providing a general sense of classifier performance across 
both majority and minority classes [25]. However, employing this evaluation metrics in imbalanced 
dataset can be misleading as it may be dominated by majority class.  To address this, precision, recall, 
and F1-score are reported for each class separately. Precision quantifies the proportion of correctly 
predictive positive samples out of all predicted positives, whereas recall measures the proportion of 
correctly predicted positives out of all actual positives. Additionally, F1-score is defined as a metric that 
balances the trade-off between precision and recall and is particularly informative in scenarios with class 
imbalance [4], [26]. TO capture overall performance across classes, macro-averaged metrics compute the 
unweighted mean of precision, recall, and F1-score for all classes, treating each class equally regardless 
of its prevalence. In contrast, weighted-averaged metrics compute the number of samples in each class, 
providing a performance measure that reflects class imbalance. 

3. Method 

3.1. Dataset 
We used the Framingham Heart Study dataset, a widely used clinical dataset for cardiovascular disease 

prediction. Several columns unrelated to the modeling task, such as patient IDs and time-to-event 
columns, were removed to focus on predictive features. Missing numerical values were imputed using 
the median of each column, and extreme outliers were filtered based on clinically reasonable thresholds 
for variables such as BMI, blood pressure, and glucose levels. The final dataset contains only relevant 
features for predicting cardiovascular disease (CVD) incidence. 

3.2. Data Preprocessing 
Prior to modeling, continuous features were standardised using z-score normalization. The dataset 

was stratified into training and testing sets with a 75%-25% split to preserve class distribution. 

3.3. Augmentation Method 
To address class imbalance in the dataset, we implemented three approaches: SMOTE, CTGAN, and 

a hybrid method called SMOTE+CTGAN. 

• SMOTE 

SMOTE generates synthetic minority-class samples by interpolating between existing minority 
instances. For each minority sample, a set of k nearest neighbors is selected, and new samples are 
created along the line segments connecting the sample to randomly chosen neighbors. In our 
implementation, five nearest neighbors were used. SMOTE increases the decision region of the 
minority class, reducing bias toward the majority while maintaining sample diversity [4]. However, 
it may generate borderline or noisy samples if minority and majority classes overlap. 

• CTGAN 
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CTGAN is a generative adversarial network designed for tabular data with mixed data types and 
imbalanced categories. The generator learns the conditional distribution of each feature given a 
specified discrete variable, producing realistic synthetic samples that preserve the correlation and 
distribution of original features. In our implementation, CTGAN was applied only to the minority 
class to generate additional synthetic instances, with parameters set to 50 epochs and batch size 
500. This approach allows the augmentation of minority-class data while retaining statistical fidelity 
[17]. 

• SMOTE+CTGAN 

SMOTE+CTGAN is a hybrid approach that combines the strengths of SMOTE and CTGAN. 
First, SMOTE is applied to the minority class to provide an initial "jump start" by generating a 
small set of synthetic minority samples. This expanded minority set is then used to train a CTGAN 
model, which produces additional synthetic samples based on the enhanced minority distribution. 
The resulting synthetic data are merged with the original dataset, producing a more balanced dataset 
for training classifiers. This approach aims to reduce the generation of unrealistic samples while 
leveraging GAN’s ability to capture complex distributions. 

3.4. Classifiers 
To evaluate the effectiveness of the proposed augmentation methods, three supervised classifiers were 

trained on the augmented datasets: Decision Tree (DT), Random Forest (RF), and Extreme Gradient 
Boosting (XGBoost). Decision Trees create partitions of the feature space and assign class labels to leaf 
nodes [22], Random Forests aggregate multiple decision trees to reduce variance and improve 
generalization, and XGBoost implements gradient-boosted decision trees with automated handling of 
missing values [24]. 

3.5. Evaluation Metrics 
Classification performance was evaluated using a comprehensive set of metrics: accuracy, precision, 

recall, F1-score, and support for each class, as well as macro-averaged and weighted-averaged metrics to 
account for class imbalance. These metrics allow assessment of both overall performance and minority-
class fidelity, which is critical when evaluating oversampling and synthetic data generation methods  [4], 
[26], [27]. 

4. Results and Discussion 
Table 1 presents the macro averaged metrics for three augmentation methods (SMOTE, CTGAN, 

SMOTE+CTGAN) and the imbalanced baseline, tested with three classifiers: Decision Tree (DT), 
Random Forest (RF), and XGBoost (XGB). Metrics reported include Accuracy, Macro Precision, Macro 
Recall, and Macro F1-score. The imbalanced baselines consistently achieved relatively high accuracy, 
ranging from 0.72 to 0.8. However, their macro recall and F1 values remained low (0.65–0.67), reflecting 
strong imbalance in class sensitivity. Among the augmentation methods, SMOTE delivered the best 
overall macro performance. For example, Random Forest and XGBoost with SMOTE achieved a macro 
F1 of 0.8484. In comparison, CTGAN and SMOTE+CTGAN produced consistent improvements over 
the imbalanced baseline but its score falls slightly below SMOTE by approximately 1-2%. These results 
indicate that while GAN-based augmentations enhanced balance, they did not surpass SMOTE in 
macro-level performance. 
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Table 1.  Performance of different augmentation methods across classifiers 

Classifier Augmentation Accuracy Macro F1 Macro Precision Macro Recall 
Decision Tree No 0.7289 0.6489 0.6458 0.6529 

SMOTE 0.7790 0.7790 0.7790 0.7790 
CTGAN 0.7809 0.7749 0.7738 0.7764 

SMOTE+CTGAN 0.7880 0.7820 0.7811 0.7832 
Random Forest No 0.8072 0.6978 0.7631 0.6748 

SMOTE 0.8484 0.8484 0.8484 0.8484 
CTGAN 0.8424 0.8316 0.8515 0.8234 

SMOTE+CTGAN 0.8401 0.8290 0.8493 0.8208 
XGBoost No 0.7991 0.6975 0.7400 0.6786 

SMOTE 0.8484 0.8482 0.8505 0.8484 
CTGAN 0.8280 0.8175 0.8317 0.8110 

SMOTE+CTGAN 0.8303 0.8190 0.8317 0.8114 
 

Table 2 shows the detail of class-specific performance, explicitly showing recall, precision, and F1-
score for both the majority class (0) and minority class (1). In the imbalanced setting, all classifiers 
displayed extreme bias toward the majority class. For instance, Random Forest achieved a recall of 0.9413 
for class 0 but only 0.4084 for class 1. Decision Tree and XGBoost showed similar patterns, with recall 
for class 1 falling below 0.5 despite majority recall higher than 0.80. This confirms that classifiers trained 
on imbalanced data highly biased toward the majority class. 

Oversampling approaches markedly shifted the balance between classes. SMOTE consistently yielded 
the highest recall for the minority class, raising values to 0.7828 with Decision Tree, 0. 8528 with 
Random Forest, and 0. 8097 with XGBoost. This improvement, however, came at the cost of reduced 
majority recall, which dropped to the 0.77–0.88 range. In contrast, CTGAN and SMOTE+CTGAN 
achieved moderate improvements for the minority class (recall around 0.71–0.75) while maintaining 
relatively higher majority recall (0.80–0.90). This indicates that GAN-based augmentation provided a 
lighter trade-off, with smaller gains for the minority but less loss for the majority. 

Table 2.  Class specific performance metrics 

Classifier Augmentation Recall-0 Recall-1 Precision-0 Precision-1 F1-0 F1-1 
Decision 

Tree 
No 0.8059 0.5000 0.8273 0.4642 0.8165 0.4814 

SMOTE 0.7751 0.7828 0.7812 0.7768 0.7782 0.7798 
CTGAN 0.8015 0.7513 0.8216 0.7260 0.8114 0.7385 

SMOTE+CTGAN 0.8108 0.7555 0.8257 0.7365 0.8182 0.7459 
Random 
Forest 

No 0.9413 0.4084 0.8255 0.7007 0.8796 0.5160 
SMOTE 0.8450 0.8528 0.8508 0.8460 0.8479 0.8489 
CTGAN 0.9310 0.7157 0.8239 0.8790 0.8742 0.7890 

SMOTE+CTGAN 0.9301 0.7115 0.8216 0.8769 0.8725 0.7856 
XGBoost No 0.9213 0.4360 0.8293 0.6507 0.8728 0.5221 

SMOTE 0.8870 0.8097 0.8235 0.8775 0.8541 0.8423 
CTGAN 0.9076 0.7143 0.8195 0.8440 0.8613 0.7738 

SMOTE+CTGAN 0.9183 0.7046 0.8162 0.8579 0.8643 0.7737 
 

The results clearly demonstrate that classifiers trained on imbalanced medical data are heavily biased 
toward the majority class. Despite achieving high overall accuracy, their recall for minority outcomes 
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remains poor, which undermines their clinical usefulness. Oversampling methods effectively mitigated 
this problem in different ways. SMOTE provided the strongest gains in minority sensitivity, achieving 
near-balanced recall for both classes, but at the expense of majority performance. CTGAN and 
SMOTE+CTGAN improved minority recall while preserving higher majority recall, offering a more 
balanced trade-off. 

In practical terms, if the goal of an application is to maximize detection of rare but critical outcomes, 
SMOTE appears to be the most effective strategy. However, when the preservation of majority class 
accuracy is also important, GAN-based augmentation offers a viable alternative. SMOTE+CTGAN 
further highlights the potential of hybrid approaches to combine the strengths of both interpolation-
based and generative strategies. Overall, these findings align with the broader literature suggesting that 
while generative approaches hold promise for privacy-preserving and more realistic data augmentation, 
classical oversampling remains competitive and in some cases superior for improving classification 
performance in highly imbalanced medical datasets. 

5. Conclusion 
This study provides a systematic comparison of SMOTE, CTGAN, and SMOTE+CTGAN as 

augmentation strategies for imbalanced medical tabular data. Using the Framingham Heart Study 
dataset, we show that classifiers trained on imbalanced data exhibit strong bias toward the majority class, 
achieving recall above 0.94 for majority outcomes but failing to exceed 0.50 for minority outcomes. 
Augmentation with SMOTE produced the largest gains in minority recall, raising sensitivity to 0.78–
0.85 across classifiers, and achieved the highest macro F1-scores. However, these gains were accompanied 
by reductions in majority recall, indicating a trade-off between minority sensitivity and overall balance. 
CTGAN and SMOTE+CTGAN produced more modest gains for minority recall while maintaining 
relatively higher majority recall, suggesting that generative methods may be preferable when preserving 
majority performance is clinically important. Taken together, our findings highlight that no single 
augmentation method universally outperforms the others. Instead, the choice of strategy should be 
tailored to the clinical application. For tasks prioritizing early detection of rare outcomes, SMOTE 
remains highly effective. For scenarios where both majority and minority predictions must remain stable, 
GAN-based or hybrid approaches offer more balanced trade-offs. 
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