
(2) * Abu Zafor Muhammad Touhidul Islam

*corresponding author
AbstractThis paper suggests a dual-band rectangular patch antenna design and presents analysis of the radiation performance metrics for its operation and application in the 26 and 29 GHz millimeter-wave 5G mobile communication. To achieve antenna’s hign gain and improved radiation performance, the design includes a rectangular loop and two L-sloted patch and defective ground structure (DSG). The antenna is excited using 50 Ω inset feed line and modeled in CST Studio Suite. The simulation results show that the designed small sized 22.5×18.5 mm2 antenna offers improved super high gain of 9 dB and 11.39 dB and directivity of 9.49 dBi and 12.06 dBi at 26 and 29 GHz mmWave bands. Moreover, the antenna offers minimum reflection coefficient, acceptable VSWR and very good efficiency of 94.83% at 26 GHz, whilst of 94.44% at 29GHz, respectively. These findings along with its compact design suggest that the projected patch antenna would be a be a good choice for the development of high gain dual-band antenna for 5G mmWave mobile systems
KeywordsMicrostrip patch antenna; Millimeter wave; 5G; 26 GHz; 29 GHz; Gain; Slot
|
DOIhttps://doi.org/10.31763/aet.v4i1.1832 |
Article metrics10.31763/aet.v4i1.1832 Abstract views : 42 | PDF views : 13 |
Cite |
Full Text![]() |
References
[1] M. H. Alsharif and R. Nordin, “Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells,†Telecommun. Syst., vol. 64, no. 4, pp. 617–637, Apr. 2017, doi: 10.1007/s11235-016-0195-x.
[2] W. Hong et al., “Multibeam Antenna Technologies for 5G Wireless Communications,†IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6231–6249, Dec. 2017, doi: 10.1109/TAP.2017.2712819.
[3] M. U. Khan, M. S. Sharawi, and R. Mittra, “Microstrip patch antenna miniaturisation techniques: a review,†IET Microwaves, Antennas Propag., vol. 9, no. 9, pp. 913–922, Jun. 2015, doi: 10.1049/iet-map.2014.0602.
[4] K. Mekki, O. Necibi, C. Boussetta, and A. Gharsallah, “Miniaturization of Circularly Polarized Patch Antenna for RFID Reader Applications,†Eng. Technol. Appl. Sci. Res., vol. 10, no. 3, pp. 5655–5659, Jun. 2020, doi: 10.48084/etasr.3445.
[5] Y. Zhang, J.-Y. Deng, M.-J. Li, D. Sun, and L.-X. Guo, “A MIMO Dielectric Resonator Antenna With Improved Isolation for 5G mm-Wave Applications,†IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 4, pp. 747–751, Apr. 2019, doi: 10.1109/LAWP.2019.2901961.
[6] M. S. Kamal, M. J. Islam, M. J. Uddin, and A. Z. M. Imran, “Design of a Tri-Band Microstrip Patch Antenna for 5G Application,†in 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Feb. 2018, pp. 1–3, doi: 10.1109/IC4ME2.2018.8465627.
[7] J. Lee et al., “Spectrum for 5G: Global Status, Challenges, and Enabling Technologies,†IEEE Commun. Mag., vol. 56, no. 3, pp. 12–18, Mar. 2018, doi: 10.1109/MCOM.2018.1700818.
[8] T. S. Mneesy, R. K. Hamad, A. I. Zaki, and W. A. E. Ali, “A Novel High Gain Monopole Antenna Array for 60 GHz Millimeter-Wave Communications,†Appl. Sci., vol. 10, no. 13, p. 4546, Jun. 2020, doi: 10.3390/app10134546.
[9] S. A. Alassawi, W. A. E. Ali, and M. R. M. Rizk, “Compact Circular Ring Antenna for 5G Mobile Communication Applications,†J. Nano- Electron. Phys., vol. 13, no. 3, pp. 03029-1-03029–4, 2021, doi: 10.21272/jnep.13(3).03029.
[10] W. Ali, S. Das, H. Medkour, and S. Lakrit, “Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications,†Microsyst. Technol., vol. 27, no. 1, pp. 283–292, Jan. 2021, doi: 10.1007/s00542-020-04951-1.
[11] H. Zahra, W. A. Awan, W. A. E. Ali, N. Hussain, S. M. Abbas, and S. Mukhopadhyay, “A 28 GHz Broadband Helical Inspired End-Fire Antenna and Its MIMO Configuration for 5G Pattern Diversity Applications,†Electronics, vol. 10, no. 4, p. 405, Feb. 2021, doi: 10.3390/electronics10040405.
[12] N. Hussain, W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, “Compact wideband patch antenna and its MIMO configuration for 28 GHz applications,†AEU - Int. J. Electron. Commun., vol. 132, p. 153612, Apr. 2021, doi: 10.1016/j.aeue.2021.153612.
[13] C. Chu, J. Zhu, S. Liao, A. Zhu, and Q. Xue, “28/38 GHz Dual-band Dual-polarized Highly Isolated Antenna for 5G Phased Array Applications,†in 2019 IEEE MTT-S International Wireless Symposium (IWS), May 2019, pp. 1–3, doi: 10.1109/IEEE-IWS.2019.8804009.
[14] A. R. Sabek, A. A. Ibrahim, and W. A. Ali, “Dual-Band Millimeter Wave Microstrip Patch Antenna with StubResonators for 28/38 GHz Applications,†J. Phys. Conf. Ser., vol. 2128, no. 1, p. 012006, Dec. 2021, doi: 10.1088/1742-6596/2128/1/012006.
[15] E. Vythee and R. A. Jugurnauth, “Microstrip Patch Antenna Design and Analysis with Varying Substrates for 5G,†in 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM), Nov. 2020, pp. 141–146, doi: 10.1109/ELECOM49001.2020.9296991.
[16] S. Murugan, “Compact Square patch antenna for 5G Communication,†in 2nd International Conference on Data, Engineering and Applications (IDEA), Feb. 2020, pp. 1–3, doi: 10.1109/IDEA49133.2020.9170695.
[17] E. Sidhu, V. Singh, H. Bhatia, and P. Kuchroo, “Slotted rook shaped novel wide-band microstrip patch antenna for radar altimeter, IMT, WiMAX and C-band satellite downlink applications,†in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Dec. 2016, pp. 334–337, doi: 10.1109/ICGTSPICC.2016.7955323.
[18] M. J. Hakeem and M. M. Nahas, “Improving the Performance of a Microstrip Antenna by Adding a Slot into Different Patch Designs,†Eng. Technol. Appl. Sci. Res., vol. 11, no. 4, pp. 7469–7476, Aug. 2021, doi: 10.48084/etasr.4280.
[19] R. K. Goyal and U. Shankar Modani, “A Compact Microstrip Patch Antenna at 28 GHz for 5G wireless Applications,†in 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Nov. 2018, pp. 1–2, doi: 10.1109/ICRAIE.2018.8710417.
[20] M. M. M. Ali and A.-R. Sebak, “Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications,†in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Jun. 2016, pp. 399–400, doi: 10.1109/APS.2016.7695908.
[21] M. M. M. Ali, O. Haraz, S. Alshebeili, and A.-R. Sebak, “Broadband printed slot antenna for the fifth generation (5G) mobile and wireless communications,†in 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Jul. 2016, pp. 1–2, doi: 10.1109/ANTEM.2016.7550106.
[22] W. Ahmad and W. T. Khan, “Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications,†in 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Mar. 2017, pp. 21–24, doi: 10.1109/ICMIM.2017.7918846.
[23] J.-S. Park, J.-B. Ko, H.-K. Kwon, B.-S. Kang, B. Park, and D. Kim, “A Tilted Combined Beam Antenna for 5G Communications Using a 28-GHz Band,†IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1685–1688, 2016, doi: 10.1109/LAWP.2016.2523514.
[24] F. Mahbub, R. Islam, S. A. Kadir Al-Nahiun, S. B. Akash, R. R. Hasan, and M. A. Rahman, “A Single-Band 28.5GHz Rectangular Microstrip Patch Antenna for 5G Communications Technology,†in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Jan. 2021, pp. 1151–1156, doi: 10.1109/CCWC51732.2021.9376047.
[25] M. M. Amir Faisal, M. Nabil, and M. Kamruzzaman, “Design and Simulation of a Single Element High Gain Microstrip Patch Antenna for 5G Wireless Communication,†in 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), Oct. 2018, pp. 290–293, doi: 10.1109/ICISET.2018.8745567.
[26] I. Lima de Paula et al., “Cost-Effective High-Performance Air-Filled SIW Antenna Array for the Global 5G 26 GHz and 28 GHz Bands,†IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 2, pp. 194–198, Feb. 2021, doi: 10.1109/LAWP.2020.3044114.
[27] J. Xu, W. Hong, Z. H. Jiang, and H. Zhang, “Wideband, Low-Profile Patch Array Antenna With Corporate Stacked Microstrip and Substrate Integrated Waveguide Feeding Structure,†IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 1368–1373, Feb. 2019, doi: 10.1109/TAP.2018.2883561.
[28] S. J. Yang, Y. M. Pan, L.-Y. Shi, and X. Y. Zhang, “Millimeter-Wave Dual-Polarized Filtering Antenna for 5G Application,†IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5114–5121, Jul. 2020, doi: 10.1109/TAP.2020.2975534.
[29] K. Bangash, M. M. Ali, H. Maab, and H. Ahmed, “Design of a Millimeter Wave Microstrip Patch Antenna and Its Array for 5G Applications,†in 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Jul. 2019, pp. 1–6, doi: 10.1109/ICECCE47252.2019.8940807.
[30] M. Wang et al., “A Ka-Band High-Gain Dual-Polarized Microstrip Antenna Array for 5G Application,†in 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2019, pp. 1–3, doi: 10.1109/ICMMT45702.2019.8992247.
[31] E. Jebabli, M. Hayouni, and F. Choubani, “Impedance Matching Enhancement of A Microstrip Antenna Array Designed for Ka-band 5G Applications,†in 2021 International Wireless Communications and Mobile Computing (IWCMC), Jun. 2021, pp. 1254–1258, doi: 10.1109/IWCMC51323.2021.9498825.
[32] O. Sokunbi, H. Attia, and S. I. Sheikh, “Microstrip Antenna Array with Reduced Mutual Coupling Using Slotted-Ring EBG Structure for 5G Applications,†in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Jul. 2019, pp. 1185–1186, doi: 10.1109/APUSNCURSINRSM.2019.8889318.
[33] S.-E. Didi et al., “New microstrip patch antenna array design at 28 GHz millimeter-wave for fifth-generation application,†Int. J. Electr. Comput. Eng., vol. 13, no. 4, p. 4184, Aug. 2023, doi: 10.11591/ijece.v13i4.pp4184-4193.
[34] A. A. R. Saad and H. A. Mohamed, “Printed millimeter-wave MIMO-based slot antenna arrays for 5G networks,†AEU - Int. J. Electron. Commun., vol. 99, pp. 59–69, Feb. 2019, doi: 10.1016/j.aeue.2018.11.029.
[35] I.-J. Hwang, B. Ahn, S.-C. Chae, J.-W. Yu, and W.-W. Lee, “Quasi-Yagi Antenna Array With Modified Folded Dipole Driver for mmWave 5G Cellular Devices,†IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 5, pp. 971–975, May 2019, doi: 10.1109/LAWP.2019.2906775.
[36] R. Thandaiah Prabu, M. Benisha, V. Thulasi Bai, and R. Ranjeetha, “Design of 5G mm-Wave Antenna Using Line Feed and Corporate Feed Techniques,†in Smart Innovation, Systems and Technologies, vol. 104, Springer, Singapore, 2019, pp. 367–380, doi: 10.1007/978-981-13-1921-1_37.
[37] M. Roodaki-Lavasani-Fard, S. Sinha, C. Soens, G. A. E. Vandenbosch, K. Mohammadpour-Aghdam, and R. Faraji-Dana, “Shared Aperture Dual-Wideband Planar Antenna Arrays Using Any-Layer PCB Technology for mm-Wave Applications,†IEEE Trans. Antennas Propag., vol. 70, no. 2, pp. 1087–1096, Feb. 2022, doi: 10.1109/TAP.2021.3111313.
[38] J.-S. Kang, J.-H. Kim, N.-W. Kang, and D.-C. Kim, “Antenna measurement using S-parameters,†in 2012 Conference on Precision electromagnetic Measurements, Jul. 2012, pp. 658–659, doi: 10.1109/CPEM.2012.6251101.
[39] H. Alzein, J. Milbrandt, A.-S. Kaddour, C. Menudier, M. Thevenot, and T. Monediere, “Study of Active VSWR in a Reduced BFN Antenna Array,†in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Jul. 2019, pp. 1145–1146, doi: 10.1109/APUSNCURSINRSM.2019.8889297.
[40] A. S. Oluwole and V. M. Srivastava, “Designing of Smart Antenna for improved directivity and gain at terahertz frequency range,†in 2016 Progress in Electromagnetic Research Symposium (PIERS), Aug. 2016, pp. 473–473, doi: 10.1109/PIERS.2016.7734369.
[41] M. Nahas, “A Super High Gain L-Slotted Microstrip Patch Antenna For 5G Mobile Systems Operating at 26 and 28 GHz,†Eng. Technol. Appl. Sci. Res., vol. 12, no. 1, pp. 8053–8057, Feb. 2022, doi: 10.48084/etasr.4657.
[42] S. Senthilkumar, K. Udhayanila, V. Mohan, T. Senthil Kumar, D. Devarajan, and G. Chitrakala, “Design of microstrip antenna using high frequency structure simulator for 5G applications at 29 GHz resonant frequency,†Int. J. Adv. Technol. Eng. Explor., vol. 9, no. 92, pp. 996–1008, Jul. 2022, doi: 10.19101/IJATEE.2021.875500.
[43] M. I. Khattak, A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, “Elliptical Slot Circular Patch Antenna Array With Dual Band Behaviour For Future 5g Mobile Communication Networks,†Prog. Electromagn. Res. C, vol. 89, pp. 133–147, 2019, doi: 10.2528/PIERC18101401.
[44] A. F. Kaeib, N. M. Shebani, and A. R. Zarek, “Design and Analysis of a Slotted Microstrip Antenna for 5G Communication Networks at 28 GHz,†in 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Mar. 2019, pp. 648–653, doi: 10.1109/STA.2019.8717292.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Neksad Ali, Abu Zafor Muhammad Touhidul Islam

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by:Â Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by:Â Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan
View My Stats AET

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.