
(2) Arief Budiman

(3) Rachmawan Budiarto

(4) Ridwan Budi Prasetyo

*corresponding author
AbstractThe prototypes of the Oscillating Water Column (OWC) system constructed by BPPT at Pantai Baron, Gunung Kidul, in 2005 and 2006 were not sustainable. Based on its condition and location, the root cause of the problem was defined. Maximizing the total efficiency and capacity factor (Cf) of the OWC system was the main factor for optimizing energy output. Collecting factors that constructed the total efficiency and capacity factor of the OWC system was conducted. Selecting the appropriate turbine, generator, and chamber system led to an increase in the total efficiency of the OWC system. Reducing the effect of wave diffraction, finding optimum wave data for forecasting, finding optimum water depth area to avoid wave breaking area, reducing corrosion chance by selecting the optimum height of the OWC system, and using a control system to minimize stalling on turbine were factors that constructed capacity factor
KeywordsOscillating Water Column; total efficiency; capacity factor; wave energy
|
DOIhttps://doi.org/10.31763/aet.v3i2.1773 |
Article metrics10.31763/aet.v3i2.1773 Abstract views : 15 | PDF views : 2 |
Cite |
Full Text![]() |
References
[1] A. T. Kurniawan, R. Budiarto, R. B. Prasetyo, and A. Budiman, “Selecting an Ideal Site for Oscillating-Water-Column (OWC) Wave Energy Converter for Hydrogen Production in the Southern Coast of Yogyakarta, Indonesia,” in 2020 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering (ICITAMEE), Oct. 2020, pp. 35–40, doi: 10.1109/ICITAMEE50454.2020.9398402.
[2] Aries Taufik Kurniawan, Arief Budiman, Rachmawan Budiarto, and Ridwan Budi Prasetyo, “Wave Energy Potential Using OWC (Oscillating Water Column) System at Pantai Baron, Gunung Kidul, DI Yogyakarta, Indonesia,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 92, no. 2, pp. 191–201, Mar. 2022, doi: 10.37934/arfmts.92.2.191201.
[3] A. Wahyudie et al., “Wave Power Assessment in the Middle Part of the Southern Coast of Java Island,” Energies, vol. 13, no. 10, p. 2633, May 2020, doi: 10.3390/en13102633.
[4] A. Mahiru Rizal, N. Sari Ningsih, I. Sofian, F. Hanifah, and I. Hilmi, “Preliminary study of wave energy resource assessment and its seasonal variation along the southern coasts of Java, Bali, and Nusa Tenggara waters,” J. Renew. Sustain. Energy, vol. 11, no. 1, pp. 1–13, Jan. 2019, doi: 10.1063/1.5034161.
[5] “Hybrid Power Energy,” Balai Pengkajian Dinamika Pantai, 2006.
[6] B. Fenu, M. Bonfanti, A. Bardazzi, C. Pilloton, A. Lucarelli, and G. Mattiazzo, “Experimental investigation of a Multi-OWC wind turbine floating platform,” Ocean Eng., vol. 281, p. 114619, Aug. 2023, doi: 10.1016/j.oceaneng.2023.114619.
[7] Irhas and R. Suryaningsih, “Study on Wave Energy into Electricity in the South Coast of Yogyakarta, Indonesia,” Energy Procedia, vol. 47, pp. 149–155, Jan. 2014, doi: 10.1016/j.egypro.2014.01.208.
[8] M. Penalba and J. Ringwood, “A Review of Wave-to-Wire Models for Wave Energy Converters,” Energies, vol. 9, no. 7, p. 506, Jun. 2016, doi: 10.3390/en9070506.
[9] S. Kumar, M. J. Cervantes, and B. K. Gandhi, “Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective,” Renew. Sustain. Energy Rev., vol. 136, p. 110354, Feb. 2021, doi: 10.1016/j.rser.2020.110354.
[10] A. A. Medina Rodríguez, J. M. Blanco Ilzarbe, R. Silva Casarín, and U. Izquierdo Ereño, “The Influence of the Chamber Configuration on the Hydrodynamic Efficiency of Oscillating Water Column Devices,” J. Mar. Sci. Eng., vol. 8, no. 10, p. 751, Sep. 2020, doi: 10.3390/jmse8100751.
[11] R. K. Mishra, “Fresh Water availability and It’s Global challenge,” J. Mar. Sci. Res., vol. 2, no. 1, pp. 01–03, Feb. 2023, doi: 10.58489/2836-5933/004.
[12] Z. Liu, C. Xu, K. Kim, J. Choi, and B. Hyun, “An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter,” Renew. Sustain. Energy Rev., vol. 149, p. 111350, Oct. 2021, doi: 10.1016/j.rser.2021.111350.
[13] T. Aderinto and H. Li, “Review on Power Performance and Efficiency of Wave Energy Converters,” Energies, vol. 12, no. 22, p. 4329, Nov. 2019, doi: 10.3390/en12224329.
[14] R. Suchithra, K. Ezhilsabareesh, and A. Samad, “Development of a reduced order wave to wire model of an OWC wave energy converter for control system analysis,” Ocean Eng., vol. 172, pp. 614–628, Jan. 2019, doi: 10.1016/j.oceaneng.2018.12.013.
[15] N. Guillou, G. Lavidas, and G. Chapalain, “Wave Energy Resource Assessment for Exploitation—A Review,” J. Mar. Sci. Eng., vol. 8, no. 9, p. 705, Sep. 2020, doi: 10.3390/jmse8090705.
[16] M. Stefanizzi, S. M. Camporeale, and M. Torresi, “Experimental investigation of a Wells turbine under dynamic stall conditions for wave energy conversion,” Renew. Energy, vol. 214, pp. 369–382, Sep. 2023, doi: 10.1016/j.renene.2023.05.120.
[17] G. Lavidas, F. De Leo, and G. Besio, “Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour,” Energies, vol. 13, no. 16, p. 4201, Aug. 2020, doi: 10.3390/en13164201.
[18] L. Ciappi, L. Cheli, I. Simonetti, A. Bianchini, G. Manfrida, and L. Cappietti, “Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots,” Energies, vol. 13, no. 21, p. 5582, Oct. 2020, doi: 10.3390/en13215582.
[19] S. Zhang and Y. Yuan, “Energy and momentum dissipation through wave breaking,” J. Geophys. Res. Ocean., vol. 110, no. C9, pp. 1–13, Sep. 2005, doi: 10.1029/2004JC002834.
[20] I. López, B. Pereiras, F. Castro, and G. Iglesias, “Performance of OWC wave energy converters: influence of turbine damping and tidal variability,” Int. J. Energy Res., vol. 39, no. 4, pp. 472–483, Mar. 2015, doi: 10.1002/er.3239.
[21] E. Gubesch, N. Abdussamie, I. Penesis, and C. Chin, “Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter,” Renew. Sustain. Energy Rev., vol. 166, p. 112643, Sep. 2022, doi: 10.1016/j.rser.2022.112643.
[22] B. N. Fox, R. P. F. Gomes, and L. M. C. Gato, “Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters,” Appl. Energy, vol. 295, p. 117023, Aug. 2021, doi: 10.1016/j.apenergy.2021.117023.
[23] J. Park et al., “Monitoring long-term chloride penetration into wave power marine concrete structures under repeated air pressure,” Constr. Build. Mater., vol. 428, p. 136276, May 2024, doi: 10.1016/j.conbuildmat.2024.136276.
[24] R. G. Dean and R. A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, vol. 2. World Scientific, p. 386, 1991, doi: 10.1142/9789812385512.
[25] H. B. Bingham, D. Ducasse, K. Nielsen, and R. Read, “Hydrodynamic analysis of oscillating water column wave energy devices,” J. Ocean Eng. Mar. Energy, vol. 1, no. 4, pp. 405–419, Nov. 2015, doi: 10.1007/s40722-015-0032-4.
[26] S. Kushwah, “An Oscillating Water Column (OWC): The Wave Energy Converter,” J. Inst. Eng. Ser. C, vol. 102, no. 5, pp. 1311–1317, Oct. 2021, doi: 10.1007/s40032-021-00730-7.
[27] J. Orphin, J.-R. Nader, and I. Penesis, “Size matters: Scale effects of an OWC wave energy converter,” Renew. Energy, vol. 185, pp. 111–122, Feb. 2022, doi: 10.1016/j.renene.2021.11.121.
[28] A. A. Medina Rodríguez et al., “Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore Oscillating Water Column Systems with a Thick Front Wall,” Energies, vol. 15, no. 7, p. 2364, Mar. 2022, doi: 10.3390/en15072364.
[29] T. P. V. Zis, H. N. Psaraftis, and L. Ding, “Ship weather routing: A taxonomy and survey,” Ocean Eng., vol. 213, p. 107697, Oct. 2020, doi: 10.1016/j.oceaneng.2020.107697.
[30] F.-X. Faÿ, E. Robles, M. Marcos, E. Aldaiturriaga, and E. F. Camacho, “Sea trial results of a predictive algorithm at the Mutriku Wave power plant and controllers assessment based on a detailed plant model,” Renew. Energy, vol. 146, pp. 1725–1745, Feb. 2020, doi: 10.1016/j.renene.2019.07.129.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Aries Taufiq Kurniawan, Arief Budiman, Rachmawan Budiarto, Ridwan Budi Prasetyo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan
View My Stats AET

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.