Analysis of horizontal milling machine vibration on the influence of gear module cutters with sizes M1 and M1.5

(1) * Jupri Yanda Zaira Mail (Politeknik Caltex Riau, Indonesia)
(2) Muhammad Haiqal Mail (Politeknik Caltex Riau, Indonesia)
(3) Bherry Arif Sitinjak Mail (Politeknik Caltex Riau, Indonesia)
(4) Yoga Ali Prasetyo Mail (Politeknik Caltex Riau, Indonesia)
(5) Muhammad Refky Hasibuan Mail (Politeknik Caltex Riau, Indonesia)
(6) Fauzan Alhabib Mail (Politeknik Caltex Riau, Indonesia)
(7) Indra Sinaga Mail (Politeknik Caltex Riau, Indonesia)
(8) Rio Hardyanto Mail (Politeknik Caltex Riau, Indonesia)
*corresponding author

Abstract


This study examines the effect of vibrations on the horizontal milling machine type 1216 during gear manufacturing using cutter modules with diameters of 50 mm and 55.25 mm, each at a cutting depth of 1 mm. Displacement, velocity, and acceleration measurements were conducted in vertical, horizontal, and axial directions using a VM-6370 vibration meter, with the average vibration amplitudes analyzed. The results revealed that the 55.25 mm cutter produced the highest vibration amplitude in the horizontal direction, reaching 353.270 mm/s², while the lowest was in the vertical direction at 171.293 mm/s². For the 50 mm cutter, the highest amplitude occurred in the vertical direction at 0.1336 mm and the lowest in the horizontal direction at 0.0583 mm. These findings demonstrate that larger cutter modules generate higher vibration amplitudes, significantly affecting the precision and surface quality of gear manufacturing. The study emphasizes the importance of selecting appropriate cutter sizes to minimize vibrations, optimize manufacturing processes, and improve product quality. By providing a detailed analysis of the relationship between cutter size and vibration levels, this research is a valuable reference for enhancing the efficiency and accuracy of gear cutting in industrial applications.

Keywords


Horizontal Milling Type 1216 Cutter Modul M1 dan M1,5 Gear Vibration VM-6370 Vibration Meter

   

DOI

https://doi.org/10.31763/aet.v3i3.1762
      

Article metrics

10.31763/aet.v3i3.1762 Abstract views : 19 | PDF views : 13

   

Cite

   

Full Text

Download

References


[1] K. Haricha, A. Khiat, Y. Issaoui, A. Bahnasse, and H. Ouajji, “Recent Technological Progress to Empower Smart Manufacturing: Review and Potential Guidelines,” IEEE Access, vol. 11, pp. 77929–77951, 2023, doi: 10.1109/ACCESS.2023.3246029.

[2] A. S. Duggal et al., “A sequential roadmap to Industry 6.0: Exploring future manufacturing trends,” IET Commun., vol. 16, no. 5, pp. 521–531, Mar. 2022, doi: 10.1049/cmu2.12284.

[3] R. Chaudhary, P. Fabbri, E. Leoni, F. Mazzanti, R. Akbari, and C. Antonini, “Additive manufacturing by digital light processing: a review,” Prog. Addit. Manuf., vol. 8, no. 2, pp. 331–351, Apr. 2023, doi: 10.1007/s40964-022-00336-0.

[4] J. J. Beaman, D. L. Bourell, C. C. Seepersad, and D. Kovar, “Additive Manufacturing Review: Early Past to Current Practice,” J. Manuf. Sci. Eng. Trans. ASME, vol. 142, no. 11, p. 110812, Nov. 2020, doi: 10.1115/1.4048193/1086507.

[5] D. G. Subagio, R. A. Subekti, H. M. Saputra, A. Rajani, and K. H. Sanjaya, “Three axis deviation analysis of CNC milling machine,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 10, no. 2, pp. 93–101, Dec. 2019, doi: 10.14203/j.mev.2019.v10.93-101.

[6] M. Góralczyk, P. Krot, R. Zimroz, and S. Ogonowski, “Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview,” Energies, vol. 13, no. 24, p. 6735, Dec. 2020, doi: 10.3390/en13246735.

[7] M. V. Reddy, H. S. Banka, S. K. Kaleru, and P. K. Peyyala, “Design and development of a 3D printer and machine prototyping CNC milling machine operation,” AIP Conf. Proc., vol. 2492, no. 1, p. 040037, May 2023, doi: 10.1063/5.0116965.

[8] K. Saptaji, M. A. Octaviani, M. Yetti, B. Hadisujoto, O. A. Juniasih, and A. Azhari, “Structural Analysis Of A Mini Three-Axis Cnc Micro-Milling Machine With Horizontal Spindle Configuration,” J. Adv. Manuf. Technol., vol. 18, no. 2, pp. 1–16, Aug. 2024. [Online]. Available at: https://jamt.utem.edu.my/jamt/article/view/6733.

[9] Z. M. Oo and Y. Myint, “Design Analysis of Gear in Horizontal Milling Machine,” Int. J. Sci. Res. Publ., vol. 9, no. 8, p. p9297, Aug. 2019, doi: 10.29322/IJSRP.9.08.2019.p9297.

[10] J.-P. Hung, W.-Z. Lin, Y.-J. Chen, and T.-L. Luo, “Investigation of the Machining Stability of a Milling Machine with Hybrid Guideway Systems,” Appl. Sci., vol. 6, no. 3, p. 76, Mar. 2016, doi: 10.3390/app6030076.

[11] A. Nürnberger et al., “Advantages in the production of power transmitting gears by fineblanking,” Int. J. Adv. Manuf. Technol., vol. 128, no. 9–10, pp. 4413–4425, Oct. 2023, doi: 10.1007/s00170-023-12160-z.

[12] P. Boral, R. Gołębski, and R. Kralikova, “Technological Aspects of Manufacturing and Control of Gears—Review,” Materials (Basel)., vol. 16, no. 23, p. 7453, Nov. 2023, doi: 10.3390/ma16237453.

[13] C. David, D. Sagris, E. Stergianni, C. Tsiafis, and I. Tsiafis, “Experimental Analysis of the Effect of Vibration Phenomena on Workpiece Topomorphy Due to Cutter Runout in End-Milling Process †,” Machines, vol. 6, no. 3, p. 27, Jul. 2018, doi: 10.3390/machines6030027.

[14] M. Baraya, J. Yan, and M. Hossam, “Improving and Predicting the Surface Roughness and the Machining Accuracy in Ultrasonic Vibration-Assisted Milling,” J. Vib. Eng. Technol., vol. 12, no. S1, pp. 127–140, Dec. 2024, doi: 10.1007/s42417-024-01406-z.

[15] N. Zhao, Y. Su, S. Wang, M. Xia, and C. Liu, “Chatter Detection in Variable Cutting Depth Side Milling Using VMD and Vibration Characteristics Analysis,” Electronics, vol. 11, no. 22, p. 3779, Nov. 2022, doi: 10.3390/electronics11223779.

[16] C. Ni, L. Zhu, and Z. Yang, “Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view,” Wear, vol. 436–437, p. 203006, Oct. 2019, doi: 10.1016/j.wear.2019.203006.

[17] F. J. G. Silva et al., “A Comparative Study of Different Milling Strategies on Productivity, Tool Wear, Surface Roughness, and Vibration,” J. Manuf. Mater. Process., vol. 8, no. 3, p. 115, May 2024, doi: 10.3390/jmmp8030115.

[18] S. Ehsan et al., “Understanding the effects of cutting conditions on vibrations, surface integrity, machining temperature and tool wear mechanisms in end milling of AISI D2 Steel,” Tribol. Int., vol. 198, p. 109894, Oct. 2024, doi: 10.1016/j.triboint.2024.109894.

[19] M. C. Gomes, L. C. Brito, M. Bacci da Silva, and M. A. Viana Duarte, “Tool wear monitoring in micromilling using Support Vector Machine with vibration and sound sensors,” Precis. Eng., vol. 67, pp. 137–151, Jan. 2021, doi: 10.1016/j.precisioneng.2020.09.025.

[20] P. Wang, L. Han, J. Li, and F. Liu, “Research on design and manufacturing of gear slicing cutter for circular arc tooth,” Int. J. Adv. Manuf. Technol., vol. 113, no. 7–8, pp. 2017–2029, Apr. 2021, doi: 10.1007/s00170-021-06757-5.

[21] Z. Ren et al., “Understanding local cutting features affecting surface integrity of gear flank in gear skiving,” Int. J. Mach. Tools Manuf., vol. 172, p. 103818, Jan. 2022, doi: 10.1016/j.ijmachtools.2021.103818.

[22] N. Hodgyai, M. Máté, G. Oancea, and M.-V. Dragoi, “Gear Hobs—Cutting Tools and Manufacturing Technologies for Spur Gears: The State of the Art,” Materials (Basel)., vol. 17, no. 13, p. 3219, Jul. 2024, doi: 10.3390/ma17133219.

[23] M. Elahi, S. O. Afolaranmi, J. L. Martinez Lastra, and J. A. Perez Garcia, “A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment,” Discov. Artif. Intell., vol. 3, no. 1, p. 43, Dec. 2023, doi: 10.1007/s44163-023-00089-x


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jupri Yanda Zaira, Muhammad Haiqal, Bherry Arif Sitinjak , Yoga Ali Prasetyo , Muhammad Refky Hasibuan, Fauzan Alhabib, Indra Sinaga, Rio Hardyanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan

View My Stats AET
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.