
(2) Samiul Bashir

(3) Pronab Kumar Paul

(4) Md. Bipul Islam

(5) A.N.M. Shihab Uddin

(6) M. Hasnat Kabir

*corresponding author
AbstractIn wireless sensor networks (WSNs), antennas play a crucial role in enlarging network capacity, prolonging transmission distances, fostering spatial reuse, and minimizing interference. This paper delineates a miniature rectangular patch antenna featuring partial grounding, meticulously engineered for the WLAN (wireless local area network) to promote real-time operations within WSNs. The main goal is to augment the creation and execution of a patch antenna that aligns with the typical size and power constraints of WSN nodes. The antenna is engineered and simulated for a 2.4 GHz WLAN frequency band (2.4 – 2.48 GHz) by leveraging CST Microwave Studio 2024. It is fabricated on a 45 mm × 50 mm FR4 substrate (εr = 4.3, thickness = 1.4 mm, loss tangent = 0.025). The antenna is energized via a 50 Ω microstrip inset-feed line. This antenna demonstrates a substantial bandwidth of 159.729 MHz (2.31963 GHz to 2.479359 GHz), an impressive return loss of – 48.15956 dB, a VSWR (voltage standing wave ratio) of 1.007848, a directivity of 4.7 dBi, a gain of 3.04 dBi, and an efficiency of 68.21%. These performance indicators illustrate the antenna’s effectiveness in enabling short-range communication within WSNs. With its compact design, broad bandwidth, and strong performance metrics, this antenna is an efficient and cost-effective solution suitable for various applications in WSNs, including industrial automation, environmental monitoring, healthcare, and smart city initiatives, ensuring reliable and high-quality wireless communication.
KeywordsRectangular patch antenna, WSNs, Inset feedline, Partial grounding, WLAN band
|
DOIhttps://doi.org/10.31763/aet.v3i3.1702 |
Article metrics10.31763/aet.v3i3.1702 Abstract views : 22 | PDF views : 6 |
Cite |
Full Text![]() |
References
[1] A. S. Elkorany et al., “Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications,” Sensors, vol. 22, no. 2, p. 667, Jan. 2022, doi: 10.3390/s22020667.
[2] A. A. Salih and M. S. Sharawi, “A Dual-Band Highly Miniaturized Patch Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1783–1786, 2016, doi: 10.1109/LAWP.2016.2536678.
[3] Z. Liang, J. Liu, Y. Li, and Y. Long, “A Dual-Frequency Broadband Design of Coupled-Fed Stacked Microstrip Monopolar Patch Antenna for WLAN Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1289–1292, 2016, doi: 10.1109/LAWP.2015.2505091.
[4] W. Farooq, M. Ur-Rehman, Q. H. Abbassi, Xiaodong Yang, and K. Qaraqe, “Design of a finger ring antenna for wireless sensor networks,” in 2016 10th European Conference on Antennas and Propagation (EuCAP), Apr. 2016, pp. 1–4, doi: 10.1109/EuCAP.2016.7481827.
[5] U. Afruz and M. A. Kabir, “Design of Compact E-Shaped Microstrip Patch Antenna for Wireless Body Area Network,” in 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), Feb. 2022, pp. 157–162, doi: 10.1109/ICISET54810.2022.9775820.
[6] R. Azim, M. T. Islam, H. Arshad, M. M. Alam, N. Sobahi, and A. I. Khan, “CPW-Fed Super-Wideband Antenna With Modified Vertical Bow-Tie-Shaped Patch for Wireless Sensor Networks,” IEEE Access, vol. 9, pp. 5343–5353, 2021, doi: 10.1109/ACCESS.2020.3048052.
[7] M. T. Islam, A. T. Mobashsher, and N. Misran, “Coplanar Waveguide Fed Printed Antenna with Compact Size for Broadband Wireless Applications,” J. Infrared, Millimeter, Terahertz Waves, vol. 31, no. 12, pp. 1427–1437, Dec. 2010, doi: 10.1007/s10762-010-9728-7.
[8] E. Zhang, A. Michel, M. R. Pino, P. Nepa, and J. Qiu, “A Dual Circularly Polarized Patch Antenna With High Isolation for MIMO WLAN Applications,” IEEE Access, vol. 8, pp. 117833–117840, 2020, doi: 10.1109/ACCESS.2020.3004895.
[9] R. George and T. Anita Jones Mary, “Design of Directional Two L shaped Microstrip Patch Antenna for WSN Applications Using Sea Lion Optimization Algorithm,” in 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Feb. 2021, pp. 1–6, doi: 10.1109/ICAECT49130.2021.9392454.
[10] M. M. Alam, R. Azim, N. M. Sobahi, A. I. Khan, and M. T. Islam, “A dual-band CPW-fed miniature planar antenna for S-, C-, WiMAX, WLAN, UWB, and X-band applications,” Sci. Rep., vol. 12, no. 1, p. 7584, May 2022, doi: 10.1038/s41598-022-11679-7.
[11] N. H. Biddut, M. E. Haque, and N. Jahan, “A Wide Band Microstrip Patch Antenna Design Using Multiple Slots at V-Band,” in 2022 International Mobile and Embedded Technology Conference (MECON), Mar. 2022, pp. 113–116, doi: 10.1109/MECON53876.2022.9751951.
[12] M. S. Rana and M. M. Rahman, “Study of Microstrip Patch Antenna for Wireless Communication System,” in 2022 International Conference for Advancement in Technology (ICONAT), Jan. 2022, pp. 1–4, doi: 10.1109/ICONAT53423.2022.9726110.
[13] X. Chen and H. Dou, “Wideband Patch Antenna with Shorting Vias,” Int. J. Antennas Propag., vol. 2022, no. 1, pp. 1–11, Apr. 2022, doi: 10.1155/2022/2578409.
[14] K. Da Xu, H. Xu, Y. Liu, J. Li, and Q. H. Liu, “Microstrip Patch Antennas With Multiple Parasitic Patches and Shorting Vias for Bandwidth Enhancement,” IEEE Access, vol. 6, pp. 11624–11633, Jan. 2018, doi: 10.1109/ACCESS.2018.2794962.
[15] J. Wu, Y. Yin, Z. Wang, and R. Lian, “Broadband Circularly Polarized Patch Antenna With Parasitic Strips,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 559–562, 2015, doi: 10.1109/LAWP.2014.2373823.
[16] R. Ramly, A. A. B. Sajak, H. Dao, and M. F. A. Zuhairi, “Design of a compact microstrip patch Antenna for wireless sensor nodes,” J. Eng. Sci. Technol., vol. 16, no. 3, pp. 2518–2527, 2021, [Online]. Available at: https://jestec.taylors.edu.my/Vol 16 issue 3 June 2021/16_3_47.pdf.
[17] P. Chindhi, H. P. Rajani, and G. Kalkhambkar, “A Spurious Free Dual Band Microstrip Patch Antenna for Radio Frequency Energy Harvesting,” Indian J. Sci. Technol., vol. 15, no. 7, pp. 266–275, Feb. 2021, doi: 10.17485/IJST/v15i7.2025.
[18] M. Hacımehmet, “X band microstrip ring patch antenna design and performance evaluation according to feeding types,” Pamukkale Univ. J. Eng. Sci., vol. 28, no. 2, pp. 215–221, Apr. 2022, doi: 10.5505/pajes.2021.30632.
[19] A. H. Yüzer and C. Şeker, “4G C-Shaped compact microstrip antenna design and production,” Pamukkale Univ. J. Eng. Sci., vol. 23, no. 5, pp. 532–535, 2017, doi: 10.5505/pajes.2017.27880.
[20] S. J. Ahmad, M. M. Ahmed, and I. Unissa, “Optimization of Environmental Data to Improve Safety in Coal Mine using Wireless Sensor Networks,” Indian J. Sci. Technol., vol. 15, no. 19, pp. 956–964, May 2022, doi: 10.17485/IJST/v15i19.686.
[21] Q. Wang, Y. Jiang, and Y. Wang, “Novel FR4‐based low loss reconfigurable filter with four operating modes using movable transmission lines,” Microw. Opt. Technol. Lett., vol. 66, no. 5, p. e34171, May 2024, doi: 10.1002/mop.34171.
[22] R. S. A. Anooz and B. K. Ammar, “A Modified Ground for Bandwidth Enhancement of the Microstrip Patch Antenna for 5G Wireless Communications,” Int. J. Electr. Electron. Eng., vol. 11, no. 2, pp. 19–23, Feb. 2024, doi: 10.14445/23488379/IJEEE-V11I2P103.
[23] A. A. Deshmukh, S. Surendran, A. Rane, Y. Bhasin, and V. A. P. Chavali, “Compact designs of circular microstrip antennas employing modified ground plane for wideband response,” AEU - Int. J. Electron. Commun., vol. 176, p. 155130, Mar. 2024, doi: 10.1016/j.aeue.2024.155130.
[24] H. S. Rajappa, D. N. Chandrappa, and R. Soloni, “Partial Ground-Based Miniaturized Ultra Wideband Microstrip Patch Antenna,” Indian J. Sci. Technol., vol. 17, no. 2, pp. 105–111, Jan. 2024, doi: 10.17485/IJST/v17i2.2622.
[25] I. Jayasukumari, G. Themozhi, and C. Amali, “Investigation and Compatibility of a Low Profile Wideband Circular Ring Patch Antenna with Slotted Partial Ground Plane,” in Advances in Science and Technology, Sep. 2023, vol. 130, pp. 137–141, doi: 10.4028/p-xSqy7p.
[26] M. I. Hossain, M. N. Islam, M. A. Islam, and M. T. Ahmed, “Minaret Shape Micro-Strip Patch Antenna with Partial Ground Plane for Lower 5G and Wi-Max Applications,” J. Digit. Integr. Circuits Electr. Devices, vol. 8, no. 2, pp. 10–18, Aug. 2023, doi: 10.46610/JDICED.2023.v08i02.002.
[27] K. S. Praveena and M. P. Chandrashekar, “Performance evaluation of inset feed microstrip patch antenna parameters with different substrate materials for 5G wireless applications,” Radioelectron. Comput. Syst., vol. 2024, no. 4, pp. 141–155, Nov. 2024, doi: 10.32620/reks.2024.4.12.
[28] M. Alaba, D. B. Onyango Konditi, and V. K. Oduol, “Inset-fed microstrip patch antenna optimization for 2.4 GHz using surrogate model assisted differential evolution machine learning algorithm,” Indones. J. Electr. Eng. Comput. Sci., vol. 36, no. 2, p. 901, Nov. 2024, doi: 10.11591/ijeecs.v36.i2.pp901-912.
[29] G. P. Raj and K. N. Ketavath, “Dual-band inset-fed diamond-shaped patch MIMO antenna for wireless communication applications,” Phys. Scr., vol. 99, no. 8, p. 085546, Aug. 2024, doi: 10.1088/1402-4896/ad624d.
[30] A. Bansal and R. Gupta, “A review on microstrip patch antenna and feeding techniques,” Int. J. Inf. Technol., vol. 12, no. 1, pp. 149–154, Mar. 2020, doi: 10.1007/s41870-018-0121-4.
[31] J. V. Kumar and S. M. Shaby, “Optimizing inset-fed rectangular micro strip patch antenna by improved particle swarm optimization and simulated annealing,” Netw. Comput. Neural Syst., pp. 1–31, May 2024, doi: 10.1080/0954898X.2024.2358961.
[32] S. Dase and I. Razak, “Optimization of an inset-fed calculations for rectangular microstrip antenna,” Comput. Sci. Inf. Technol., vol. 4, no. 2, pp. 143–148, Jul. 2023, doi: 10.11591/csit.v4i2.p143-148.
[33] F. Ahmed, H. Kabir, and T. Islam, “Design of a compact patch antenna with bandwidth and efficiency improvement for UWB applications,” Multidiscip. Sci. J., vol. 5, no. 4, p. 2023030, May 2023, doi: 10.31893/multiscience.2023030.
[34] M. Benzaghta, B. Er, G. Bilgin, E. Aydin, And A. Kara, “A Miniaturized Multi-layer Microstrip Antenna for Linear Wireless Sensor Network Monitoring Systems,” Gazi Univ. J. Sci., vol. 35, no. 3, pp. 875–884, Sep. 2022, doi: 10.35378/gujs.962910.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Md. Firoz Ahmed, Samiul Bashir, Pronab Kumar Paul, Md. Bipul Islam, A.N.M. Shihab Uddin, M. Hasnat Kabir

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan
View My Stats AET

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.