(2) Reni Fatrisna Salsabila (Department of Electrical Engineering and Informatic, Universitas Negeri Malang, Malang, Indonesia)
(3) * Anik Nur Handayani (Department of Electrical Engineering and Informatic, Universitas Negeri Malang, Malang, Indonesia)
(4) Aji Prasetya Wibawa (Department of Electrical Engineering and Informatic, Universitas Negeri Malang, Malang, Indonesia)
(5) Emanuel Hitipeuw (Department of Electrical Engineering and Informatic, Universitas Negeri Malang, Malang, Indonesia)
(6) Kohei Arai (Departemen of Information Science and Engineering, Saga University, Japan)
*corresponding author
AbstractIndonesian Sign Language System (SIBI) recognition plays a crucial role in improving effective communication for individuals with hearing loss in Indonesia. To support automatic SIBI recognition, this research presents a performance analysis of two main algorithms, namely Decision Tree and C4.5, in the context of the SIBI recognition task. This research utilizes a rich SIBI dataset that includes a variety of SIBI signs used in everyday communication. Data pre-processing, model construction with both algorithms, and model performance evaluation using accuracy, precision, recall, and F1-score metrics are all part of the study. Regarding SIBI recognition accuracy, the experimental results demonstrate that the Decision Tree performs better than Decision Tree. The Decision Tree also makes models that are easier to understand, which is important for making communication systems based on SIBI. KeywordsIndonesian Sign Language System (SIBI) Decision Tree C4.5.
|
DOIhttps://doi.org/10.31763/aet.v3i2.1536 |
Article metrics10.31763/aet.v3i2.1536 Abstract views : 288 | PDF views : 144 |
Cite |
Full TextDownload |
References
[1] L. N. Hayati, A. N. Handayani, W. S. G. Irianto, R. A. Asmara, D. Indra, and M. Fahmi, “Classifying BISINDO Alphabet using Tensorflow Object Detection API,” Ilk. J. Ilm., vol. 15, no. 2, pp. 358–364, 2023, doi: 10.33096/ilkom.v15i2.1692.358-364.
[2] A. N. Handayani, M. I. Akbar, H. Ar-Rosyid, M. Ilham, R. A. Asmara, and O. Fukuda, “Design of SIBI Sign Language Recognition Using Artificial Neural Network Backpropagation,” 2022 2nd Int. Conf. Intell. Cybern. Technol. Appl., pp. 192–197, 2022, doi: 10.1109/ICICyTA57421.2022.10038205.
[3] C. Suardi, A. N. Handayani, R. A. Asmara, A. P. Wibawa, L. N. Hayati, and H. Azis, “Design of Sign Language Recognition Using E-CNN,” in 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), Apr. 2021, pp. 166–170, doi: 10.1109/EIConCIT50028.2021.9431877.
[4] B. Majoro Nthabiseng Eugenia, “Challenges of using sign language interpreting to facilitate teaching and learning for learners with hearing impairment,” National University of Lesotho, p. 106, 2021. [Online]. Available at: https://repository.tml.nul.ls/handle/20.500.14155/1619.
[5] E. Warren and J. Call, “Inferential Communication: Bridging the Gap Between Intentional and Ostensive Communication in Non-human Primates,” Front. Psychol., vol. 12, p. 718251, Jan. 2022, doi: 10.3389/fpsyg.2021.718251.
[6] M. P. Moeller et al., “Family-Centered Early Intervention Deaf/Hard of Hearing (FCEI-DHH): Foundation Principles,” J. Deaf Stud. Deaf Educ., vol. 29, no. SI, pp. SI53–SI63, Feb. 2024, doi: 10.1093/deafed/enad037.
[7] A. Sani and S. Rahmadinni, “Image Processing Based Hand Gesture Detection,” J. Rekayasa Elektr., vol. 18, no. 2, pp. 115–124, Jul. 2022, doi: 10.17529/jre.v18i2.25147.
[8] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, Mar. 2021, doi: 10.38094/jastt20165.
[9] C. J. Taylor et al., “A Brief Introduction to Chemical Reaction Optimization,” Chem. Rev., vol. 123, no. 6, pp. 3089–3126, Mar. 2023, doi: 10.1021/acs.chemrev.2c00798.
[10] R. Muttaqien, M. G. Pradana, and A. Pramuntadi, “Implementation of Data Mining Using C4.5 Algorithm for Predicting Customer Loyalty of PT. Pegadaian (Persero) Pati Area Office,” Int. J. Comput. Inf. Syst., vol. 2, no. 3, pp. 64–68, Aug. 2021, doi: 10.29040/ijcis.v2i3.36.
[11] H.-B. Wang and Y.-J. Gao, “Research on C4.5 algorithm improvement strategy based on MapReduce,” Procedia Comput. Sci., vol. 183, pp. 160–165, Jan. 2021, doi: 10.1016/j.procs.2021.02.045.
[12] G. S. Reddy and S. Chittineni, “Entropy based C4.5-SHO algorithm with information gain optimization in data mining,” PeerJ Comput. Sci., vol. 7, p. e424, Apr. 2021, doi: 10.7717/peerj-cs.424.
[13] K. R. Tsaniyah Zulkarnain, H. Nurramdhani Irmanda, A. Muliawati, and R. Wirawan, “The Effect of Particle Swarm Optimization Feature Selection in Predicting Blood Donor Eligibility Classification at UTD Bekasi City Using Decision Tree C4.5,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), Nov. 2023, pp. 131–136, doi: 10.1109/ICIMCIS60089.2023.10348997.
[14] A. Sadeghzadeh and M. B. Islam, “Triplet Loss-based Convolutional Neural Network for Static Sign Language Recognition,” in 2022 Innovations in Intelligent Systems and Applications Conference (ASYU), Sep. 2022, pp. 1–6, doi: 10.1109/ASYU56188.2022.9925490.
[15] A. S. M. Miah, J. Shin, M. A. M. Hasan, and M. A. Rahim, “BenSignNet: Bengali Sign Language Alphabet Recognition Using Concatenated Segmentation and Convolutional Neural Network,” Appl. Sci., vol. 12, no. 8, p. 3933, Apr. 2022, doi: 10.3390/app12083933.
[16] M. Muhsi, S. Suprapto, and R. Rofiuddin, “Node Selection Method for Split Attribute in C4.5 Algorithm Using the Coefficient of Determination Values for Multivariate Data Set,” J. Penelit. Pendidik. IPA, vol. 9, no. 7, pp. 5574–5583, Jul. 2023, doi: 10.29303/jppipa.v9i7.4031.
[17] A. N. Handayani, H. W. Herwanto, K. L. Chandrika, and K. Arai, “Recognition of Handwritten Javanese Script using Backpropagation with Zoning Feature Extraction,” Knowl. Eng. Data Sci., vol. 4, no. 2, p. 117, Dec. 2021, doi: 10.17977/um018v4i22021p117-127.
[18] T. Wahyudi and T. Silfia, “Implementation of Data Mining Using K-Means Clustering Method to Determine Sales Strategy In S&R Baby Store,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 93–103, Sep. 2022, doi: 10.37385/jaets.v4i1.913.
[19] E. Cappelli, “Big biomedical data modeling for knowledge extraction with machine learning techniques,” Università degli studi Roma Tre, pp, 1-168, 2020. [Online]. Available at: https://arcadia.sba.uniroma3.it/handle/2307/40921.
[20] R. G. Whendasmoro and J. Joseph, “Analysis of the Application of Data Normalization Using Z-Score on the Performance of the K-NN Algorithm,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 872, Aug. 2022, doi: 10.30865/jurikom.v9i4.4526.
[21] I. Izonin, R. Tkachenko, N. Shakhovska, B. Ilchyshyn, and K. K. Singh, “A Two-Step Data Normalization Approach for Improving Classification Accuracy in the Medical Diagnosis Domain,” Mathematics, vol. 10, no. 11, p. 1942, Jun. 2022, doi: 10.3390/math10111942.
[22] A. Onan, “SRL-ACO: A text augmentation framework based on semantic role labeling and ant colony optimization,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 7, p. 101611, Jul. 2023, doi: 10.1016/j.jksuci.2023.101611.
[23] V. R. Joseph and A. Vakayil, “SPlit: An Optimal Method for Data Splitting,” Technometrics, vol. 64, no. 2, pp. 166–176, Apr. 2022, doi: 10.1080/00401706.2021.1921037.
[24] H. Wang, M. Yang, and J. Stufken, “Information-Based Optimal Subdata Selection for Big Data Linear Regression,” J. Am. Stat. Assoc., vol. 114, no. 525, pp. 393–405, Jan. 2019, doi: 10.1080/01621459.2017.1408468.
[25] L. Mardiana, D. Kusnandar, and N. Satyahadewi, “Discriminant Analysis With K Fold Cross Validation For Water Quality Classification In Pontianak City,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 11, no. 1, pp. 97–102, Jan. 2022, doi: 10.37403/sultanist.v11i1.505.
[26] I. D. Wijaya, A. G. Putrada, and D. Oktaria, “The Use of K-fold Method for Imbalance Data in Hwe and Qpq Classification in Sexual Harassment Tweet Crimes,” eProceedings Eng., vol. 8, no. 5, pp. 1–10, Oct. 2021. [Online]. Available at: https://openlibrarypublications.telkomuniversity.ac.id.
[27] M. Li, H. Xu, and Y. Deng, “Evidential Decision Tree Based on Belief Entropy,” Entropy, vol. 21, no. 9, p. 897, Sep. 2019, doi: 10.3390/e21090897.
[28] V. Matzavela and E. Alepis, “Decision tree learning through a Predictive Model for Student Academic Performance in Intelligent M-Learning environments,” Comput. Educ. Artif. Intell., vol. 2, p. 100035, Jan. 2021, doi: 10.1016/j.caeai.2021.100035.
[29] F. Hajjej, M. A. Alohali, M. Badr, and M. A. Rahman, “A Comparison of Decision Tree Algorithms in the Assessment of Biomedical Data,” Biomed Res. Int., vol. 2022, no. 1, pp. 1–9, Jul. 2022, doi: 10.1155/2022/9449497.
[30] C. Azad, B. Bhushan, R. Sharma, A. Shankar, K. K. Singh, and A. Khamparia, “Prediction model using SMOTE, genetic algorithm and decision tree (PMSGD) for classification of diabetes mellitus,” Multimed. Syst., vol. 28, no. 4, pp. 1289–1307, Aug. 2022, doi: 10.1007/s00530-021-00817-2.
[31] A. Rahmadeyan, Mustakim, R. Ocviani, S. Sarah, and F. Ardiansyah, “Classification of COVID-19 Data Using Decision Tree Optimized with Particle Swarm Optimization and Genetic Algorithm,” in 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Jan. 2024, pp. 1–5, doi: 10.1109/ICETSIS61505.2024.10459540.
[32] M. C. Bagaskoro, F. Prasojo, A. N. Handayani, E. Hitipeuw, A. P. Wibawa, and Y. W. Liang, “Hand image reading approach method to Indonesian Language Signing System (SIBI) using neural network and multi layer perseptron,” Sci. Inf. Technol. Lett., vol. 4, no. 2, pp. 97–108, Nov. 2023, doi: 10.31763/sitech.v4i2.1362.Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Agil Zaidan Nugraha, Reni Fatrisna Salsabila, Anik Nur Handayani, Aji Prasetya Wibawa, Emanuel Hitipeuw, Kohei Arai
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan
View My Stats AET
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.