AQuamoAS: unmasking a wireless sensor-based ensemble for air quality monitor and alert system

(1) * Victor Ochuko Geteloma Mail (Department of Computer Science, College of Compuitng, Federal University of Petroleum Resources Effurun, Nigeria)
(2) Fidelis Obukohwo Aghware Mail (Department of Computer Science, Faculty of Computing, University of Delta Agbor, Nigeria)
(3) Wilfred Adigwe Mail (Department of Computer Science, Faculty of Information Technology, Delta State University of Science and Technology Ozoro, Nigeria)
(4) Chukwufunaya Chris Odiakaose Mail (Department of Computer Science, Faculty of Information Technology, Dennis Osadebay University Anwai-Asaba, Nigeria)
(5) Nwanze Chukwudi Ashioba Mail (Department of Computer Science, Faculty of Information Technology, Dennis Osadebay University Anwai-Asaba, Nigeria)
(6) Margareth Dumebi Okpor Mail (Department of Computer Science, Faculty of Information Technology, Delta State University of Science and Technology Ozoro)
(7) Arnold Adimabua Ojugo Mail (Department of Computer Science, College of Compuitng, Federal University of Petroleum Resources Effurun, Nigeria)
(8) Patrick Ogholuwarami Ejeh Mail (Department of Computer Science, Faculty of Information Technology, Dennis Osadebay University Anwai-Asaba, Nigeria)
(9) Rita Erhovwo Ako Mail (Department of Computer Science, College of Compuitng, Federal University of Petroleum Resources Effurun, Nigeria)
(10) Emmanuel Obiajulu Ojei Mail (Department of Computer Science, Faculty of Information Technology, Delta State University of Science and Technology Ozoro, Nigeria)
*corresponding author

Abstract


The increased awareness by residents of their environment to maintain safe health states has consequently, birthed the integration of info tech to help resolve societal issues. These, and its adopted approaches have become critical and imperative in virtualization to help bridge the lapses in human mundane tasks and endeavors. Its positive impacts on society cannot be underestimated. Study advances a low-cost wireless sensor-based ensemble to effectively manage air quality tasks. Thus, we integrate an IoT framework to effectively monitors environment changes via microcontrollers, sensors, and blynk to assist users to monitor temperature, humidity, detect the presence of harmful gases in/out door environs. The blynk provides vital knowledge to the user. Our AQuaMoAS algorithm makes for an accurate and user-friendly mode using cloud services to ease monitor and data visualization. The system was tested at 3 different stages of rainy, sunny and heat with pollutant via alpha est method. For all functions at varying conditions, result revealed 70.7% humidity, 29.5OC, and 206 ppm on a sunny day. 51.5% humidity, 20.4OC and 198ppm on a rainy, and 43.1 humidity, 45.6OC, 199ppm air quality on heat and 66.5% humidity, 30.2 OC and 363 ppm air quality on application of air pollutant were observed

Keywords


Wireless sensor networks; Internet of Things; Blynk platform; Air Quality Monitor; Environmental Monitoring

   

DOI

https://doi.org/10.31763/aet.v3i2.1409
      

Article metrics

10.31763/aet.v3i2.1409 Abstract views : 299 | PDF views : 161

   

Cite

   

Full Text

Download

References


[1] A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Predicting rainfall runoff in Southern Nigeria using a fused hybrid deep learning ensemble,” Int. J. Informatics Commun. Technol., vol. 13, no. 1, p. 108, Apr. 2024, doi: 10.11591/ijict.v13i1.pp108-115.

[2] J. K. Oladele et al., “BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 1–12, 2024, doi: 10.33633/jcta.v2i19509.

[3] C. C. Odiakaose et al., “Hybrid Genetic Algorithm Trained Bayesian Ensemble for Short Messages Spam Detection,” J. Adv. Math. Comput. Sci., vol. 12, no. 1, pp. 37–52, 2024, doi: 10.22624/AIMS/MATHS/V12N1P4.

[4] F. Balducci, D. Impedovo, and G. Pirlo, “Machine Learning Applications on Agricultural Datasets for Smart Farm Enhancement,” Machines, vol. 6, no. 3, p. 38, Sep. 2018, doi: 10.3390/machines6030038.

[5] M. I. Akazue et al., “Handling Transactional Data Features via Associative Rule Mining for Mobile Online Shopping Platforms,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 530–538, 2024, doi: 10.14569/IJACSA.2024.0150354.

[6] L.-M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “Deployment of IoV for Smart Cities: Applications, Architecture, and Challenges,” IEEE Access, vol. 7, pp. 6473–6492, 2019, doi: 10.1109/ACCESS.2018.2887076.

[7] K. W. Brown and T. J. Armstrong, Hydrocarbon Inhalation, p. 263, 1st ed. StatPearls Publishing, 2023. [Online]. Available at: https://pubmed.ncbi.nlm.nih.gov/29262161/.

[8] A. A. Ojugo and O. Otakore, “Mitigating Social Engineering Menace in Nigerian Universities,” J. Comput. Sci. Appl., vol. 6, no. 2, pp. 64–68, Aug. 2018, doi: 10.12691/jcsa-6-2-2.

[9] D. Nahavandi, R. Alizadehsani, A. Khosravi, and U. R. Acharya, “Application of artificial intelligence in wearable devices: Opportunities and challenges,” Comput. Methods Programs Biomed., vol. 213, p. 106541, Jan. 2022, doi: 10.1016/j.cmpb.2021.106541.

[10] A. A. Ojugo and O. Debby Otakore, “Forging An Optimized Bayesian Network Model With Selected Parameters For Detection of The Coronavirus In Delta State of Nigeria,” J. Appl. Sci. Eng. Technol. Educ., vol. 3, no. 1, pp. 37–45, Apr. 2021, doi: 10.35877/454RI.ASCI2163.

[11] C. C. Odiakaose, “A Pilot Study to Enhance Semi Urban Tele Penetration and Services Provision for Undergraduates via the Effective Design and Extension of a Campus Telephony,” FUPRE J. Sci. Ind. Res., vol. 7, no. 3, pp. 35–48, Sep. 2023. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/226.

[12] C. O. Obruche and R. A. Abere, “Deployment of a Virtual Key-Card Smart-Lock System: The Quest for Improved Client Security, Eased User Mobility and Privacy,” FUPRE J. Sci. Ind. Res., vol. 8, no. 1, pp. 39–54, Jan. 2024. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/251.

[13] R. E. Yoro, F. O. Aghware, B. O. Malasowe, O. Nwankwo, and A. A. Ojugo, “Assessing contributor features to phishing susceptibility amongst students of petroleum resources varsity in Nigeria,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1922, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1922-1931.

[14] N. N. Wijaya, D. R. I. M. Setiadi, and A. R. Muslikh, “Music-Genre Classification using Bidirectional Long Short-Term Memory and Mel-Frequency Cepstral Coefficients,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 13–26, 2024, doi: 10.62411/jcta.9655.

[15] A. A. Ojugo and R. E. Yoro, “Predicting Futures Price And Contract Portfolios Using The ARIMA Model: A Case of Nigeria’s Bonny Light and Forcados,” Quant. Econ. Manag. Stud., vol. 1, no. 4, pp. 237–248, Aug. 2020, doi: 10.35877/454RI.qems139.

[16] A. A. Ojugo and O. Nwankwo, “Spectral-Cluster Solution For Credit-Card Fraud Detection Using A Genetic Algorithm Trained Modular Deep Learning Neural Network,” JINAV J. Inf. Vis., vol. 2, no. 1, pp. 15–24, Jan. 2021, doi: 10.35877/454RI.jinav274.

[17] O. A. Onyan, D. U. Onyishi, and R. Onawharaye, “Development of an IoT-based wireless remote health monitoring device,” FUPRE J. Sci. Ind. Res., vol. 8, no. 2, pp. 01–11, Feb. 2024. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/271.

[18] S. U. Okperigho, B. Nwozor, and V. O. Geteloma, “Deployment of an IoT Storage Tank Gauge and Monitor,” FUPRE J. Sci. Ind. Res., vol. 8, no. 1, pp. 55–68, Jan. 2024. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/252.

[19] A. Shoeibi et al., “Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies,” Biomed. Signal Process. Control, vol. 73, p. 103417, Mar. 2022, doi: 10.1016/j.bspc.2021.103417.

[20] S. Sendra, L. García, J. Lloret, I. Bosch, and R. Vega-Rodríguez, “LoRaWAN Network for Fire Monitoring in Rural Environments,” Electronics, vol. 9, no. 3, p. 531, Mar. 2020, doi: 10.3390/electronics9030531.

[21] B. Sarwar, I. S. Bajwa, N. Jamil, S. Ramzan, and N. Sarwar, “An Intelligent Fire Warning Application Using IoT and an Adaptive Neuro-Fuzzy Inference System,” Sensors, vol. 19, no. 14, p. 3150, Jul. 2019, doi: 10.3390/s19143150.

[22] A. A. Ojugo and O. D. Otakore, “Investigating The Unexpected Price Plummet And Volatility Rise In Energy Market: A Comparative Study of Machine Learning Approaches,” Quant. Econ. Manag. Stud., vol. 1, no. 3, pp. 219–229, Jun. 2020, doi: 10.35877/454RI.qems12119.

[23] A. A. Ojugo et al., “Forging a learner-centric blended-learning framework via an adaptive content-based architecture,” Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 40–53, May 2023, doi: 10.31763/sitech.v4i1.1186.

[24] A. A. Ojugo and O. Nwankwo, “Modeling Mobility Pattern for the Corona-Virus Epidemic Spread Propagation and Death Rate in Nigeria using the Movement-Interaction-Return Model,” Int. J. Emerg. Trends Eng. Res., vol. 9, no. 6, pp. 821–826, Jun. 2021, doi: 10.30534/ijeter/2021/30962021.

[25] V. Geteloma, C. K. Ayo, and R. N. Goddy-Wurlu, “A Proposed Unified Digital Id Framework for Access to Electronic Government Services,” J. Phys. Conf. Ser., vol. 1378, no. 4, p. 042039, Dec. 2019, doi: 10.1088/1742-6596/1378/4/042039.

[26] D. A. Oyemade, “Deploying an IoT Enabled Realtime Fire Detection and Alert Model for Residential Homes,” FUPRE J. Sci. Ind. Res., vol. 8, no. 2, pp. 219–229, Feb. 2024. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/285.

[27] P. Manickam et al., “Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare,” Biosensors, vol. 12, no. 8, p. 562, Jul. 2022, doi: 10.3390/bios12080562.

[28] S. Og and L. Ying, “The Internet of Medical Things,” in 2nd International Conference on Machine Learning and Computer Application, 2021, pp. 273–276. [Online]. Available at: https://ieeexplore.ieee.org/document/9736747.

[29] F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 6, pp. 94–100, 2023, doi: 10.14569/IJACSA.2023.0140610.

[30] F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “Sentiment Analysis in Detecting Sophistication and Degradation Cues in Malicious Web Contents,” Kongzhi yu Juece/Control Decis., vol. 38, no. 01, pp. 653–665, 2023. [Online]. Available at: https://www.kzyjc.org/article/sentiment-analysis-in-detecting-sophistication-and-degradation-cues-in-malicious-web-contents.

[31] A. A. Ojugo, M. I. Akazue, P. O. Ejeh, C. Odiakaose, and F. U. Emordi, “DeGATraMoNN: Deep Learning Memetic Ensemble to Detect Spam Threats via a Content-Based Processing,” Kongzhi yu Juece/Control Decis., vol. 38, no. 01, pp. 667–678, 2023. [Online]. Available at: https://www.kzyjc.org/article/degatramonn-deep-learning-memetic-ensemble-to-detect-spam-threats-via-a-content-based-processing.

[32] J. R. Amalraj and R. Lourdusamy, “A Novel Distributed Token-Based Access Control Algorithm Using A Secret Sharing Scheme for Secure Data Access Control,” Int. J. Comput. Networks Appl., vol. 9, no. 4, p. 374, Aug. 2022, doi: 10.22247/ijcna/2022/214501.

[33] E. Ileberi, Y. Sun, and Z. Wang, “A machine learning based credit card fraud detection using GA algorithm for feature selection,” J. Big Data, vol. 9, no. 1, p. 24, Dec. 2022, doi: 10.1186/s40537-022-00573-8.

[34] I. A. Anderson and W. Wood, “Habits and the electronic herd: The psychology behind social media’s successes and failures,” Consum. Psychol. Rev., vol. 4, no. 1, pp. 83–99, Jan. 2021, doi: 10.1002/arcp.1063.

[35] I. Benchaji, S. Douzi, B. El Ouahidi, and J. Jaafari, “Enhanced credit card fraud detection based on attention mechanism and LSTM deep model,” J. Big Data, vol. 8, no. 1, p. 151, Dec. 2021, doi: 10.1186/s40537-021-00541-8.

[36] Y. Gao, S. Zhang, and J. Lu, “Machine Learning for Credit Card Fraud Detection,” in Proceedings of the 2021 1st International Conference on Control and Intelligent Robotics, Jun. 2021, pp. 213–219, doi: 10.1145/3473714.3473749.

[37] A. Ometov et al., “A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges,” Comput. Networks, vol. 193, p. 108074, Jul. 2021, doi: 10.1016/j.comnet.2021.108074.

[38] D. Upadhyay and S. Sampalli, “SCADA (Supervisory Control and Data Acquisition) systems: Vulnerability assessment and security recommendations,” Comput. Secur., vol. 89, p. 101666, Feb. 2020, doi: 10.1016/j.cose.2019.101666.

[39] A. E. Ibor, E. B. Edim, and A. A. Ojugo, “Secure Health Information System with Blockchain Technology,” J. Niger. Soc. Phys. Sci., vol. 5, no. 992, pp. 1–8, 2023, doi: 10.46481/jnsps.2022.992.

[40] A. A. Ojugo and E. O. Ekurume, “Predictive Intelligent Decision Support Model in Forecasting of the Diabetes Pandemic Using a Reinforcement Deep Learning Approach,” Int. J. Educ. Manag. Eng., vol. 11, no. 2, pp. 40–48, Apr. 2021, doi: 10.5815/ijeme.2021.02.05.

[41] S. Sreejith, R. Ramya, R. Roja, and A. S. Kumar, “Smart Bin For Waste Management System,” in 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Mar. 2019, pp. 1079–1082, doi: 10.1109/ICACCS.2019.8728531.

[42] M. Nasser Al-Mhiqani, R. Ahmed, Z. A. Zainal Abidin, and S. N. Isnin, “An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, pp. 573–577, 2021, doi: 10.14569/IJACSA.2021.0120166.

[43] R. A. Alsowail and T. Al-Shehari, “A Multi-Tiered Framework for Insider Threat Prevention,” Electronics, vol. 10, no. 9, p. 1005, Apr. 2021, doi: 10.3390/electronics10091005.

[44] T. Sutikno, M. H. Ar-Rasyid, T. Wahono, and W. Arsadiando, “Internet of things with NodeMCU ESP8266 for MPX-5700AP sensor-based LPG pressure monitoring,” Int. J. Adv. Appl. Sci., vol. 12, no. 3, p. 257, Sep. 2023, doi: 10.11591/ijaas.v12.i3.pp257-264.

[45] S. G. Kong, D. Jin, S. Li, and H. Kim, “Fast fire flame detection in surveillance video using logistic regression and temporal smoothing,” Fire Saf. J., vol. 79, pp. 37–43, Jan. 2016, doi: 10.1016/j.firesaf.2015.11.015.

[46] A. Kim, J. Oh, J. Ryu, and K. Lee, “A Review of Insider Threat Detection Approaches With IoT Perspective,” IEEE Access, vol. 8, pp. 78847–78867, 2020, doi: 10.1109/ACCESS.2020.2990195.

[47] P. T. Kortum and A. Bangor, “Usability Ratings for Everyday Products Measured With the System Usability Scale,” Int. J. Hum. Comput. Interact., vol. 29, no. 2, pp. 67–76, Jan. 2013, doi: 10.1080/10447318.2012.681221.

[48] A. A. Ojugo and A. O. Eboka, “Mitigating Technical Challenges via Redesigning Campus Network for Greater Efficiency, Scalability and Robustness: A Logical View,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 6, pp. 29–45, Dec. 2020, doi: 10.5815/ijmecs.2020.06.03.

[49] A. A. Ojugo et al., “Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 1–11, Oct. 2023, doi: 10.33633/jcta.v1i2.9259.

[50] P. Kanagaraj and M. Parveen, “A Survey on Routing Protocols With Security in Internet of Things,” Int. Virtual Conf. Emerg. Trends Comput., vol. 63, no. 04, pp. 38–111, 2020, [Online]. Available at: https://www.researchgate.net/publication/352678798_Solid_State_Technology_8060_A_Survey_on_Routing_Protocols_With_Security_in_Internet_of_Things.

[51] C. Joshi, J. R. Aliaga, and D. R. Insua, “Insider Threat Modeling: An Adversarial Risk Analysis Approach,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1131–1142, 2021, doi: 10.1109/TIFS.2020.3029898.

[52] R. Joshi and P. S. Vaghela, “Online buying habit: an empirical study of Surat City,” Int. J. Mark. Trends, vol. 21, no. 2, pp. 1–15, 2018. [Online]. Available at: https://www.researchgate.net/publication/305754198_online_buying_habit_an_empirical_study_of_surat_city.

[53] P. Joshi, A. Solomy, A. Suresh, K. Kachroo, and P. Deshmukh, “Smart Fuel Station,” in SSRN Electronic Journal, Apr. 2020, pp. 1–3, doi: 10.2139/ssrn.3572319.

[54] P. A. Zawislak, F. M. Reichert, D. Barbieux, A. M. S. Avila, and N. Pufal, “The dynamic chain of innovation: bounded capabilities and complementarity in agribusiness,” J. Agribus. Dev. Emerg. Econ., vol. 13, no. 5, pp. 657–670, Nov. 2023, doi: 10.1108/JADEE-04-2021-0096.

[55] R. E. Yoro and A. A. Ojugo, “An Intelligent Model Using Relationship in Weather Conditions to Predict Livestock-Fish Farming Yield and Production in Nigeria,” Am. J. Model. Optim., vol. 7, no. 2, pp. 35–41, 2019. [Online]. Available at: https://www.sciepub.com/AJMO/abstract/11179.

[56] R. E. Yoro and A. A. Ojugo, “Quest for Prevalence Rate of Hepatitis-B Virus Infection in the Nigeria: Comparative Study of Supervised Versus Unsupervised Models,” Am. J. Model. Optim. Vol. 7, 2019, Pages 42-48, vol. 7, no. 2, pp. 42–48, Nov. 2019. [Online]. Available at: https://pubs.sciepub.com/ajmo/7/2/2/index.html.

[57] D. Sun, M. Liu, M. Li, Z. Shi, P. Liu, and X. Wang, “DeepMIT: A Novel Malicious Insider Threat Detection Framework based on Recurrent Neural Network,” in 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), May 2021, pp. 335–341, doi: 10.1109/CSCWD49262.2021.9437887.

[58] A. P. Singh and A. Sharma, “A systematic literature review on insider threats,” arXiv, pp. 1–9, Dec. 2022. [Online]. Available at: https://arxiv.org/abs/2212.05347v1.

[59] D. B. A and N. Mangla, “A Novel Network Intrusion Detection System Based on Semi-Supervised Approach for IoT,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 207–216, 2023, doi: 10.14569/IJACSA.2023.0140424.

[60] F. S. Leira, H. H. Helgesen, T. A. Johansen, and T. I. Fossen, “Object detection, recognition, and tracking from UAVs using a thermal camera,” J. F. Robot., vol. 38, no. 2, pp. 242–267, Mar. 2021, doi: 10.1002/rob.21985.

[61] A. A. Ojugo and A. O. Eboka, “Assessing Users Satisfaction and Experience on Academic Websites: A Case of Selected Nigerian Universities Websites,” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 10, pp. 53–61, 2018, doi: 10.5815/ijitcs.2018.10.07.

[62] P. Hakonen, “Detecting Insider Threats Using User and Entity Behavior Analytics,” Jyväskylä: JAMK University of Applied Sciences, pp. 1-72, 2022. [Online]. Available at: https://www.theseus.fi/handle/10024/786079.

[63] H. Zardi and H. Alrajhi, “Anomaly Discover: A New Community-based Approach for Detecting Anomalies in Social Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 912–920, 2023, doi: 10.14569/IJACSA.2023.01404101.

[64] S. Gokarn and A. Choudhary, “Modeling the key factors influencing the reduction of food loss and waste in fresh produce supply chains,” J. Environ. Manage., vol. 294, p. 113063, Sep. 2021, doi: 10.1016/j.jenvman.2021.113063.

[65] B. O. Malasowe, M. I. Akazue, E. A. Okpako, F. O. Aghware, A. A. Ojugo, and D. V. Ojie, “Adaptive Learner-CBT with Secured Fault-Tolerant and Resumption Capability for Nigerian Universities,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 135–142, 2023, doi: 10.14569/IJACSA.2023.0140816.

[66] R. E. Yoro, F. O. Aghware, M. I. Akazue, A. E. Ibor, and A. A. Ojugo, “Evidence of personality traits on phishing attack menace among selected university undergraduates in Nigerian,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1943, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1943-1953.

[67] V. G. Cerf, “On the internet of medical things,” Commun. ACM, vol. 63, no. 8, pp. 5–5, Jul. 2020, doi: 10.1145/3406779.

[68] F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 126–137, 2024, doi: 10.62411/jcta.9539.

[69] B. Akpoyibo, T. Peter, and U. Ifeanyi Destiny, “Development Of A Floating Surface Water Robotic Oil Spillage Surveillance (Swross) System,” GSJ, vol. 10, no. 11, pp. 2214–2230, 2022. [Online]. Available at: www.globalscientificjournal.comwww.globalscientificjournal.comwww.globalscientificjournal.com.

[70] A. O. Okewale, F. Omoruwou, and C. E. Anih, “Production of Biogas from Co-Digestion of Cow Dung, Saw Dust and Maize Husk,” Adv. Chem. Eng. Sci., vol. 08, no. 03, pp. 113–123, Jun. 2018, doi: 10.4236/aces.2018.83008.

[71] A. A. Ojugo and D. O. Otakore, “Redesigning Academic Website for Better Visibility and Footprint: A Case of the Federal University of Petroleum Resources Effurun Website,” Netw. Commun. Technol., vol. 3, no. 1, pp. 33–44, Jul. 2018, doi: 10.5539/nct.v3n1p33.

[72] F. U. Emordi, “Student’s Perception and Assessment of the Dennis Osadebay University Asaba Website for Academic Information Retrieval, Improved Web Presence, Footprints and Usability,” FUPRE J. Sci. Ind. Res., vol. 7, no. 3, pp. 49–60, Sep. 2023. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/227.

[73] A. O. Okewale, F. Omoruwuo, and O. A. Adesina, “Comparative Studies of Response Surface Methodology (RSM) and Predictive Capacity of Artificial Neural Network (ANN) on Mild Steel Corrosion Inhibition using Water Hyacinth as an Inhibitor,” J. Phys. Conf. Ser., vol. 1378, no. 2, p. 022002, Dec. 2019, doi: 10.1088/1742-6596/1378/2/022002.

[74] A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve service delivery and performance dependability on a campus network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp623-635.

[75] E. B. Wijayanti, D. R. I. M. Setiadi, and B. H. Setyoko, “Dataset Analysis and Feature Characteristics to Predict Rice Production based on eXtreme Gradient Boosting,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 79–90, 2024, doi: 10.62411/jcta.10057.

[76] A. A. Ojugo and O. D. Otakore, “Intelligent cluster connectionist recommender system using implicit graph friendship algorithm for social networks,” IAES Int. J. Artif. Intell., vol. 9, no. 3, p. 497~506, 2020, doi: 10.11591/ijai.v9.i3.pp497-506.

[77] S. L. James et al., “Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017,” Lancet, vol. 392, no. 10159, pp. 1789–1858, Nov. 2018, doi: 10.1016/S0140-6736(18)32279-7.

[78] R. F. R. Suleiman, “Gas Station Fuel Storage Tank Monitoring System using Internet of Things,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 1.6, pp. 531–535, Dec. 2019, doi: 10.30534/ijatcse/2019/7881.62019.

[79] O. Zivenko, “Lpg Accounting Specificity During Its Storage And Transportation,” Meas. Equip. Metrol., vol. 80, no. 3, pp. 21–27, 2019, doi: 10.23939/istcmtm2019.03.021.

[80] R. G. Alakbarov and M. A. Hashimov, “Application and Security Issues of Internet of Things in Oil-Gas Industry,” Int. J. Educ. Manag. Eng., vol. 8, no. 6, pp. 24–36, Nov. 2018, doi: 10.5815/ijeme.2018.06.03.

[81] A. A. Ojugo and D. A. Oyemade, “Boyer Moore string-match framework for a hybrid short message service spam filtering technique,” IAES Int. J. Artif. Intell., vol. 10, no. 3, pp. 519–527, Sep. 2021, doi: 10.11591/IJAI.V10.I3.PP519-527.

[82] A. A. Ojugo and A. O. Eboka, “Comparative Evaluation for High Intelligent Performance Adaptive Model for Spam Phishing Detection,” Digit. Technol., vol. 3, no. 1, pp. 9–15, 2018. [Online]. Available at: https://www.sciepub.com/DT/abstract/9742.

[83] O. D. Voke, D. A. M, D. O. E. U, D. O. E.O, and P. I. A, “Survival Prediction of Cervical Cancer Patients using Genetic Algorithm-Based Data Value Metric and Recurrent Neural Network,” Int. J. Soft Comput. Eng., vol. 13, no. 2, pp. 29–41, May 2023, doi: 10.35940/ijsce.B3608.0513223.

[84] E. U. Omede, A. Edje, M. I. Akazue, H. Utomwen, and A. A. Ojugo, “IMANoBAS: An Improved Multi-Mode Alert Notification IoT-based Anti-Burglar Defense System,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 43–53, 2024, doi: 10.33633/jcta.v2i1.9541.

[85] D. A. Oyemade, R. J. Ureigho, F. . Imouokhome, E. U. Omoregbee, J. Akpojaro, and A. A. Ojugo, “A Three Tier Learning Model for Universities in Nigeria,” J. Technol. Soc., vol. 12, no. 2, pp. 9–20, 2016, doi: 10.18848/2381-9251/CGP/v12i02/9-20.

[86] M. I. Akazue, R. E. Yoro, B. O. Malasowe, O. Nwankwo, and A. A. Ojugo, “Improved services traceability and management of a food value chain using block-chain network : a case of Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 29, no. 3, pp. 1623–1633, 2023, doi: 10.11591/ijeecs.v29.i3.pp1623-1633.

[87] I. P. Okobah and A. A. Ojugo, “Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence,” Int. J. Comput. Appl., vol. 179, no. 39, pp. 34–43, 2018, doi: 10.5120/ijca2018916586.

[88] K. Kakhi, R. Alizadehsani, H. M. D. Kabir, A. Khosravi, S. Nahavandi, and U. R. Acharya, “The internet of medical things and artificial intelligence: trends, challenges, and opportunities,” Biocybern. Biomed. Eng., vol. 42, no. 3, pp. 749–771, 2022, doi: 10.1016/j.bbe.2022.05.008.

[89] F. Emordi et al., “TiSPHiMME: Time Series Profile Hidden Markov Ensemble in Resolving Item Location on Shelf Placement in Basket Analysis,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 12, no. 1, pp. 33–48, Mar. 2024, doi: 10.22624/AIMS/DIGITAL/V11N4P3.

[90] A. A. Ojugo and R. E. Yoro, “Extending the three-tier constructivist learning model for alternative delivery: ahead the COVID-19 pandemic in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1673, Mar. 2021, doi: 10.11591/ijeecs.v21.i3.pp1673-1682.

[91] C. C. Odiakaose et al., “DeLEMPaD: Pilot Study on a Deep Learning Ensemble for Energy Market Prediction of Price Volatility and Direction,” Comput. Inf. Syst. Dev. Informatics Allied Res. J., vol. 15, no. 1, pp. 47–62, 2024. [Online]. Available at: https://www.researchgate.net/publication/379654171_DeLEMPaD_Pilot_Study_on_a_Deep_Learning_Ensemble_for_Energy_Market_Prediction_of_Price_Volatility_and_Direction_Computing_Information_Systems.

[92] G. TekalignTujo, G. Dileep Kumar, D. ElifeneshYitagesu, and B. MeseretGirma, “Predictive Model to Predict Seed Classes using Machine Learning,” Int. J. Eng. Res. & Technol., vol. 6, no. 08, pp. 334–344, 2017. [Online]. Available at: https://www.ijert.org/research/a-predictive-model-to-predict-seed-classes-using-machine-learning-IJERTV6IS080153.pdf.

[93] Q. Li et al., “An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis,” Comput. Math. Methods Med., vol. 2017, pp. 1–15, 2017, doi: 10.1155/2017/9512741.

[94] F. Mustofa, A. N. Safriandono, A. R. Muslikh, and D. R. I. M. Setiadi, “Dataset and Feature Analysis for Diabetes Mellitus Classification using Random Forest,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 41–48, 2023, doi: 10.33633/jcta.v1i1.9190.

[95] A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “Rice Disease Recognition using Transfer Learning Xception Convolutional Neural Network,” J. Tek. Inform., vol. 4, no. 6, pp. 1535–1540, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1529.

[96] A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Quest For Convergence Solution Using Hybrid Genetic Algorithm Trained Neural Network Model For Metamorphic Malware Detection,” ARRUS J. Eng. Technol., vol. 2, no. 1, pp. 12–23, Nov. 2021, doi: 10.35877/jetech613.

[97] A. A. Ojugo and A. O. Eboka, “An Empirical Evaluation On Comparative Machine Learning Techniques For Detection of The Distributed Denial of Service (DDoS) Attacks,” J. Appl. Sci. Eng. Technol. Educ., vol. 2, no. 1, pp. 18–27, 2020, doi: 10.35877/454ri.asci2192.

[98] I. E.I., A. M.I., O. Edith, and O. Deborah, “A Framework for Smart City Model Enabled by Internet of Things (IoT),” Int. J. Comput. Appl., vol. 185, no. 6, pp. 6–11, May 2023, doi: 10.5120/ijca2023922685.

[99] A. A. Ojugo and R. E. Yoro, “Forging A Smart Dependable Data Integrity And Protection System Through Hybrid-Integration Honeypot In Web and Database Server,” Technol. Reports Kansai Univ., vol. 62, no. 08, pp. 5933–5947, 2020. [Online]. Available at: https://www.kansaiuniversityreports.com/article/forging-a-smart-dependable-data-integrity-and-protection-system-through-hybrid-integration-honeypot-in-web-and-database-server.

[100] A. A. Ojugo. et al., “Robust Cellular Network for Rural Telephony in Southern Nigeria,” Am. J. Networks Commun. 2013, Vol. 2, Page 125, vol. 2, no. 5, pp. 125–132, Nov. 2013, doi: 10.11648/J.AJNC.20130205.12.

[101] A. A. Ojugo., “Technical Issues for IP-Based Telephony in Nigeria,” Int. J. Wirel. Commun. Mob. Comput., vol. 1, no. 2, p. 58, Jul. 2013, doi: 10.11648/j.wcmc.20130102.11.

[102] D. S. Charan, H. Nadipineni, S. Sahayam, and U. Jayaraman, “Method to Classify Skin Lesions using Dermoscopic images,” arXiv., pp. 1-16, Aug. 2020. [Online]. Available at: https://arxiv.org/abs/2008.09418.

[103] A. A. Ojugo and E. O. Ekurume, “Deep Learning Network Anomaly-Based Intrusion Detection Ensemble For Predictive Intelligence To Curb Malicious Connections: An Empirical Evidence,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2090–2102, Jun. 2021, doi: 10.30534/ijatcse/2021/851032021.

[104] S. R. Guntur, R. R. Gorrepati, and V. R. Dirisala, “Internet of Medical Things,” in Medical Big Data and Internet of Medical Things, no. October 2018, Boca Raton : Taylor & Francis, [2019]: CRC Press, 2018, pp. 271–297, doi: 10.1201/9781351030380-11.

[105] R. Kasana et al., “Fuzzy-Based Channel Selection for Location Oriented Services in Multichannel VCPS Environments,” IEEE Internet Things J., vol. 5, no. 6, pp. 4642–4651, Dec. 2018, doi: 10.1109/JIOT.2018.2796639.

[106] H. A. Ibrahim and H. S. Syed, “Hazard Analysis of Crude Oil Storage Tank Farm,” Int. J. ChemTech Res., vol. 11, no. 11, pp. 300–308, 2018, doi: 10.20902/IJCTR.2018.111132.

[107] J. Louis and P. S. Dunston, “Integrating IoT into operational workflows for real-time and automated decision-making in repetitive construction operations,” Autom. Constr., vol. 94, pp. 317–327, Oct. 2018, doi: 10.1016/j.autcon.2018.07.005.

[108] A. A. Ojugo and O. D. Otakore, “Computational solution of networks versus cluster grouping for social network contact recommender system,” Int. J. Informatics Commun. Technol., vol. 9, no. 3, p. 185, 2020, doi: 10.11591/ijict.v9i3.pp185-194.

[109] A. Adimabua Ojugo, “Dependable Community-Cloud Framework for Smartphones,” Am. J. Networks Commun., vol. 4, no. 4, p. 95, Aug. 2015, doi: 10.11648/j.ajnc.20150404.13.

[110] A. A. Ojugo and A. O. Eboka, “Modeling the Computational Solution of Market Basket Associative Rule Mining Approaches Using Deep Neural Network,” Digit. Technol., vol. 3, no. 1, pp. 1–8, 2018, doi: 10.12691/dt-3-1-1.

[111] P. Naveen kumar, P. Kumaresan, and Y. Babu Sundaresan, “IoT based retail automation of fuel station and alert system,” IOP Conf. Ser. Mater. Sci. Eng., vol. 263, no. 4, p. 042072, Nov. 2017, doi: 10.1088/1757-899X/263/4/042072.

[112] S. Nazir, S. Patel, and D. Patel, “Assessing and augmenting SCADA cyber security: A survey of techniques,” Comput. Secur., vol. 70, pp. 436–454, Sep. 2017, doi: 10.1016/j.cose.2017.06.010.

[113] B. Bengherbia, S. Chadli, M. O. Zmirli, and A. Toubal, “A MicroBlaze based WSN sink node using XBee transceiver,” in 2016 8th International Conference on Modelling, Identification and Control (ICMIC), Nov. 2016, pp. 831–834, doi: 10.1109/ICMIC.2016.7804229.

[114] E. Adishi, P. O. Ejeh, E. Okoro, and A. Jisu, “Reinforcement deep learning memetic algorithm for detection of short messaging services spam using filters to curb insider threats in organizations,” FUPRE J. Sci. Ind. Res., vol. 6, no. 3, pp. 80–94, 2022. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/225.

[115] P. O. Ejeh, E. Adishi, E. Okoro, and A. Jisu, “Hybrid integration of organizational honeypot to aid data integration, protection and organizational resources and dissuade insider threat,” FUPRE J. Sci. Ind. Res., vol. 6, no. 3, pp. 80–94, 2022. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/228.

[116] A. A. Ojugo et al., “CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 37–47, 2023, doi: 10.33633/jcta.v1i2.9355.

[117] F. O. Aghware et al., “Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 190–203, 2024, doi: 10.62411/jcta.10323.

[118] A. A. Ojugo, A. O. Eboka, R. E. Yoro, M. O. Yerokun, and F. N. Efozia, “Framework design for statistical fraud detection,” Math. Comput. Sci. Eng. Ser., vol. 50, pp. 176–182, 2015, [Online]. Available at: https://www.inase.org/library/2015/books/bypaper/MCSI/MCSI-33.pdf.

[119] A. A. Ojugo, A. O. Eboka, E. O. Okonta, R. E. Yoro, and F. O. Aghware, “Predicting Behavioural Evolution on a Graph-Based Model,” Adv. Networks, vol. 3, no. 2, p. 8, 2015, doi: 10.11648/j.net.20150302.11.

[120] A. A. Ojugo and A. O. Eboka, “Inventory prediction and management in Nigeria using market basket analysis associative rule mining: memetic algorithm based approach,” Int. J. Informatics Commun. Technol., vol. 8, no. 3, p. 128, 2019, doi: 10.11591/ijict.v8i3.pp128-138.

[121] G. Barker, The Engineer’s Guide to Plant Layout and Piping Design for the Oil and Gas Industries. Elsevier, pp. 1-510, 2018. [Online]. Available at: http://www.sciencedirect.com:5070/book/9780128146538/the-engineers-guide-to-plant-layout-and-piping-design-for-the-oil-and-gas-industries?via=ihub=.

[122] R. Braddock and C. Chambers, “Tank gauging systems used for bulk storage of gasoline,” Inst. Chem. Eng. Symp. Ser., no. 156, pp. 553–559, 2011, [Online]. Available at: https://www.icheme.org/media/9288/xxii-paper-77.pdf.

[123] J. Figueiredo, M. A. Botto, and M. Rijo, “SCADA system with predictive controller applied to irrigation canals,” Control Eng. Pract., vol. 21, no. 6, pp. 870–886, Jun. 2013, doi: 10.1016/j.conengprac.2013.01.008.

[124] O. Okonta, U. Wemembu, A. Ojugo, and D. Ajani, “Deploying Java Platform to Design a Framework of Protective Shield for Anti– Reversing Engineering,” West African J. Ind. Acad. Res., vol. 10, no. 1, pp. 52–67, Jul. 2014. [Online]. Available at: https://www.ajol.info/index.php/wajiar/article/view/105790.

[125] O. Emmanuel, A. Arnold, W. Uchenna Raphael, and A. Dele, “Embedding Quality Function Deployment In Software Development: A Novel Approach,” West African J. Ind. Acad. Res., vol. 6, no. 1, pp. 50–64, Apr. 2013. [Online]. Available at: https://www.ajol.info/index.php/wajiar/article/view/87437.

[126] U. Raphael, O. Emmanuel, A. Adimabua, and I. Love, “A Framework for Effective Software Monitoring in Project Management,” West African J. Ind. Acad. Res., vol. 10, no. 1, pp. 102–115, Jul. 2014. [Online]. Available at: https://www.ajol.info/index.php/wajiar/article/view/105798.

[127] D. Uckelmann, M. Harrison, and F. Michahelles, “An Architectural Approach Towards the Future Internet of Things,” in Architecting the Internet of Things, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–24, doi: 10.1007/978-3-642-19157-2_1.

[128] J. I. Chang and C.-C. Lin, “A study of storage tank accidents,” J. Loss Prev. Process Ind., vol. 19, no. 1, pp. 51–59, Jan. 2006, doi: 10.1016/j.jlp.2005.05.015


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Victor Ochuko Geteloma, Fidelis Obukohwo Aghware, Wilfred Adigwe, Chukwufunaya Chris Odiakaose, Nwanze Chukwudi Ashioba, Margareth Dumebi Okpor, Arnold Adimabua Ojugo, Patrick Ogholuwarami Ejeh, Rita Erhovwo Ako, Emmanuel Obiajulu Ojei

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan

View My Stats AET
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.