(2) Fidelis Obukohwo Aghware (Department of Computer Science, Faculty of Computing, University of Delta Agbor, Nigeria)
(3) Wilfred Adigwe (Department of Computer Science, Faculty of Information Technology, Delta State University of Science and Technology Ozoro, Nigeria)
(4) Chukwufunaya Chris Odiakaose (Department of Computer Science, Faculty of Information Technology, Dennis Osadebay University Anwai-Asaba, Nigeria)
(5) Nwanze Chukwudi Ashioba (Department of Computer Science, Faculty of Information Technology, Dennis Osadebay University Anwai-Asaba, Nigeria)
(6) Margareth Dumebi Okpor (Department of Computer Science, Faculty of Information Technology, Delta State University of Science and Technology Ozoro, Nigeria)
(7) Arnold Adimabua Ojugo (Department of Computer Science, College of Compuitng, Federal University of Petroleum Resources Effurun, Nigeria)
(8) Patrick Ogholuwarami Ejeh (Department of Computer Science, Faculty of Information Technology, Dennis Osadebay University Anwai-Asaba, Nigeria)
(9) Rita Erhovwo Ako (Department of Computer Science, College of Compuitng, Federal University of Petroleum Resources Effurun, Nigeria)
(10) Emmanuel Obiajulu Ojei (Department of Computer Science, Faculty of Information Technology, Delta State University of Science and Technology Ozoro, Nigeria)
*corresponding author
AbstractCustomer retention and monetization have since been the pillar of many successful firms and businesses as keeping an old customer is far more economical than gaining a new one – which, in turn, reduce customer churn rate. Previous studies have focused on the use of single heuristics as well as provisioned no retention strategy. To curb this, our study posits the use of the recen-cy-frequency-monetization framework as strategy for customer retention and monetization impacts. With dataset retrieved from Kaggle, and partitioned into train and test dataset/folds to ease model construction and training. Study adopt a tree-based Random Forest ensemble with synthetic minority oversampling technique edited nearest neighbor (SMOTEEN). Various benchmark models were trained to asssess how well each performs against our proposed ensemble. The application was tested using an application programming interface Flask and integrated using streamlit into a device. Our RF-ensemble resulted in a 0.9902 accuracy prior to applying SMOTEENN; while, LR, KNN, Naïve Bayes and SVM yielded an accuracy of 0.9219, 0.9435, 0.9508 and 0.9008 respectively. With SMOTEENN applied, our ensemble had an accuracy of 0.9919; while LR, KNN, Naïve Bayes, and SVM yielded an accuracy of 0.9805, 0.921, 0.9125, and 0.8145 respectively. RF has shown it can be implemented with SMOTEENN to yield enhanced prediction for customer churn prediction using Python
KeywordsCustomer Attrition; Churn Prediction; Retention strategy; Virtual shops; subscription-based services
|
DOIhttps://doi.org/10.31763/aet.v3i1.1408 |
Article metrics10.31763/aet.v3i1.1408 Abstract views : 318 | PDF views : 129 |
Cite |
Full TextDownload |
References
[1] C. C. Odiakaose et al., “DeLEMPaD: Pilot Study on a Deep Learning Ensemble for Energy Market Prediction of Price Volatility and Direction,” Comput. Inf. Syst. Dev. Informatics Allied Res. J., vol. 15, no. 1, pp. 47–62, 2024. [Online]. Available at: https://www.researchgate.net/publication/379654171_DeLEMPaD_Pilot_Study_on_a_Deep_Learning_Ensemble_for_Energy_Market_Prediction_of_Price_Volatility_and_Direction_Computing_Information_Systems.
[2] F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 126–137, 2024, doi: 10.62411/jcta.9539.
[3] M. I. Akazue et al., “Handling Transactional Data Features via Associative Rule Mining for Mobile Online Shopping Platforms,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 530–538, 2024, doi: 10.14569/IJACSA.2024.0150354.
[4] A. A. Ojugo and A. O. Eboka, “Inventory prediction and management in Nigeria using market basket analysis associative rule mining: memetic algorithm based approach,” Int. J. Informatics Commun. Technol., vol. 8, no. 3, p. 128, 2019, doi: 10.11591/ijict.v8i3.pp128-138.
[5] M. I. Akazue, I. A. Debekeme, A. E. Edje, C. Asuai, and U. J. Osame, “UNMASKING FRAUDSTERS : Ensemble Features Selection to Enhance Random Forest Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 201–212, 2023, doi: 10.33633/jcta.v1i2.9462.
[6] A. E. Ibor, E. B. Edim, and A. A. Ojugo, “Secure Health Information System with Blockchain Technology,” J. Niger. Soc. Phys. Sci., vol. 5, no. 992, pp. 1–8, 2023, doi: 10.46481/jnsps.2022.992.
[7] P. O. Ejeh, E. Adishi, E. Okoro, and A. Jisu, “Hybrid integration of organizational honeypot to aid data integration, protection and organizational resources and dissuade insider threat,” FUPRE J. Sci. Ind. Res., vol. 6, no. 3, pp. 80–94, 2022. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/228.
[8] A. A. Ojugo, M. I. Akazue, P. O. Ejeh, C. Odiakaose, and F. U. Emordi, “DeGATraMoNN: Deep Learning Memetic Ensemble to Detect Spam Threats via a Content-Based Processing,” Kongzhi yu Juece/Control Decis., vol. 38, no. 01, pp. 667–678, 2023. [Online]. Available at: https://www.researchgate.net/publication/374874600_DeGATraMoNN_Deep_learning_memetic_ensemble_to_detect_spam_threats_via_a_content-based_processing.
[9] A. A. Ojugo and R. E. Yoro, “Predicting Futures Price And Contract Portfolios Using The ARIMA Model: A Case of Nigeria’s Bonny Light and Forcados,” Quant. Econ. Manag. Stud., vol. 1, no. 4, pp. 237–248, Aug. 2020, doi: 10.35877/454RI.qems139.
[10] S. S. Jacob and S. Monachan, “A study on consumer perception towards online shopping,” Int. J. Res., vol. 8, no. 6, pp. 37–47, 2021. [Online]. Available at: https://ijrjournal.com/index.php/ijr/article/view/67.
[11] A. Izang, N. Goga, S. O., O. D., A. A., and A. K., “Scalable Data Analytics Market Basket Model for Transactional Data Streams,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 10, 2019, doi: 10.14569/IJACSA.2019.0101010.
[12] A. Rejeb, J. G. Keogh, and H. Treiblmaier, “How Blockchain Technology Can Benefit Marketing: Six Pending Research Areas,” Front. Blockchain, vol. 3, no. 3, p. 500660, Feb. 2020, doi: 10.3389/fbloc.2020.00003.
[13] R. Raj, S. Gupta, R. Mishra, and M. Malik, “Efficacy of Customer Churn Prediction System,” in 2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT), Apr. 2024, pp. 546–553, doi: 10.1109/CCICT62777.2024.00091.
[14] Jayalekshmi and K.R., “A Comparative Analysis of Predictive Models Using Machine Learning Algorithms for Customer Attrition in the Mobile Telecom Sector,” Online J. Distance Educ. e-Learning, vol. 11, no. 1, pp. 362–367, 2023, [Online]. Available at: https://scholar.googleusercontent.com/scholar.bib?q=info:qNXDZ3WHbEJ:scholar.google.com/&output.
[15] U. Gani Joy, K. E. Hoque, M. Nazim Uddin, L. Chowdhury, and S.-B. Park, “A Big Data-Driven Hybrid Model for Enhancing Streaming Service Customer Retention Through Churn Prediction Integrated With Explainable AI,” IEEE Access, vol. 12, pp. 69130–69150, 2024, doi: 10.1109/ACCESS.2024.3401247.
[16] I. P. Okobah and A. A. Ojugo, “Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence,” Int. J. Comput. Appl., vol. 179, no. 39, pp. 34–43, 2018, doi: 10.5120/ijca2018916586.
[17] C. Wright and A. Serguieva, “Sustainable blockchain-enabled services: Smart contracts,” in 2017 IEEE International Conference on Big Data (Big Data), Dec. 2017, pp. 4255–4264, doi: 10.1109/BigData.2017.8258452.
[18] A. A. Ojugo et al., “Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 1–11, Oct. 2023, doi: 10.33633/jcta.v1i2.9259.
[19] I. Benchaji, S. Douzi, B. El Ouahidi, and J. Jaafari, “Enhanced credit card fraud detection based on attention mechanism and LSTM deep model,” J. Big Data, vol. 8, no. 1, p. 151, Dec. 2021, doi: 10.1186/s40537-021-00541-8.
[20] A. A. Ojugo and R. E. Yoro, “Forging a deep learning neural network intrusion detection framework to curb the distributed denial of service attack,” Int. J. Electr. Comput. Eng., vol. 11, no. 2, pp. 1498–1509, 2021, doi: 10.11591/ijece.v11i2.pp1498-1509.
[21] F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 6, pp. 94–100, 2023, doi: 10.14569/IJACSA.2023.0140610.
[22] L. E. Mukhanov, “Using bayesian belief networks for credit card fraud detection,” Proc. IASTED Int. Conf. Artif. Intell. Appl. AIA 2008, no. February 2008, pp. 221–225, 2008. [Online]. Available at: https://www.researchgate.net/publication/262175453_Using_Bayesian_Belief_Networks_for_credit_card_fraud_detection.
[23] A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve service delivery and performance dependability on a campus network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp623-635.
[24] A. A. Ojugo and O. D. Otakore, “Forging An Optimized Bayesian Network Model With Selected Parameters For Detection of The Coronavirus In Delta State of Nigeria,” J. Appl. Sci. Eng. Technol. Educ., vol. 3, no. 1, pp. 37–45, Apr. 2021, doi: 10.35877/454RI.asci2163.
[25] E. R. Altman, “Synthesizing Credit Card Transactions,” PeerJ Comput. Sci., vol. 14, pp. 1-9, Oct. 2019, doi: 10.1145/3490354.3494378.
[26] A. A. Ojugo and D. A. Oyemade, “Boyer Moore string-match framework for a hybrid short message service spam filtering technique,” IAES Int. J. Artif. Intell., vol. 10, no. 3, pp. 519–527, Sep. 2021, doi: 10.11591/IJAI.V10.I3.PP519-527.
[27] M. I. Akazue, R. E. Yoro, B. O. Malasowe, O. Nwankwo, and A. A. Ojugo, “Improved services traceability and management of a food value chain using block-chain network : a case of Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 29, no. 3, pp. 1623–1633, 2023, doi: 10.11591/ijeecs.v29.i3.pp1623-1633.
[28] E. Ileberi, Y. Sun, and Z. Wang, “A machine learning based credit card fraud detection using GA algorithm for feature selection,” J. Big Data, vol. 9, no. 1, p. 24, Dec. 2022, doi: 10.1186/s40537-022-00573-8.
[29] R. E. Yoro, F. O. Aghware, M. I. Akazue, A. E. Ibor, and A. A. Ojugo, “Evidence of personality traits on phishing attack menace among selected university undergraduates in Nigerian,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1943, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1943-1953.
[30] C. Li, N. Ding, H. Dong, and Y. Zhai, “Application of Credit Card Fraud Detection Based on CS-SVM,” Int. J. Mach. Learn. Comput., vol. 11, no. 1, pp. 34–39, 2021, doi: 10.18178/ijmlc.2021.11.1.1011.
[31] E. A. L. Marazqah Btoush, X. Zhou, R. Gururajan, K. C. Chan, R. Genrich, and P. Sankaran, “A systematic review of literature on credit card cyber fraud detection using machine and deep learning,” PeerJ Comput. Sci., vol. 9, p. e1278, Apr. 2023, doi: 10.7717/peerj-cs.1278.
[32] S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang, and C. Jiang, “Random forest for credit card fraud detection,” in 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Mar. 2018, pp. 1–6, doi: 10.1109/ICNSC.2018.8361343.
[33] M. I. Akazue, C. Asuai, A. E. Edje, and E. Omede, “Cybershield: harnessing ensemble feature selection technique for robust distributed denial of service,” Kongzhi yu Juece/Control Decis., vol. 38, no. August, pp. 1211–1224, 2023. [Online]. Available at: https://www.researchgate.net/publication/373091837.
[34] A. A. Ojugo and O. D. Otakore, “Improved Early Detection of Gestational Diabetes via Intelligent Classification Models: A Case of the Niger Delta Region in Nigeria,” J. Comput. Sci. Appl., vol. 6, no. 2, pp. 82–90, 2018. [Online]. Available at: https://pubs.sciepub.com/jcsa/6/2/5/index.html.
[35] Y. Abakarim, M. Lahby, and A. Attioui, “An Efficient Real Time Model For Credit Card Fraud Detection Based On Deep Learning,” in International Conference on Intelligent Systems, Oct. 2018, pp. 1–7, doi: 10.1145/3289402.3289530.
[36] A. A. Ojugo and E. O. Ekurume, “Predictive Intelligent Decision Support Model in Forecasting of the Diabetes Pandemic Using a Reinforcement Deep Learning Approach,” Int. J. Educ. Manag. Eng., vol. 11, no. 2, pp. 40–48, Apr. 2021, doi: 10.5815/ijeme.2021.02.05.
[37] A. A. Ojugo and O. Nwankwo, “Spectral-Cluster Solution For Credit-Card Fraud Detection Using A Genetic Algorithm Trained Modular Deep Learning Neural Network,” JINAV J. Inf. Vis., vol. 2, no. 1, pp. 15–24, Jan. 2021, doi: 10.35877/454RI.jinav274.
[38] A. A. Ojugo and E. O. Ekurume, “Deep Learning Network Anomaly-Based Intrusion Detection Ensemble For Predictive Intelligence To Curb Malicious Connections: An Empirical Evidence,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2090–2102, Jun. 2021, doi: 10.30534/ijatcse/2021/851032021.
[39] A. A. Ojugo and A. O. Eboka, “Assessing Users Satisfaction and Experience on Academic Websites: A Case of Selected Nigerian Universities Websites,” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 10, pp. 53–61, 2018, doi: 10.5815/ijitcs.2018.10.07.
[40] O. Sinayobye, R. Musabe, A. Uwitonze, and A. Ngenzi, “A Credit Card Fraud Detection Model Using Machine Learning Methods with a Hybrid of Undersampling and Oversampling for Handling Imbalanced Datasets for High Scores,” 2023, pp. 142–155, doi: 10.1007/978-3-031-34222-6_12.
[41] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine Learning for Anomaly Detection: A Systematic Review,” IEEE Access, vol. 9, pp. 78658–78700, 2021, doi: 10.1109/ACCESS.2021.3083060.
[42] J. Femila Roseline, G. Naidu, V. Samuthira Pandi, S. Alamelu alias Rajasree, and D. N. Mageswari, “Autonomous credit card fraud detection using machine learning approach☆,” Comput. Electr. Eng., vol. 102, p. 108132, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108132.
[43] A. A. Ojugo and A. O. Eboka, “Empirical Evidence of Socially-Engineered Attack Menace Among Undergraduate Smartphone Users in Selected Universities in Nigeria,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2103–2108, Jun. 2021, doi: 10.30534/ijatcse/2021/861032021.
[44] A. S. Pillai, “Multi-Label Chest X-Ray Classification via Deep Learning,” J. Intell. Learn. Syst. Appl., vol. 14, pp. 43–56, 2022, doi: 10.4236/jilsa.2022.144004.
[45] D. S. Charan, H. Nadipineni, S. Sahayam, and U. Jayaraman, “Method to Classify Skin Lesions using Dermoscopic images,” arXiv., pp. 1-16, Aug. 2020, doi: 10.48550/arXiv.2008.09418.
[46] N. Rtayli and N. Enneya, “Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization,” J. Inf. Secur. Appl., vol. 55, p. 102596, Dec. 2020, doi: 10.1016/j.jisa.2020.102596.
[47] V. N. Dornadula and S. Geetha, “Credit Card Fraud Detection using Machine Learning Algorithms,” Procedia Comput. Sci., vol. 165, pp. 631–641, 2019, doi: 10.1016/j.procs.2020.01.057.
[48] K. Kakhi, R. Alizadehsani, H. M. D. Kabir, A. Khosravi, S. Nahavandi, and U. R. Acharya, “The internet of medical things and artificial intelligence: trends, challenges, and opportunities,” Biocybern. Biomed. Eng., vol. 42, no. 3, pp. 749–771, 2022, doi: 10.1016/j.bbe.2022.05.008.
[49] H. Said, B. B. S. Tawfik, and M. A. Makhlouf, “A Deep Learning Approach for Sentiment Classification of COVID-19 Vaccination Tweets,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 530–538, 2023, doi: 10.14569/IJACSA.2023.0140458.
[50] O. V. Lee et al., “A malicious URLs detection system using optimization and machine learning classifiers,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, p. 1210, Mar. 2020, doi: 10.11591/ijeecs.v17.i3.pp1210-1214.
[51] X. Ying, “An Overview of Overfitting and its Solutions,” J. Phys. Conf. Ser., vol. 1168, no. 2, 2019, doi: 10.1088/1742-6596/1168/2/022022.
[52] G. Behboud, “Reasoning using Modular Neural Network,” Towar. Data Sci., vol. 34, no. 2, pp. 12–34, 2020. [Online]. Available at: https://towardsdatascience.com/reasoning-using-modular-neural-networks-f003cb6109a2.
[53] R. Nasir, M. Afzal, R. Latif, and W. Iqbal, “Behavioral Based Insider Threat Detection Using Deep Learning,” IEEE Access, vol. 9, pp. 143266–143274, 2021, doi: 10.1109/ACCESS.2021.3118297.
[54] A. A. Ojugo and A. O. Eboka, “Modeling the Computational Solution of Market Basket Associative Rule Mining Approaches Using Deep Neural Network,” Digit. Technol., vol. 3, no. 1, pp. 1–8, 2018, doi: 10.12691/dt-3-1-1.
[55] A. A. Ojugo and D. O. Otakore, “Redesigning Academic Website for Better Visibility and Footprint: A Case of the Federal University of Petroleum Resources Effurun Website,” Netw. Commun. Technol., vol. 3, no. 1, pp. 33–44, Jul. 2018, doi: 10.5539/nct.v3n1p33.
[56] P. . Maya Gopal and Bhargavi R, “Feature Selection for Yield Prediction Using BORUTA Algorithm,” Int. J. Pure Appl. Math., vol. 118, no. 22, pp. 139–144, 2018. [Online]. Available at: https://acadpubl.eu/hub/2018-118-22/articles/22a/19.pdf.
[57] R. G. Bhati, “A Survey on Sentiment Analysis Algorithms and Datasets,” Rev. Comput. Eng. Res., vol. 6, no. 2, pp. 84–91, 2019, doi: 10.18488/journal.76.2019.62.84.91.
[58] A. A. Ojugo and O. D. Otakore, “Computational solution of networks versus cluster grouping for social network contact recommender system,” Int. J. Informatics Commun. Technol., vol. 9, no. 3, p. 185, 2020, doi: 10.11591/ijict.v9i3.pp185-194.
[59] A. A. Ojugo and A. O. Eboka, “An Empirical Evaluation On Comparative Machine Learning Techniques For Detection of The Distributed Denial of Service (DDoS) Attacks,” J. Appl. Sci. Eng. Technol. Educ., vol. 2, no. 1, pp. 18–27, 2020, doi: 10.35877/454ri.asci2192.
[60] M. N. Al-Mhiqani, S. N. Isnin, R. Ahmed, and Z. Z. Abidi, “An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, pp. 1–5, 2021, doi: 10.14569/IJACSA.2021.0120166.
[61] F. O. Aghware et al., “Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 190–203, 2024, doi: 10.62411/jcta.10323.
[62] H. Zardi and H. Alrajhi, “Anomaly Discover: A New Community-based Approach for Detecting Anomalies in Social Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 912–920, 2023, doi: 10.14569/IJACSA.2023.01404101.
[63] B. Ghaffari and Y. Osman, “Customer churn prediction using machine learning: A study in the B2B subscription based service context,” Faculty of Computing, Blekinge Institute of Technology, Sweden, 2021, pp. 1-49. [Online]. Available at: https://www.diva-portal.org/smash/record.jsf?pid.
[64] M. Barlaud, A. Chambolle, and J.-B. Caillau, “Robust supervised classification and feature selection using a primal-dual method,” arXiv., pp. 1-25, Feb. 2019. [Online]. Available at: https://arxiv.org/abs/1902.01600.
[65] E. U. Omede, A. Edje, M. I. Akazue, H. Utomwen, and A. A. Ojugo, “IMANoBAS: An Improved Multi-Mode Alert Notification IoT-based Anti-Burglar Defense System,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 43–53, 2024, doi: 10.33633/jcta.v2i1.9541.
[66] A. R. Muslikh, I. D. R. M. Setiadi, and A. A. Ojugo, “Rice disease recognition using transfer xception convolution neural network,” J. Tek. Inform., vol. 4, no. 6, pp. 1541–1547, 2023, doi: 10.52436/1.jutif.2023.4.6.1529.
[67] A. O. Eboka and A. A. Ojugo, “Mitigating technical challenges via redesigning campus network for greater efficiency, scalability and robustness: A logical view,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 6, pp. 29–45, 2020, doi: 10.5815/ijmecs.2020.06.03.
[68] A. A. Ojugo and A. O. Eboka, “Memetic algorithm for short messaging service spam filter using text normalization and semantic approach,” Int. J. Informatics Commun. Technol., vol. 9, no. 1, p. 9, 2020, doi: 10.11591/ijict.v9i1.pp9-18.
[69] A. A. Ojugo and A. O. Eboka, “Comparative Evaluation for High Intelligent Performance Adaptive Model for Spam Phishing Detection,” Digit. Technol., vol. 3, no. 1, pp. 9–15, 2018. [Online]. Available at: https://www.sciepub.com/DT/abstract/9742.
[70] M. Armstrong and J. Vickers, “Patterns of Price Competition and the Structure of Consumer Choice,” MPRA Pap., vol. 1, no. 98346, pp. 1–40, 2020. [Online]. Available at: https://mpra.ub.uni-muenchen.de/98346/1/MPRA_paper_98346.pdf.
[71] B. N. Supriya and C. B. Akki, “Sentiment prediction using enhanced xgboost and tailored random forest,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 191–199, 2021, doi: 10.12785/ijcds/100119.
[72] S. Meghana, B. . Charitha, S. Shashank, V. S. Sulakhe, and V. B. Gowda, “Developing An Application for Identification of Missing Children and Criminal Using Face Recognition.,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 12, no. 6, pp. 272–279, 2023, doi: 10.17148/ijarcce.2023.12648.
[73] Sharmila, R. Sharma, D. Kumar, V. Puranik, and K. Gautham, “Performance Analysis of Human Face Recognition Techniques,” Proc. - 2019 4th Int. Conf. Internet Things Smart Innov. Usages, IoT-SIU 2019, no. May 2020, pp. 1–4, 2019, doi: 10.1109/IoT-SIU.2019.8777610.
[74] R. E. Yoro, F. O. Aghware, B. O. Malasowe, O. Nwankwo, and A. A. Ojugo, “Assessing contributor features to phishing susceptibility amongst students of petroleum resources varsity in Nigeria,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1922, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1922-1931.
[75] A. A. Ojugo and O. D. Otakore, “Intelligent cluster connectionist recommender system using implicit graph friendship algorithm for social networks,” IAES Int. J. Artif. Intell., vol. 9, no. 3, p. 497~506, 2020, doi: 10.11591/ijai.v9.i3.pp497-506.
[76] A. A. Ojugo and R. E. Yoro, “Extending the three-tier constructivist learning model for alternative delivery: ahead the COVID-19 pandemic in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1673, Mar. 2021, doi: 10.11591/ijeecs.v21.i3.pp1673-1682.
[77] M. Jameaba, “Digitization, FinTech Disruption, and Financial Stability: The Case of the Indonesian Banking Sector,” SSRN Electron. J., vol. 34, pp. 1–44, 2020, doi: 10.2139/ssrn.3529924.
[78] N. A. Ananda, M. N. Fietroh, M. Mikhratunnisa, and R. M. Rizqi, “Theory Acceptance Model and Purchase Intention in Online Shopping,” Proc. 1st Annu. Conf. Educ. Soc. Sci. (ACCESS 2019), vol. 465, no. Access 2019, pp. 165–169, 2020, doi: 10.2991/assehr.k.200827.042.
[79] E. B. Wijayanti, D. R. I. M. Setiadi, and B. H. Setyoko, “Dataset Analysis and Feature Characteristics to Predict Rice Production based on eXtreme Gradient Boosting,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 79–90, 2024, doi: 10.62411/jcta.10057.
[80] N. N. Wijaya, D. R. I. M. Setiadi, and A. R. Muslikh, “Music-Genre Classification using Bidirectional Long Short-Term Memory and Mel-Frequency Cepstral Coefficients,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 13–26, 2024, doi: 10.62411/jcta.9655.
[81] F. Mustofa, A. N. Safriandono, A. R. Muslikh, and D. R. I. M. Setiadi, “Dataset and Feature Analysis for Diabetes Mellitus Classification using Random Forest,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 41–48, 2023, doi: 10.33633/jcta.v1i1.9190.
[82] D. Nallaperuma et al., “Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019, doi: 10.1109/TITS.2019.2924883.
[83] A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Quest For Convergence Solution Using Hybrid Genetic Algorithm Trained Neural Network Model For Metamorphic Malware Detection,” ARRUS J. Eng. Technol., vol. 2, no. 1, pp. 12–23, Nov. 2021, doi: 10.35877/jetech613.
[84] A. A. Ojugo, C. O. Obruche, and A. O. Eboka, “Empirical Evaluation for Intelligent Predictive Models in Prediction of Potential Cancer Problematic Cases In Nigeria,” ARRUS J. Math. Appl. Sci., vol. 1, no. 2, pp. 110–120, Nov. 2021, doi: 10.35877/mathscience614.
[85] M. K. G. Roshan, “Multiclass Medical X-ray Image Classification using Deep Learning with Explainable AI,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 6, pp. 4518–4526, Jun. 2022, doi: 10.22214/ijraset.2022.44541.
[86] K. Deepika, M. P. S. Nagenddra, M. V. Ganesh, and N. Naresh, “Implementation of Credit Card Fraud Detection Using Random Forest Algorithm,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 3, pp. 797–804, Mar. 2022, doi: 10.22214/ijraset.2022.40702.
[87] J. R. Amalraj and R. Lourdusamy, “A Novel distributed token-based algorithm using secret sharing scheme for secure data access control,” Int. J. Comput. Networks Appl., vol. 9, no. 4, p. 374, Aug. 2022, doi: 10.22247/ijcna/2022/214501.
[88] P. Boulieris, J. Pavlopoulos, A. Xenos, and V. Vassalos, “Fraud detection with natural language processing,” Mach. Learn., Jul. 2023, doi: 10.1007/s10994-023-06354-5.
[89] I. A. Anderson and W. Wood, “Habits and the electronic herd: The psychology behind social media’s successes and failures,” Consum. Psychol. Rev., vol. 4, no. 1, pp. 83–99, Jan. 2021, doi: 10.1002/arcp.1063.
[90] Y. Kang, M. Ozdogan, X. Zhu, Z. Ye, C. Hain, and M. Anderson, “Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest,” Environ. Res. Lett., vol. 15, no. 6, p. 064005, Jun. 2020, doi: 10.1088/1748-9326/ab7df9.
[91] M. I. Akazue, A. A. Ojugo, R. E. Yoro, B. O. Malasowe, and O. Nwankwo, “Empirical evidence of phishing menace among undergraduate smartphone users in selected universities in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1756–1765, Dec. 2022, doi: 10.11591/ijeecs.v28.i3.pp1756-1765.
[92] F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “Sentiment Analysis in Detecting Sophistication and Degradation Cues in Malicious Web Contents,” Kongzhi yu Juece/Control Decis., vol. 38, no. 01, pp. 653–665, 2023. [Online]. Available at: https://www.kzyjc.org/article/sentiment-analysis-in-detecting-sophistication-and-degradation-cues-in-malicious-web-contents.
[93] R. E. Yoro and A. A. Ojugo, “An Intelligent Model Using Relationship in Weather Conditions to Predict Livestock-Fish Farming Yield and Production in Nigeria,” Am. J. Model. Optim., vol. 7, no. 2, pp. 35–41, 2019. [Online]. Available at: https://www.sciepub.com/AJMO/abstract/11179.
[94] M. Gratian, S. Bandi, M. Cukier, J. Dykstra, and A. Ginther, “Correlating human traits and cyber security behavior intentions,” Comput. Secur., vol. 73, pp. 345–358, Mar. 2018, doi: 10.1016/j.cose.2017.11.015.
[95] A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Predicting rainfall runoff in Southern Nigeria using a fused hybrid deep learning ensemble,” Int. J. Informatics Commun. Technol., vol. 13, no. 1, pp. 108–115, Apr. 2024, doi: 10.11591/ijict.v13i1.pp108-115.
[96] C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A Comparative Analysis of XGBoost,” no. February, pp. 1937–1967, 2019, doi: 10.1007/s10462-020-09896-5.
[97] V. Umarani, A. Julian, and J. Deepa, “Sentiment Analysis using various Machine Learning and Deep Learning Techniques,” J. Niger. Soc. Phys. Sci., vol. 3, no. 4, pp. 385–394, 2021, doi: 10.46481/jnsps.2021.308.
[98] C. C. Odiakaose et al., “Hybrid Genetic Algorithm Trained Bayesian Ensemble for Short Messages Spam Detection,” J. Adv. Math. Comput. Sci., vol. 12, no. 1, pp. 37–52, 2024, doi: 10.22624/AIMS/MATHS/V12N1P4.
[99] N. C. Ashioba et al., “Empirical Evidence for Rainfall Runoff in Southern Nigeria Using a Hybrid Ensemble Machine Learning Approach,” J. Adv. Math. Comput. Sci., vol. 12, no. 1, pp. 73–86, 2024, doi: 10.22624/AIMS/MATHS/V12N1P6.
[100] A. A. Ojugo et al., “CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 37–47, 2023, doi: 10.33633/jcta.v1i2.9355.
[101] A. A. Ojugo et al., “Forging a learner-centric blended-learning framework via an adaptive content-based architecture,” Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 40–53, May 2023, doi: 10.31763/sitech.v4i1.1186.
[102] A. A. Ojugo and O. Nwankwo, “Modeling Mobility Pattern for the Corona-Virus Epidemic Spread Propagation and Death Rate in Nigeria using the Movement-Interaction-Return Model,” Int. J. Emerg. Trends Eng. Res., vol. 9, no. 6, pp. 821–826, Jun. 2021, doi: 10.30534/ijeter/2021/30962021.
[103] E. Adishi, P. O. Ejeh, E. Okoro, and A. Jisu, “Reinforcement deep learning memetic algorithm for detection of short messaging services spam using filters to curb insider threats in organizations,” FUPRE J. Sci. Ind. Res., vol. 6, no. 3, pp. 80–94, 2022. [Online]. Available at: https://journal.fupre.edu.ng/index.php/fjsir/article/view/225.
[104] G. TekalignTujo, G. Dileep Kumar, D. ElifeneshYitagesu, and B. MeseretGirma, “Predictive Model to Predict Seed Classes using Machine Learning,” Int. J. Eng. Res. & Technol., vol. 6, no. 08, pp. 334–344, 2017. [Online]. Available at: https://www.ijert.org/research/a-predictive-model-to-predict-seed-classes-using-machine-learning-IJERTV6IS080153.pdf.
[105] Q. Li et al., “An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis,” Comput. Math. Methods Med., vol. 2017, pp. 1–15, 2017, doi: 10.1155/2017/9512741.
[106] B. O. Malasowe, M. I. Akazue, E. A. Okpako, F. O. Aghware, A. A. Ojugo, and D. V. Ojie, “Adaptive Learner-CBT with Secured Fault-Tolerant and Resumption Capability for Nigerian Universities,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 135–142, 2023, doi: 10.14569/IJACSA.2023.0140816.
[107] A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “Rice Disease Recognition using Transfer Learning Xception Convolutional Neural Network,” J. Tek. Inform., vol. 4, no. 6, pp. 1535–1540, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1529.
[108] J. K. Oladele et al., “BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 1–12, 2024, doi: 10.33633/jcta.v2i19509.
[109] J. Li et al., “Feature selection: A data perspective,” ACM Comput. Surv., vol. 50, no. 6, pp. 1 - 45, 2017, doi: 10.1145/3136625.
[110] A. Shaji, S. Binu, A. M. Nair, and J. George, “Fraud Detection in Credit Card Transaction Using ANN and SVM,” 2021, pp. 187–197, doi: 10.1007/978-3-030-79276-3_14.
[111] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, p. 60, Dec. 2019, doi: 10.1186/s40537-019-0197-0.
[112] C. Jiang, J. Song, G. Liu, L. Zheng, and W. Luan, “Credit Card Fraud Detection: A Novel Approach Using Aggregation Strategy and Feedback Mechanism,” IEEE Internet Things J., vol. 5, no. 5, pp. 3637–3647, Oct. 2018, doi: 10.1109/JIOT.2018.2816007.
[113] A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Improved distribution and food safety for beef processing and management using a blockchain-tracer support framework,” Int. J. Informatics Commun. Technol., vol. 12, no. 3, p. 205, Dec. 2023, doi: 10.11591/ijict.v12i3.pp205-213.
[114] Y. Bouchlaghem, Y. Akhiat, and S. Amjad, “Feature Selection: A Review and Comparative Study,” E3S Web Conf., vol. 351, pp. 1–6, 2022, doi: 10.1051/e3sconf/202235101046.
[115] S. Wang, J. Tang, H. Liu, and E. Lansing, “Encyclopedia of Machine Learning and Data Science,” Encycl. Mach. Learn. Data Sci., no. October 2017, pp. 1–9, 2020, doi: 10.1007/978-1-4899-7502-7.
[116] D. H. Zala and M. B. Chaudhari, “Review on use of ‘BAGGING’ technique in agriculture crop yield prediction,” IJSRD - Int. J. Sci. Res. Dev., vol. 6, no. 8, pp. 675–676, 2018. [Online]. Available at: https://www.ijsrd.com/articles/IJSRDV6I80349.pdfRefbacks
- There are currently no refbacks.
Copyright (c) 2024 Victor Ochuko Geteloma, Fidelis Obukohwo Aghware, Wilfred Adigwe, Chukwufunaya Chris Odiakaose, Nwanze Chukwudi Ashioba, Margareth Dumebi Okpor, Arnold Adimabua Ojugo, Patrick Ogholuwarami Ejeh, Rita Erhovwo Ako, Emmanuel Obiajulu Ojei
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan
View My Stats AET
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.