Optimization model for determining global solar radiation in the northeastern states of Nigeria using both meteorological and satellite imagery data

(1) * Mohammed K. Salihu Mail (university of Maiduguri, Nigeria)
*corresponding author

Abstract


This study presents an optimization model for determining global solar radiation in the northeastern region of Nigeria using a combination of meteorological data and satellite imagery. Ten recent models were chosen from the literature review and optimized to select the one that best fits the study region. Two models were developed to provide accurate solar radiation predictions, which can be used to improve the planning and implementation of a solar energy project in the region. The model integrates the Angstrom-Prescott model with various climate parameters such as Temperature (∆T), relative humidity (RH), location latitude (Φ), solar declination angle (δ), and the number of days in a year (n) with satellite image data to determine the global solar radiation. The finding of optimization models shows that the model10 performed very well with minimum error as Mean Base Error (0.028), Mean Percentage Error (- 0.001), Root Mean Square Error (0.098), and coefficient of determination R2 (0.994), which suggested as the optimized model for determining of global solar radiation in northeastern Nigeria. The two models were developed, that is, proposed Model1 and proposed Model2. Proposed Model1 slightly overestimated the global solar radiation with Mean Base Error (-0.863), Mean Percentage Error (-0.039), Root Mean Square Error (2.990), and coefficient of determination R2 (0.745), while proposed Model2 performed better with Mean Base Error (-0.005), Mean Percentage Error (0.0003), Root Mean Square Error (0.02) with the coefficient of determination R2 (0.985). The proposed models were validated using the suggested optimized model10 and satellite data model, which show that the proposed model can accurately determine global solar radiation in the northeastern region of Nigeria. This study's findings will benefit the region's solar energy project developers, researchers, and policymakers

Keywords


Optimization, Solar Radiation, RMSE, MBE, MPE, Satellite, meteorology, and Models

   

DOI

https://doi.org/10.31763/aet.v2i2.1039
      

Article metrics

10.31763/aet.v2i2.1039 Abstract views : 788 | PDF views : 218

   

Cite

   

Full Text

Download

References


[1] F. Chabane, N. Moummi, C. Toumi, S. Boultif, and A. Hecini, “Theoretical Study of Global Solar Radiation on Horizontal Area for Determination of Direct and Diffuse Solar Radiation,” Iran. J. Energy Environ., vol. 14, no. 1, pp. 9–16, Jan. 2023, doi: 10.5829/IJEE.2023.14.01.02.

[2] N. Ghazouani et al., “Performance Evaluation of Temperature-Based Global Solar Radiation Models—Case Study: Arar City, KSA,” Sustainability, vol. 14, no. 1, p. 35, Dec. 2021, doi: 10.3390/su14010035.

[3] D. O. Akpootu et al., “Multivariate Models For Predicting Global Solar Radiation In Jos, Nigeria,” Matrix Sci. Math., vol. 6, no. 1, pp. 05–12, 2022, doi: 10.26480/msmk.01.2022.05.12.

[4] M. H. Soulouknga, A. Dandoussou, and N. Djongyang, “Empirical Models for the Evaluation of Global Solar Radiation for the Site of Abeche in the Province of Ouadda’i in Chad,” Smart Grid Renew. Energy, vol. 13, no. 10, pp. 223–234, Oct. 2022, doi: 10.4236/sgre.2022.1310014.

[5] M. Ismail and A. I. Naibbi, “Geospatial Merging of Ground Measurements with Satellite Data to Exploit Solar Energy Potentials in Kano , Nigeria,” COJ Rev. Res., vol. 4, no. 3, pp. 1–4, 2022. [Online]. Available at: https://crimsonpublishers.com/cojrr/pdf/COJRR.000589.pdf.

[6] X. Zhang, M. Zhang, Y. Cui, and Y. He, “Estimation of Daily Ground-Received Global Solar Radiation Using Air Pollutant Data,” Front. Public Heal., vol. 10, p. 617, Apr. 2022, doi: 10.3389/fpubh.2022.860107.

[7] M. Tanu et al., “Evaluation of global solar radiation, cloudiness index and sky view factor as potential indicators of Ghana’s solar energy resource,” Sci. African, vol. 14, p. e01061, Nov. 2021, doi: 10.1016/j.sciaf.2021.e01061.

[8] V. O. Onyeka, C. C. Nwobi-Okoye, O. C. Okafor, K. E. Madu, and O. M. Mbah, “Estimation of Global Solar Radiation Using Empirical Models,” J. Eng. Sci., vol. 8, no. 2, pp. G11–G19, 2021, Accessed: May 16, 2022. [Online]. Available: https://jes.sumdu.edu.ua/estimation-of-global-solar-radiation-using-empirical-models/.

[9] F. Chabane, N. Moummi, and A. Brima, “A New Approach to Estimate the Distribution of Solar Radiation Using Linke Turbidity Factor and Tilt Angle,” Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 45, no. 2, pp. 523–534, Jun. 2021, doi: 10.1007/s40997-020-00382-5.

[10] Ö. A. Karaman, T. Tanyıldızı Ağır, and İ. Arsel, “Estimation of solar radiation using modern methods,” Alexandria Eng. J., vol. 60, no. 2, pp. 2447–2455, Apr. 2021, doi: 10.1016/j.aej.2020.12.048.

[11] A. H. Mirzabe, A. Hajiahmad, and A. Keyhani, “Assessment and categorization of empirical models for estimating monthly, daily, and hourly diffuse solar radiation: A case study of Iran,” Sustain. Energy Technol. Assessments, vol. 47, p. 101330, Oct. 2021, doi: 10.1016/j.seta.2021.101330.

[12] Z. ul R. Tahir et al., “Estimation of daily diffuse solar radiation from clearness index, sunshine duration and meteorological parameters for different climatic conditions,” Sustain. Energy Technol. Assessments, vol. 47, p. 101544, Oct. 2021, doi: 10.1016/j.seta.2021.101544.

[13] O. M. Bamigbola and S. E. Atolagbe, “Empirical Models for Predicting Global Solar Radiation on the African Continent Based on Factors of Location and Season,” Open J. Model. Simul., vol. 09, no. 01, pp. 59–73, Dec. 2021, doi: 10.4236/ojmsi.2021.91004.

[14] J. Almorox, C. Voyant, N. Bailek, A. Kuriqi, and J. A. Arnaldo, “Total solar irradiance’s effect on the performance of empirical models for estimating global solar radiation: An empirical-based review,” Energy, vol. 236, p. 121486, Dec. 2021, doi: 10.1016/j.energy.2021.121486.

[15] F. O. Aweda, S. Adebayo, T. K. Samson, and I. A. Ojedokun, “Modelling Net Radiative Measurement of Meteorological Parameters Using MERRA-2 Data in Sub-Sahara African Town,” Iran. J. Energy Environ., vol. 12, no. 2, pp. 173–180, Jun. 2021, doi: 10.5829/IJEE.2021.12.02.10.

[16] F. O. Aweda, J. A. Oyewole, J. B. Fashae, and T. K. Samson, “Variation of the Earth’s Irradiance over Some Selected Towns in Nigeria,” Iran. J. Energy Environ., vol. 11, no. 4, pp. 301–307, Dec. 2020, doi: 10.5829/IJEE.2020.11.04.08.

[17] K. Chang and Q. Zhang, “Development of a solar radiation model considering the hourly sunshine duration for all-sky conditions – A case study for Beijing, China,” Atmos. Environ., vol. 234, p. 117617, Aug. 2020, doi: 10.1016/j.atmosenv.2020.117617.

[18] F. Chabane, “Estimation of direct and diffuse solar radiation on the horizontal plane considering air quality index and turbidity factor in Assekrem, Tamanrasset, Algeria,” Air Qual. Atmos. Heal., vol. 13, no. 12, pp. 1505–1516, Dec. 2020, doi: 10.1007/s11869-020-00904-9.

[19] M.-F. Li, P.-T. Guo, S. Dai, H. Luo, E. Liu, and Y. Li, “Empirical estimation of daily global solar radiation with contrasting seasons of rain and drought characterize over tropical China,” J. Clean. Prod., vol. 266, p. 121915, Sep. 2020, doi: 10.1016/j.jclepro.2020.121915.

[20] T. Hai et al., “Global Solar Radiation Estimation and Climatic Variability Analysis Using Extreme Learning Machine Based Predictive Model,” IEEE Access, vol. 8, pp. 12026–12042, 2020, doi: 10.1109/ACCESS.2020.2965303.

[21] Y. Feng, D. Gong, S. Jiang, L. Zhao, and N. Cui, “National-scale development and calibration of empirical models for predicting daily global solar radiation in China,” Energy Convers. Manag., vol. 203, p. 112236, Jan. 2020, doi: 10.1016/j.enconman.2019.112236.

[22] Foued Chabane, F. Guellai, M.-Y. Michraoui, D. Bensahal, A. Bima, and N. Moummi, “Prediction of the Global Solar Radiation on Inclined Area,” Appl. Sol. Energy, vol. 55, no. 1, pp. 41–47, Jan. 2019, doi: 10.3103/S0003701X19010055.

[23] H. Alsamamra, “Estimation of Global Solar Radiation from Temperature Extremes: A Case Study of Hebron City, Palestine,” J. Energy Nat. Resour., vol. 8, no. 1, p. 1, 2019, doi: 10.11648/j.jenr.20190801.11.

[24] O. A. Nathaniel, A. S. Oluwadara, O. A. Joshua, and A. A. Jacob, “Estimation of Global Solar Radiation and Clearness Index in Coast of Gulf of Guinea, Nigeria,” Iran. J. Energy Environ., vol. 10, no. 3, pp. 211–215, Sep. 2019, doi: 10.5829/IJEE.2019.10.03.08.

[25] W. Zhu et al., “Estimating Sunshine Duration Using Hourly Total Cloud Amount Data from a Geostationary Meteorological Satellite,” Atmosphere (Basel)., vol. 11, no. 1, p. 26, Dec. 2019, doi: 10.3390/atmos11010026.

[26] J. Fan, B. Chen, L. Wu, F. Zhang, X. Lu, and Y. Xiang, “Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions,” Energy, vol. 144, pp. 903–914, Feb. 2018, doi: 10.1016/j.energy.2017.12.091.

[27] A. Yusuf, “Characterization of Sky Conditions Using Clearness Index and Relative Sunshine Duration for Iseyin, Nigeria,” Int. J. Phys. Sci. Res., vol. 1, no. 1, pp. 53–60, 2017, [Online]. Available: https://www.eajournals.org/journals/international-journal-physical-sciences-research-ijpsr/vol-1-issue-1-april-2017/characterization-sky-conditions-using-clearness-index-relative-sunshine-duration-iseyin-nigeria/.

[28] G. E. Hassan, M. E. Youssef, M. A. Ali, Z. E. Mohamed, and A. I. Shehata, “Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt,” J. Atmos. Solar-Terrestrial Phys., vol. 149, pp. 69–80, Nov. 2016, doi: 10.1016/j.jastp.2016.09.011.

[29] M. B. Garba, A. Muhammad, M. Musa, and A. G. Mohammed, “Assessing the performance of global solar radiation empirical equations in Sokoto, Nigeria using meteorological parameters,” Niger. J. Technol., vol. 37, no. 2, p. 358, Jul. 2018, doi: 10.4314/njt.v37i2.10.

[30] G. A. Ajenikoko and O. A. Salami, “Development Of A Generalized Two-Parameter Temperature Based Linear Model For Assessment Of Solar Irradiance On Nigerian Geo-Political Zones,” Theor. Appl. Sci., vol. 48, no. 04, pp. 36–48, Apr. 2017, doi: 10.15863/TAS.2017.04.48.7.

[31] H. Aras, O. Balli, and A. Hepbasli, “Global Solar Radiation Potential, Part 1: Model Development,” Energy Sources, Part B Econ. Planning, Policy, vol. 1, no. 3, pp. 303–315, Sep. 2006, doi: 10.1080/15567240500398040.

[32] B. M. Olomiyesan and O. D. Oyedum, “Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria,” J. Sol. Energy, vol. 2016, pp. 1–7, Jun. 2016, doi: 10.1155/2016/8197389.

[33] A. A. Osinowo and E. C. Okogbue, “Correlation of Global Solar Irradiance with some Meteorological Parameters and Validation of some Existing Solar Radiation Models with Measured Data Over Selected Climatic Zones In Nigeria.,” Int. J. Innov. Educ. Res., vol. 2, no. 4, pp. 41–56, Apr. 2014, doi: 10.31686/ijier.vol2.iss4.168.

[34] A. Alkasim, A. B. Dikko, and E. S. Eyube, “An Empirical Model For The Estimation Of Global And Diffuse Solar Radiation Over Yola, North-Eastern Nigeria Based On Air Temperature,” IJRDO-Journal Appl. Sci., vol. 3, no. 9, pp. 14–24, Sep. 2017, Accessed: May 16, 2023. [Online]. Available: https://www.ijrdo.org/index.php/as/article/view/1354.

[35] I. Daou et al., “Estimation of Landsat TM Surface Temperature Using ERDAS Imagine Spatial Modeler,” Yale Cent. Earth Obs., vol. 2, no. 3, pp. 1–4, 2010, [Online]. Available: http://giswin.geo.tsukuba.ac.jp/sis/tutorial/koko/SurfaceTemp/SurfaceTemperature.pdf.

[36] A. A. El-Sebaii and A. A. Trabea, “Estimation of Global Solar Radiation on Horizontal Surfaces Over Egypt,” Egypt. J. Solids, vol. 28, no. 1, pp. 163–175, Dec. 2005, doi: 10.21608/ejs.2005.149357.

[37] B. Tuka, “Empirical Model for Estimating Solar Radiation Based on Air Temperature for Sarajevo Area , Bosnia and Herzegovina,” Eur. Int. J. Sci. Technol., vol. 8, no. January 2020, pp. 13–29, 2019, [Online]. Available: https://eijst.org.uk/articles/8.11.2.13-29.pdf.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mohammed K. Salihu

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan

View My Stats AET
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.