Geopolymer vs ordinary portland cement: review of the 3-d printing of concrete

(1) Hamed Rahimpour Mail (Civil Engineering, University of Tabriz, Tabriz, Iran, Islamic Republic of)
(2) Vahed Ghiasi Mail (Department of Civil Engineering, Faculty of Civil and Architecture Engineering, Malayer University, Malayer, Iran, Islamic Republic of)
(3) * Ahmad Fahmi Mail (Faculty of Civil Engineering, University of Bonab, Bonab, Iran, Iran, Islamic Republic of)
(4) Yaser Marabi Mail (Civil Engineering majoring in Structures, Faculty of Civil Engineering and Architecture, Malayer University, Malayer, Hamedan, Iran, Islamic Republic of)
*corresponding author

Abstract


Due to the need of the construction industry to implement structures with special and complex designs, mass customization with the lowest cost, especially reducing the labor cost as well as the amount of waste and materials used, the use of concrete 3D printing can be the appropriate solution to these requirements fulfill these options. As a result, a comprehensive and practical study of the major 3D printing methods and their development in the construction industry was carried out in this study. In addition, the use of OPC-based materials and geopolymer-based materials was reviewed and compared due to the development of the materials industry and the advantages and disadvantages of using different types of cementitious materials in the 3D printing of concrete.


Keywords


3D printing, Geopolymer, OPC, Concrete, Additive manufacturing

   

DOI

https://doi.org/10.31763/aet.v2i2.1010
      

Article metrics

10.31763/aet.v2i2.1010 Abstract views : 1284 | PDF views : 293

   

Cite

   

Full Text

Download

References


[1] H. Charles W, “Apparatus for production of three dimensional objects by stereolithography,” 3D Systems Inc (US), 1986. Accessed Aug. 09, 2022. [Online]. Available at: https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A.

[2] C. K. Chua and K. F. Leong, 3D Printing and Additive Manufacturing. WORLD SCIENTIFIC, p. 548, 2014, doi: 10.1142/9008.

[3] H. G. Şahin and A. Mardani-Aghabaglou, “Assessment of materials, design parameters and some properties of 3D printing concrete mixtures a state-of-the-art review,” Constr. Build. Mater., vol. 316, p. 125865, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125865.

[4] J. Gardiner, “Exploring the emerging design territory of construction 3D printing - project led architectural research.” p. 382, 2011, Accessed: Aug. 09, 2022. [Online]. Available at: https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Exploring-the-emerging-design-territory-of-construction-3D-printing---project-led-architectural-research/9921861544001341.

[5] J. Xiao et al., “Large-scale 3D printing concrete technology: Current status and future opportunities,” Cem. Concr. Compos., vol. 122, p. 104115, Sep. 2021, doi: 10.1016/j.cemconcomp.2021.104115.

[6] F. Lyu, D. Zhao, X. Hou, L. Sun, and Q. Zhang, “Overview of the Development of 3D-Printing Concrete: A Review,” Appl. Sci., vol. 11, no. 21, p. 9822, Oct. 2021, doi: 10.3390/app11219822.

[7] P. Wu, J. Wang, and X. Wang, “A critical review of the use of 3-D printing in the construction industry,” Autom. Constr., vol. 68, pp. 21–31, Aug. 2016, doi: 10.1016/j.autcon.2016.04.005.

[8] I. Campbell, O. Diegel, J. Kowen, T. Wohlers, and T. Campbell, I., Diegel, O., Huff, R., Kowen, J., Wohlers, “Wohlers Report 2018: 3D printing and additive manufacturing state of the industry: Annual Worldwide Progress Report,” Libraries and learning serivce The University of Auclkand, 2018. Accessed: Aug. 09, 2022. [Online]. Available at: https://researchspace.auckland.ac.nz/handle/2292/46627.

[9] R. A. Buswell, W. R. Leal de Silva, S. Z. Jones, and J. Dirrenberger, “3D printing using concrete extrusion: A roadmap for research,” Cem. Concr. Res., vol. 112, pp. 37–49, Oct. 2018, doi: 10.1016/j.cemconres.2018.05.006.

[10] A. Siddika, M. A. Al Mamun, W. Ferdous, A. K. Saha, and R. Alyousef, “3D-printed concrete: applications, performance, and challenges,” J. Sustain. Cem. Mater., vol. 9, no. 3, pp. 127–164, May 2020, doi: 10.1080/21650373.2019.1705199.

[11] C.-H. Ko, “Constraints and limitations of concrete 3D printing in architecture,” J. Eng. Des. Technol., vol. 20, no. 5, pp. 1334–1348, Aug. 2022, doi: 10.1108/JEDT-11-2020-0456.

[12] G. De Schutter, K. Lesage, V. Mechtcherine, V. N. Nerella, G. Habert, and I. Agusti-Juan, “Vision of 3D printing with concrete — Technical, economic and environmental potentials,” Cem. Concr. Res., vol. 112, pp. 25–36, Oct. 2018, doi: 10.1016/j.cemconres.2018.06.001.

[13] D. Dey, D. Srinivas, B. Panda, P. Suraneni, and T. G. Sitharam, “Use of industrial waste materials for 3D printing of sustainable concrete: A review,” J. Clean. Prod., vol. 340, p. 130749, Mar. 2022, doi: 10.1016/j.jclepro.2022.130749.

[14] S. Bhattacherjee et al., “Sustainable materials for 3D concrete printing,” Cem. Concr. Compos., vol. 122, p. 104156, Sep. 2021, doi: 10.1016/j.cemconcomp.2021.104156.

[15] B. Bhushan Jindal and P. Jangra, “3D Printed Concrete: A comprehensive review of raw material’s properties, synthesis, performance, and potential field applications,” Constr. Build. Mater., vol. 387, p. 131614, Jul. 2023, doi: 10.1016/j.conbuildmat.2023.131614.

[16] Z. Jianchao, T. Zhang, M. Faried, and C. Wengang, “3D printing cement based ink, and it’s application within the construction industry,” MATEC Web Conf., vol. 120, p. 02003, Aug. 2017, doi: 10.1051/matecconf/201712002003.

[17] N. Khalil, G. Aouad, K. El Cheikh, and S. Rémond, “Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars,” Constr. Build. Mater., vol. 157, pp. 382–391, Dec. 2017, doi: 10.1016/j.conbuildmat.2017.09.109.

[18] M. Chen, L. Li, Y. Zheng, P. Zhao, L. Lu, and X. Cheng, “Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials,” Constr. Build. Mater., vol. 189, pp. 601–611, Nov. 2018, doi: 10.1016/j.conbuildmat.2018.09.037.

[19] Y. Chen, S. Chaves Figueiredo, Ç. Yalçinkaya, O. Çopuroğlu, F. Veer, and E. Schlangen, “The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing,” Materials (Basel)., vol. 12, no. 9, p. 1374, Apr. 2019, doi: 10.3390/ma12091374.

[20] P. Shakor, J. Sanjayan, A. Nazari, and S. Nejadi, “Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing,” Constr. Build. Mater., vol. 138, pp. 398–409, May 2017, doi: 10.1016/j.conbuildmat.2017.02.037.

[21] B. Panda, C. Unluer, and M. J. Tan, “Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing,” Cem. Concr. Compos., vol. 94, pp. 307–314, Nov. 2018, doi: 10.1016/j.cemconcomp.2018.10.002.

[22] B. Panda and M. J. Tan, “Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing,” Ceram. Int., vol. 44, no. 9, pp. 10258–10265, Jun. 2018, doi: 10.1016/j.ceramint.2018.03.031.

[23] B. Panda, N. A. Noor Mohamed, Y. W. D. Tay, and M. J. Tan, “Bond Strength in 3D Printed Geopolymer Mortar,” in RILEM Bookseries, vol. 19, Springer Netherlands, 2019, pp. 200–206, doi: 10.1007/978-3-319-99519-9_18.

[24] B. Panda, C. Unluer, and M. J. Tan, “Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing,” Compos. Part B Eng., vol. 176, p. 107290, Nov. 2019, doi: 10.1016/j.compositesb.2019.107290.

[25] D.-W. Zhang, D. Wang, X.-Q. Lin, and T. Zhang, “The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes,” Constr. Build. Mater., vol. 184, pp. 575–580, Sep. 2018, doi: 10.1016/j.conbuildmat.2018.06.233.

[26] M. Xia and J. Sanjayan, “Method of formulating geopolymer for 3D printing for construction applications,” Mater. Des., vol. 110, pp. 382–390, Nov. 2016, doi: 10.1016/j.matdes.2016.07.136.

[27] A. Kashani and T. Ngo, “Optimisation of Mixture Properties for 3D Printing of Geopolymer Concrete,” in ISARC 2018 - 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things, Jul. 2018, p. 8, doi: 10.22260/ISARC2018/0037.

[28] S. Bong, B. Nematollahi, A. Nazari, M. Xia, and J. Sanjayan, “Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications,” Materials (Basel)., vol. 12, no. 6, p. 902, Mar. 2019, doi: 10.3390/ma12060902.

[29] S. Qaidi, A. Yahia, B. A. Tayeh, H. Unis, R. Faraj, and A. Mohammed, “3D printed geopolymer composites: A review,” Mater. Today Sustain., vol. 20, p. 100240, Dec. 2022, doi: 10.1016/j.mtsust.2022.100240.

[30] C. R. Gagg, “Cement and concrete as an engineering material: An historic appraisal and case study analysis,” Eng. Fail. Anal., vol. 40, pp. 114–140, May 2014, doi: 10.1016/j.engfailanal.2014.02.004.

[31] C. B. Cheah, K. Y. Chung, M. Ramli, and G. K. Lim, “The engineering properties and microstructure development of cement mortar containing high volume of inter-grinded GGBS and PFA cured at ambient temperature,” Constr. Build. Mater., vol. 122, pp. 683–693, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.06.105.

[32] P. Nath, P. K. Sarker, and V. B. Rangan, “Early Age Properties of Low-calcium Fly Ash Geopolymer Concrete Suitable for Ambient Curing,” Procedia Eng., vol. 125, pp. 601–607, Jan. 2015, doi: 10.1016/j.proeng.2015.11.077.

[33] P. Nath and P. K. Sarker, “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature,” Cem. Concr. Compos., vol. 55, pp. 205–214, Jan. 2015, doi: 10.1016/j.cemconcomp.2014.08.008.

[34] A. Malik, M. I. Ul Haq, A. Raina, and K. Gupta, “3D printing towards implementing Industry 4.0: sustainability aspects, barriers and challenges,” Ind. Robot Int. J. Robot. Res. Appl., vol. 49, no. 3, pp. 491–511, Apr. 2022, doi: 10.1108/IR-10-2021-0247.

[35] B. Khoshnevis, R. Russell, Hongkyu Kwon, and S. Bukkapatnam, “Crafting large prototypes,” IEEE Robot. Autom. Mag., vol. 8, no. 3, pp. 33–42, Sep. 2001, doi: 10.1109/100.956812.

[36] B. Khoshnevis, S. Bukkapatnam, H. Kwon, and J. Saito, “Experimental investigation of contour crafting using ceramics materials,” Rapid Prototyp. J., vol. 7, no. 1, pp. 32–42, Mar. 2001, doi: 10.1108/13552540110365144.

[37] B. Khoshnevis, “Automated construction by contour crafting—related robotics and information technologies,” Autom. Constr., vol. 13, no. 1, pp. 5–19, Jan. 2004, doi: 10.1016/j.autcon.2003.08.012.

[38] V. Florea, F. Păuleţ-Crăiniceanu, S.-G. Luca, and C. Pastia, “3D Printing of Buildings. Limits, Design, Advantages and Disadvantages. Could This Technique Contribute to Sustainability of Future Buildings?,” in Springer Series in Geomechanics and Geoengineering, Springer Science and Business Media Deutschland GmbH, 2021, pp. 298–308, doi: 10.1007/978-3-030-61118-7_26.

[39] D. Bak, “Rapid prototyping or rapid production? 3D printing processes move industry towards the latter,” Assem. Autom., vol. 23, no. 4, pp. 340–345, Dec. 2003, doi: 10.1108/01445150310501190.

[40] R. A. Buswell, R. C. Soar, A. G. F. Gibb, and A. Thorpe, “Freeform Construction: Mega-scale Rapid Manufacturing for construction,” Autom. Constr., vol. 16, no. 2, pp. 224–231, Mar. 2007, doi: 10.1016/j.autcon.2006.05.002.

[41] RotaruAncuta, Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment. Cham: Springer International Publishing, 2021, doi: 10.1007/978-3-030-61118-7.

[42] M. S. Khan, “3-D Printing in Transportation: Already in Action,” TR News, no. 314, Mar. 2018. [Online]. Available at: https://trid.trb.org/view/1508933.

[43] X. Huang, W. Yang, F. Song, and J. Zou, “Study on the mechanical properties of 3D printing concrete layers and the mechanism of influence of printing parameters,” Constr. Build. Mater., vol. 335, p. 127496, Jun. 2022, doi: 10.1016/j.conbuildmat.2022.127496.

[44] B. Bhushan and M. Caspers, “An overview of additive manufacturing (3D printing) for microfabrication,” Microsyst. Technol., vol. 23, no. 4, pp. 1117–1124, Apr. 2017, doi: 10.1007/s00542-017-3342-8.

[45] B. Utela, D. Storti, R. Anderson, and M. Ganter, “A review of process development steps for new material systems in three dimensional printing (3DP),” J. Manuf. Process., vol. 10, no. 2, pp. 96–104, Jul. 2008, doi: 10.1016/j.jmapro.2009.03.002.

[46] X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Compos. Part B Eng., vol. 110, pp. 442–458, Feb. 2017, doi: 10.1016/j.compositesb.2016.11.034.

[47] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv. Manuf., vol. 3, no. 1, pp. 42–53, Mar. 2015, doi: 10.1007/s40436-014-0097-7.

[48] B. Zahabizadeh, J. Pereira, C. Gonçalves, E. N. B. Pereira, and V. M. C. F. Cunha, “Influence of the printing direction and age on the mechanical properties of 3D printed concrete,” Mater. Struct., vol. 54, no. 2, p. 73, Apr. 2021, doi: 10.1617/s11527-021-01660-7.

[49] J. S. Chohan, R. Singh, K. S. Boparai, R. Penna, and F. Fraternali, “Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications,” Compos. Part B Eng., vol. 117, pp. 138–149, May 2017, doi: 10.1016/j.compositesb.2017.02.045.

[50] P. Parandoush and D. Lin, “A review on additive manufacturing of polymer-fiber composites,” Compos. Struct., vol. 182, pp. 36–53, Dec. 2017, doi: 10.1016/j.compstruct.2017.08.088.

[51] A. R. Arunothayan, B. Nematollahi, R. Ranade, S. H. Bong, J. G. Sanjayan, and K. H. Khayat, “Fiber orientation effects on ultra-high performance concrete formed by 3D printing,” Cem. Concr. Res., vol. 143, p. 106384, May 2021, doi: 10.1016/j.cemconres.2021.106384.

[52] A. R. Krishnaraja and K. V. Guru, “3D Printing Concrete: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1055, no. 1, p. 012033, Feb. 2021, doi: 10.1088/1757-899X/1055/1/012033.

[53] V. N. Nerella and V. Mechtcherine, “Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D),” in 3D Concrete Printing Technology, Elsevier, 2019, pp. 333–347, doi: 10.1016/B978-0-12-815481-6.00016-6.

[54] C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, and P. Morel, “Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders,” Mater. Des., vol. 100, pp. 102–109, Jun. 2016, doi: 10.1016/j.matdes.2016.03.097.

[55] J. M. Davila Delgado et al., “Robotics and automated systems in construction: Understanding industry-specific challenges for adoption,” J. Build. Eng., vol. 26, p. 100868, Nov. 2019, doi: 10.1016/j.jobe.2019.100868.

[56] H. Kwon, “Experimentation and analysis of contour crafting (CC) process using uncured ceramic materials,” 2002. [Online]. Available at: https://www.proquest.com/openview/5e4acff176ac05e6f4992331d0a0d6cd/1?pq-.

[57] R. P. Mueller et al., “Additive Construction with Mobile Emplacement (ACME)/Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS),” in Earth and Space 2018, Nov. 2018, pp. 193–206, doi: 10.1061/9780784481899.020.

[58] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos. Part B Eng., vol. 143, pp. 172–196, Jun. 2018, doi: 10.1016/j.compositesb.2018.02.012.

[59] S. Hou, Z. Duan, J. Xiao, and J. Ye, “A review of 3D printed concrete: Performance requirements, testing measurements and mix design,” Constr. Build. Mater., vol. 273, p. 121745, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.121745.

[60] T. T. Le, S. A. Austin, S. Lim, R. A. Buswell, A. G. F. Gibb, and T. Thorpe, “Mix design and fresh properties for high-performance printing concrete,” Mater. Struct., vol. 45, no. 8, pp. 1221–1232, Aug. 2012, doi: 10.1617/s11527-012-9828-z.

[61] M. K. Mohan, A. V. Rahul, G. De Schutter, and K. Van Tittelboom, “Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review,” Cem. Concr. Compos., vol. 115, p. 103855, Jan. 2021, doi: 10.1016/j.cemconcomp.2020.103855.

[62] M. T. Souza, I. M. Ferreira, E. Guzi de Moraes, L. Senff, and A. P. Novaes de Oliveira, “3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects,” J. Build. Eng., vol. 32, p. 101833, Nov. 2020, doi: 10.1016/j.jobe.2020.101833.

[63] S. C. Paul, Y. W. D. Tay, B. Panda, and M. J. Tan, “Fresh and hardened properties of 3D printable cementitious materials for building and construction,” Arch. Civ. Mech. Eng., vol. 18, no. 1, pp. 311–319, Jan. 2018, doi: 10.1016/j.acme.2017.02.008.

[64] S. Lim et al., “Development of a Viable Concrete Printing Process,” in Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, Jun. 2011, pp. 665–670, doi: 10.22260/ISARC2011/0124.

[65] G. Hüsken and H. J. H. Brouwers, “On the early-age behavior of zero-slump concrete,” Cem. Concr. Res., vol. 42, no. 3, pp. 501–510, Mar. 2012, doi: 10.1016/j.cemconres.2011.11.007.

[66] G. Ji, J. Xiao, P. Zhi, Y.-C. Wu, and N. Han, “Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates,” Constr. Build. Mater., vol. 325, p. 126740, Mar. 2022, doi: 10.1016/j.conbuildmat.2022.126740.

[67] A. Perrot, D. Rangeard, and A. Pierre, “Structural built-up of cement-based materials used for 3D-printing extrusion techniques,” Mater. Struct., vol. 49, no. 4, pp. 1213–1220, Apr. 2016, doi: 10.1617/s11527-015-0571-0.

[68] C. R. Visser, T. Presented, F. O. R. The, D. Of, and M. Of, “Mechanlical and structural characterisation of extrusion moulded SHCC,” MSC dissertation, 2007. https://core.ac.uk/download/pdf/37345539.pdf.

[69] T. T. Le et al., “Hardened properties of high-performance printing concrete,” Cem. Concr. Res., vol. 42, no. 3, pp. 558–566, Mar. 2012, doi: 10.1016/j.cemconres.2011.12.003.

[70] A. Pierre, C. Lanos, and P. Estellé, “Extension of spread-slump formulae for yield stress evaluation,” Appl. Rheol., vol. 23, no. 6, Dec. 2013, Accessed: Aug. 09, 2023. [Online]. Available: https://www.degruyter.com/document/doi/10.3933/applrheol-23-63849/html.

[71] N. Roussel and P. Coussot, “‘Fifty-cent rheometer’ for yield stress measurements: From slump to spreading flow,” J. Rheol. (N. Y. N. Y)., vol. 49, no. 3, pp. 705–718, May 2005, doi: 10.1122/1.1879041.

[72] M. Nodehi, F. Aguayo, S. E. Nodehi, A. Gholampour, T. Ozbakkaloglu, and O. Gencel, “Durability properties of 3D printed concrete (3DPC),” Autom. Constr., vol. 142, p. 104479, Oct. 2022, doi: 10.1016/j.autcon.2022.104479.

[73] L. Yang, S. M. E. Sepasgozar, S. Shirowzhan, A. Kashani, and D. Edwards, “Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete,” Autom. Constr., vol. 146, p. 104671, Feb. 2023, doi: 10.1016/j.autcon.2022.104671.

[74] T. Ding, J. Xiao, S. Zou, and X. Zhou, “Anisotropic behavior in bending of 3D printed concrete reinforced with fibers,” Compos. Struct., vol. 254, p. 112808, Dec. 2020, doi: 10.1016/j.compstruct.2020.112808.

[75] Z. Wu, A. Memari, and J. Duarte, “State of the Art Review of Reinforcement Strategies and Technologies for 3D Printing of Concrete,” Energies, vol. 15, no. 1, p. 360, Jan. 2022, doi: 10.3390/en15010360.

[76] M. Hambach, M. Rutzen, and D. Volkmer, “Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste,” in 3D Concrete Printing Technology, Elsevier, 2019, pp. 73–113, doi: 10.1016/B978-0-12-815481-6.00005-1.

[77] G. J. Gibbons, R. Williams, P. Purnell, and E. Farahi, “3D Printing of cement composites,” Adv. Appl. Ceram., vol. 109, no. 5, pp. 287–290, May 2010, doi: 10.1179/174367509X12472364600878.

[78] S. Yu, M. Xia, J. Sanjayan, L. Yang, J. Xiao, and H. Du, “Microstructural characterization of 3D printed concrete,” J. Build. Eng., vol. 44, p. 102948, Dec. 2021, doi: 10.1016/j.jobe.2021.102948.

[79] M. K. Mohan, A. V. Rahul, J. F. Van Stappen, V. Cnudde, G. De Schutter, and K. Van Tittelboom, “Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomography,” Cem. Concr. Compos., vol. 140, p. 105104, Jul. 2023, doi: 10.1016/j.cemconcomp.2023.105104.

[80] T. Ding, J. Xiao, and V. Mechtcherine, “Microstructure and mechanical properties of interlayer regions in extrusion-based 3D printed concrete: A critical review,” Cem. Concr. Compos., vol. 141, p. 105154, Aug. 2023, doi: 10.1016/j.cemconcomp.2023.105154.

[81] R. Munemo, J. Kruger, and G. P. A. G. van Zijl, “Improving interlayer bond in 3D printed concrete through induced thermo-hydrokinetics,” Constr. Build. Mater., vol. 393, p. 132121, Aug. 2023, doi: 10.1016/j.conbuildmat.2023.132121.

[82] B. Zareiyan and B. Khoshnevis, “Interlayer adhesion and strength of structures in Contour Crafting - Effects of aggregate size, extrusion rate, and layer thickness,” Autom. Constr., vol. 81, pp. 112–121, Sep. 2017, doi: 10.1016/j.autcon.2017.06.013.

[83] A. Kazemian, X. Yuan, E. Cochran, and B. Khoshnevis, “Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture,” Constr. Build. Mater., vol. 145, pp. 639–647, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.015.

[84] C. T. Tam, “Geopolymer Concrete: A Review of Development and Opportunities,” in Proceedings of the 35th Conference on Our World in Concrete & Structures, Dec. 2010, pp. 307–314, Accessed: Aug. 10, 2022. [Online]. Available: https://espace.curtin.edu.au/handle/20.500.11937/12898.

[85] C. Shi, A. F. Jiménez, and A. Palomo, “New cements for the 21st century: The pursuit of an alternative to Portland cement,” Cem. Concr. Res., vol. 41, no. 7, pp. 750–763, Jul. 2011, doi: 10.1016/j.cemconres.2011.03.016.

[86] D. L. Y. Kong and J. G. Sanjayan, “Damage behavior of geopolymer composites exposed to elevated temperatures,” Cem. Concr. Compos., vol. 30, no. 10, pp. 986–991, Nov. 2008, doi: 10.1016/j.cemconcomp.2008.08.001.

[87] G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends,” J. Clean. Prod., vol. 19, no. 11, pp. 1229–1238, Jul. 2011, doi: 10.1016/j.jclepro.2011.03.012.

[88] P. Mehta, M. Tasdemir, S. Akyüz, and N. Uzunhasanolu, “Creep of Lightweight Aggregate Concrete Under Variable Stresses,” Cem. Concr. Aggregates, vol. 10, no. 2, p. 61, Jan. 1988, doi: 10.1520/CCA10085J.

[89] K. A. Komnitsas, “Potential of geopolymer technology towards green buildings and sustainable cities,” Procedia Eng., vol. 21, pp. 1023–1032, Jan. 2011, doi: 10.1016/j.proeng.2011.11.2108.

[90] K.-H. Yang, J.-K. Song, and K.-I. Song, “Assessment of CO2 reduction of alkali-activated concrete,” J. Clean. Prod., vol. 39, pp. 265–272, Jan. 2013, doi: 10.1016/j.jclepro.2012.08.001.

[91] B. C. McLellan, R. P. Williams, J. Lay, A. van Riessen, and G. D. Corder, “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement,” J. Clean. Prod., vol. 19, no. 9–10, pp. 1080–1090, Jun. 2011, doi: 10.1016/j.jclepro.2011.02.010.

[92] F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, “Alkali-activated binders: A review,” Constr. Build. Mater., vol. 22, no. 7, pp. 1305–1314, Jul. 2008, doi: 10.1016/j.conbuildmat.2007.10.015.

[93] F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, “Alkali-activated binders: A review. Part 2. About materials and binders manufacture,” Constr. Build. Mater., vol. 22, no. 7, pp. 1315–1322, Jul. 2008, doi: 10.1016/j.conbuildmat.2007.03.019.

[94] J. S. J. van Deventer, J. L. Provis, P. Duxson, and D. G. Brice, “Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials,” Waste and Biomass Valorization, vol. 1, no. 1, pp. 145–155, Mar. 2010, doi: 10.1007/s12649-010-9015-9.

[95] P. Duxson, J. L. Provis, G. C. Lukey, and J. S. J. van Deventer, “The role of inorganic polymer technology in the development of ‘green concrete,’” Cem. Concr. Res., vol. 37, no. 12, pp. 1590–1597, Dec. 2007, doi: 10.1016/j.cemconres.2007.08.018.

[96] J. Davidovits, “Environmentally Driven Geopolymer Cement Applications,” Geopolymer 2002 Conf., no. 6, pp. 1–9, 2002, [Online]. Available at: https://www.geopolymer.org/wp-content/uploads/ENVIRONMENT.pdf.

[97] M. Muttashar, “Geopolymer Concrete : the Green Alternative With Suitable Structural Properties,” 23rd Australas. Conf. Mech. Struct. Mater., no. December, pp. 101–106, 2014, [Online]. Available at: https://research.usq.edu.au/item/q2x0q/geopolymer-concrete-the-green-alternative-with-suitable-structural-properties.

[98] S. V. Joshi and M. S. Kadu, “Role of Alkaline Activator in Development of Eco-friendly Fly Ash Based Geo Polymer Concrete,” Int. J. Environ. Sci. Dev., pp. 417–421, 2012, doi: 10.7763/IJESD.2012.V3.258.

[99] N. Subramanian, “Sustainability – Challenges and solutions,” Indian Concr. J., no. December, pp. 1–12, 2021, [Online]. Available at: https://www.thestructuralengineer.info/storage/publication.

[100] B. J. Mathew, M. Sudhakar, and C. Natarajan, “Strength , Economic and Sustainability Characteristics of Coal Ash – GGBS Based Geopolymer Concrete,” Int. J. Comput. Eng. Res., vol. 3, pp. 207–212, 2013, [Online]. Available at : https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=.

[101] X. Guo, H. Shi, and W. A. Dick, “Compressive strength and microstructural characteristics of class C fly ash geopolymer,” Cem. Concr. Compos., vol. 32, no. 2, pp. 142–147, Feb. 2010, doi: 10.1016/j.cemconcomp.2009.11.003.

[102] D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan, “On the Development of Fly Ash-Based Geopolymer Concrete,” ACI Mater. J., vol. 101, no. 6, pp. 467–472, Nov. 2004, doi: 10.14359/13485.

[103] M. M. C. Nasvi, R. P. Gamage, and S. Jay, “Geopolymer as well cement and the variation of its mechanical behavior with curing temperature,” Greenh. Gases Sci. Technol., vol. 2, no. 1, pp. 46–58, Feb. 2012, doi: 10.1002/ghg.39.

[104] J. R. Yost, A. Radlińska, S. Ernst, and M. Salera, “Structural behavior of alkali activated fly ash concrete. Part 1: mixture design, material properties and sample fabrication,” Mater. Struct., vol. 46, no. 3, pp. 435–447, Mar. 2013, doi: 10.1617/s11527-012-9919-x.

[105] S. Kumar, R. Kumar, and S. P. Mehrotra, “Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer,” J. Mater. Sci., vol. 45, no. 3, pp. 607–615, Feb. 2010, doi: 10.1007/s10853-009-3934-5.

[106] Z. Li and S. Liu, “Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer,” J. Mater. Civ. Eng., vol. 19, no. 6, pp. 470–474, Jun. 2007, doi: 10.1061/(ASCE)0899-1561(2007)19:6(470).

[107] G. S. Manjunath, Radhakrishna, C. Giridhar, and M. Jadhav, “Compressive Strength Development in Ambient Cured Geo-polymer Mortar,” Int. J. Earth Sci. Eng., vol. 04, no. 06, pp. 830–834, 2011, [Online]. Available at: https://www.researchgate.net/profile/Hanumantharao-Chappidi-2/publication/277897292_Capacity_Constraints_on_Progressing_of_National_Highway.

[108] P. Akhilesh, V. Reddy Marepally, and P. Padmakanth, “Geopolymer concrete,” 2012. Accessed Aug. 10, 2022. [Online]. Available at: https://www.slideshare.net/akhileshpadiga/geo-polymer-concrete.

[109] M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete designed by Taguchi method,” Mater. Des., vol. 36, pp. 191–198, Apr. 2012, doi: 10.1016/j.matdes.2011.10.036.

[110] A. M. M. Al Bakri, H. Kamarudin, M. Binhussain, I. K. Nizar, A. R. Rafiza, and Y. Zarina, “Comparison of Geopolymer Fly Ash and Ordinary Portland Cement to the Strength of Concrete,” Adv. Sci. Lett., vol. 19, no. 12, pp. 3592–3595, Dec. 2013, doi: 10.1166/asl.2013.5187.

[111] P. Nath and P. K. Sarker, “Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete,” Constr. Build. Mater., vol. 130, pp. 22–31, Jan. 2017, doi: 10.1016/j.conbuildmat.2016.11.034.

[112] S. Mane and H. S. Jadhav, “Investigation of Geopolymer Mortar and Concrete Under High Temperature Shweta,” Insight Non-Destructive Test. Cond. Monit., vol. 2, no. 12, pp. 384–390, 2012, [Online]. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=.

[113] D. L. Y. Kong and J. G. Sanjayan, “Effect of elevated temperatures on geopolymer paste, mortar and concrete,” Cem. Concr. Res., vol. 40, no. 2, pp. 334–339, Feb. 2010, doi: 10.1016/j.cemconres.2009.10.017.

[114] X. Wang et al., “Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process,” J. Build. Eng., vol. 56, p. 104745, Sep. 2022, doi: 10.1016/j.jobe.2022.104745.

[115] M. Guerrieri and J. G. Sanjayan, “Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures,” Fire Mater., vol. 34, no. 4, p. n/a-n/a, Jun. 2009, doi: 10.1002/fam.1014.

[116] R. Zhao and J. G. Sanjayan, “Geopolymer and Portland cement concretes in simulated fire,” Mag. Concr. Res., vol. 63, no. 3, pp. 163–173, Mar. 2011, doi: 10.1680/macr.9.00110.

[117] W. S.E., “Creep Behaviour of Fly Ash-Based Geopolymer Concrete,” Civ. Eng. Dimens., vol. 12, no. 2, pp. 73–78, Aug. 2010, doi: 10.9744/ced.12.2.73-78.

[118] Y. Yu, Y. Li, J. Li, X. Gu, and S. Royel, “Materials technology research to structural design of geopolymer concrete,” Mech. Struct. Mater. Adv. Challenges, pp. 60–69, Aug. 2019, Accessed: Aug. 10, 2023. [Online]. Available at: https://www.taylorfrancis.com/ .

[119] J. Zhong, G.-X. Zhou, P.-G. He, Z.-H. Yang, and D.-C. Jia, “3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide,” Carbon N. Y., vol. 117, pp. 421–426, Jun. 2017, doi: 10.1016/j.carbon.2017.02.102.

[120] M. Xia, B. Nematollahi, and J. Sanjayan, “Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications,” Autom. Constr., vol. 101, pp. 179–189, May 2019, doi: 10.1016/j.autcon.2019.01.013.

[121] T. Suwan and M. Fan, “Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature,” Mater. Manuf. Process., vol. 32, no. 5, pp. 461–467, Apr. 2017, doi: 10.1080/10426914.2016.1198013.

[122] T. Suwan and M. Fan, “Influence of OPC replacement and manufacturing procedures on the properties of self-cured geopolymer,” Constr. Build. Mater., vol. 73, pp. 551–561, Dec. 2014, doi: 10.1016/J.CONBUILDMAT.2014.09.065.

[123] J. Kruger, A. du Plessis, and G. van Zijl, “An investigation into the porosity of extrusion-based 3D printed concrete,” Addit. Manuf., vol. 37, p. 101740, Jan. 2021, doi: 10.1016/j.addma.2020.101740.

[124] A. Le Duigou, M. Castro, R. Bevan, and N. Martin, “3D printing of wood fibre biocomposites: From mechanical to actuation functionality,” Mater. Des., vol. 96, pp. 106–114, Apr. 2016, doi: 10.1016/j.matdes.2016.02.018.

[125] W. Zhang, R. Melcher, N. Travitzky, R. K. Bordia, and P. Greil, “Three-Dimensional Printing of Complex-Shaped Alumina/Glass Composites,” Adv. Eng. Mater., vol. 11, no. 12, p. NA-NA, Nov. 2009, doi: 10.1002/adem.200900213.

[126] S. Surehali, A. Tripathi, A. S. Nimbalkar, and N. Neithalath, “Anisotropic chloride transport in 3D printed concrete and its dependence on layer height and interface types,” Addit. Manuf., vol. 62, p. 103405, Jan. 2023, doi: 10.1016/j.addma.2023.103405.

[127] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, “Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,” Virtual Phys. Prototyp., vol. 11, no. 3, pp. 209–225, Jul. 2016, doi: 10.1080/17452759.2016.1209867.

[128] A. Bhardwaj et al., “Additive Manufacturing Processes for Infrastructure Construction: A Review,” J. Manuf. Sci. Eng., vol. 141, no. 9, Sep. 2019, doi: 10.1115/1.4044106.

[129] R. Wolfs, T. Salet, and B. Hendriks, “3D Printing of Sustainable Concrete Structures,” Int. Assoc. Shell Spat. Struct., pp. 1–8, 2015, Accessed: Aug. 10, 2023. [Online]. Available at: https://www.ingentaconnect.com/content/iass/piass/2015/00002015/00000002/art00003.

[130] E. Barnett and C. Gosselin, “Large-scale 3D printing with a cable-suspended robot,” Addit. Manuf., vol. 7, pp. 27–44, Jul. 2015, doi: 10.1016/j.addma.2015.05.001.

[131] E. Lublasser, T. Adams, A. Vollpracht, and S. Brell-Cokcan, “Robotic application of foam concrete onto bare wall elements - Analysis, concept and robotic experiments,” Autom. Constr., vol. 89, pp. 299–306, May 2018, doi: 10.1016/j.autcon.2018.02.005.

[132] X. Zhang et al., “Large-scale 3D printing by a team of mobile robots,” Autom. Constr., vol. 95, pp. 98–106, Nov. 2018, doi: 10.1016/j.autcon.2018.08.004.

[133] I. Bin Ishak, J. Fisher, and P. Larochelle, “Robot Arm Platform for Additive Manufacturing Using Multi-Plane Toolpaths,” in Volume 5A: 40th Mechanisms and Robotics Conference, Aug. 2016, vol. 5A-2016, doi: 10.1115/DETC2016-59438.

[134] V. Ghiasi, F. Heydari, and H. Behzadinezhad, “Numerical Analysis and Back Calculation of Embankment Dam Using Monitoring Results (Case Study: Iran-Lurestan Rudbar),” Sci. Iran., vol. 28, no. 5, pp. 0–0, Mar. 2021, doi: 10.24200/sci.2021.56159.4579.

[135] V. Ghiasi and A. Farzan, “Numerical study of the effects of bed resistance and groundwater conditions on the behavior of geosynthetic reinforced soil walls,” Arab. J. Geosci., vol. 12, no. 23, p. 729, Dec. 2019, doi: 10.1007/s12517-019-4947-2.

[136] V. Ghiasi, E. Kaivan, N. Arzjani, and D. Arzjani, “Analyzing the causes of delay in development projects by fuzzy analysis,” Int. J. Qual. Reliab. Manag., vol. 34, no. 9, pp. 1412–1430, Oct. 2017, doi: 10.1108/IJQRM-08-2016-0134.

[137] P. Pourkeramat, V. Ghiasi, and B. Mohebi, “The Effect of Post-Earthquake Fire on the Performance of Steel Moment Frames Subjected to Different Ground Motion Intensities,” Int. J. Steel Struct., vol. 21, no. 4, pp. 1197–1209, Aug. 2021, doi: 10.1007/s13296-021-00496-9.

[138] E. Mousapoor, V. Ghiasi, and R. Madandoust, “Macro modeling of slab-column connections in progressive collapse with post-punching effect,” Structures, vol. 27, pp. 837–852, Oct. 2020, doi: 10.1016/j.istruc.2020.06.025.

[139] S. Kazemian, A. Prasad, B. B. K. Huat, V. Ghiasi, and S. Ghareh, “Effects of Cement–Sodium Silicate System Grout on Tropical Organic Soils,” Arab. J. Sci. Eng., vol. 37, no. 8, pp. 2137–2148, Dec. 2012, doi: 10.1007/s13369-012-0315-1.

[140] V. Ghiasi, sadegh Mirzaei, and M. Yousefi, “Development of Prediction - Area charts to improve the output of landslide potential models,” Modares Civ. Eng. J., vol. 20, no. 6, pp. 127–131, Dec. 2020, Accessed: Aug. 10, 2023. [Online]. Available at: http://mcej.modares.ac.ir/article-16-39163-en.html.

[141] V. Ghiasi, S. A. R. Ghasemi, and M. Yousefi, “Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches,” Nat. Hazards, vol. 107, no. 1, pp. 795–808, May 2021, doi: 10.1007/s11069-021-04606-y.

[142] V. Ghiasi, R. Fathi, and M. Shirkhani Cheshmeh Shafie, “Evaluation on Effect of Modulus of Elasticity, Shear Modulus, Damping Ratio and Shear Wave Velocity on Soil Dynamic,” Road, vol. 29, no. 108, pp. 87–100, Sep. 2021, Accessed: Aug. 10, 2023. [Online]. Available at: https://road.bhrc.ac.ir/article_107905_en.html.

[143] V. Ghiasi and S. Eskandari, “Comparing a single pile’s axial bearing capacity using numerical modeling and analytical techniques,” Results Eng., vol. 17, p. 100893, Mar. 2023, doi: 10.1016/j.rineng.2023.100893


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Vahed Ghiasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Applied Engineering and Technology
ISSN: 2829-4998
Email: aet@ascee.org | andri.pranolo.id@ieee.org
Published by: Association for Scientic Computing Electronics and Engineering (ASCEE)
Organized by: Association for Scientic Computing Electronics and Engineering (ASCEE), Universitas Negeri Malang, Universitas Ahmad Dahlan

View My Stats AET
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.