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 Heart failure is a leading cause of morbidity and mortality worldwide, and 
early prediction of outcomes is critical for timely intervention and improved 
patient care. Accurate prediction models can help clinicians identify high-
risk patients, optimize treatment strategies, and reduce healthcare costs. In 
this study, we developed and evaluated machine learning models to predict 
mortality in patients with heart failure using a medical dataset of 299 
patients with 13 clinical variables collected in 2015. Four models were 
tested, including Feedforward Neural Network (FNN), Random Forest, 
XGBoost, and an ensemble model combining all three. The experimental 
process included data preprocessing, feature scaling, and stratified cross-
validation to ensure robust evaluation. The results showed that the 
ensemble model achieved the best performance with a ROC-AUC of 
0.9134 and an F1 score of 0.7439, outperforming individual models such as 
Random Forest (ROC-AUC: 0.9117) and XGBoost (ROC-AUC: 0.9130). 
FNN, despite having the highest accuracy (0.8455), showed lower 
performance in terms of recall and precision, likely due to its sensitivity to 
overfitting on small datasets. These results highlight the effectiveness of 
ensemble learning in medical prediction tasks, especially for handling 
complex, high-dimensional health data. However, the study has several 
limitations. First, the dataset size is relatively small (299 records), which 
may limit the generalizability of the results to larger populations. Second, 
the binary classification approach simplifies the complex nature of heart 
failure progression, which often involves multiple stages and outcomes. 
Third, the dataset lacks certain clinical features, such as genetic markers, 
imaging data, or longitudinal patient records, which could further improve 
predictive accuracy. Despite these limitations, this study contributes to the 
growing body of knowledge on the application of machine learning in 
healthcare and provides a robust framework for predicting heart failure 
outcomes. Future research should explore larger, multicenter datasets, 
incorporate advanced feature engineering techniques, and investigate the 
integration of deep learning architectures such as convolutional neural 
networks (CNNs) or recurrent neural networks (RNNs) to process 
sequential data such as ECG signals. The proposed ensemble model has the 
potential to be integrated into clinical decision support systems, enabling 
real-time risk assessment and personalized treatment plans for heart failure 
patients.  

© 2024 The Author(s). 
This is an open access article under the CC–BY-SA license. 
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1. Introduction 
Heart failure is a significant public health problem, affecting approximately 64 million people 

worldwide, and is associated with high morbidity, mortality rates, and substantial economic burden  [1]. 
Accurate prediction of heart failure outcomes is essential for timely intervention and effective disease 
management. In recent years, machine learning and deep learning techniques have shown promising 
results in healthcare, including heart failure prediction [2], [3]. Therefore, applying these technologies 
can help improve the accuracy of diagnosis and treatment of heart failure patients. 

One approach that has received attention in the literature is ensemble learning, combining multiple 
models to improve overall predictive performance [4], [5]. Ensemble learning methods are particularly 
advantageous due to their ability to combine the strengths of multiple models, addressing the challenges 
of complex, high-dimensional health data, and improving robustness and generalizability. Methods such 
as feedforward neural network (FNN), random forest, and XGBoost, have been successfully applied to 
various health problems, including heart failure prediction [6], [7]. By combining the advantages of each 
model, these techniques can provide more accurate and robust predictions in the face of health data 
complexity. 

FNN is a type of artificial neural network widely used in healthcare applications due to its ability to 
capture complex nonlinear relationships in data [8], [9]. On the other hand, random forest is a collection 
of decision trees that can handle high-dimensional data and make robust predictions [10], [11]. 
Meanwhile, XGBoost is a gradient-boosting algorithm that performs superior in various machine-
learning tasks, including healthcare [12], [13]. These three methods have been widely applied and show 
great potential in predicting heart failure outcomes. 

Several studies have investigated ensemble learning techniques to predict heart failure outcomes. For 
example, Choi et al. [3] developed a recurrent artificial neural network model for early detection of heart 
failure onset. They compared it with several other models, including logistic regression, artificial neural 
network, support vector machine, and K-nearest neighbor. Their results showed that the recurrent 
artificial neural network model achieved the highest area under the curve (AUC) of 0.777 Another study 
by Rasmy et al. [4] also investigated the generalization of recurrent artificial neural network-based 
prediction models for the risk of heart failure onset using a large and heterogeneous dataset of electronic 
medical records. They found that the RETAIN model, a recurrent artificial neural network type, had an 
AUC of 82%, outperforming logistic regression, which only achieved 79%. 

In a related study, Kwon et al. [14] used a deep learning model to evaluate the potential of 
electrocardiographic (ECG) features in the early detection of heart failure with preserved ejection 
fraction. Their results showed that heart failure with preserved ejection fraction can be effectively 
detected using conventional ECG devices and other types of ECG devices with deep learning models. 
Although these studies highlight the potential of ensemble learning techniques in predicting heart 
failure outcomes, the number of studies comparing the performance of ensemble learning methods, 
specifically FNN, random forest, and XGBoost, remains limited. 

The reliance on single models, which often suffer from bias, overfitting, or poor generalizability, 
remains one of the notable limitations of previous research. For example, despite their widespread use 
in medicine, logistic regression and recurrent neural networks have shown inadequate performance when 
dealing with unbalanced data sets, particularly in the context of heart failure data [15], [16]. This is 
particularly concerning given the complexity of heart failure disease, which requires nuanced predictive 
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modeling. Ensemble learning techniques, which aggregate predictions from multiple models, have been 
shown to significantly outperform these traditional single-classifier approaches. This performance 
improvement is due to the ability of ensemble methods such as Random Forest and XGBoost to combine 
the strengths of different classifiers, thereby mitigating the weaknesses of individual models [17]–[19]. 

In addition, many studies lack interpretability, which is a barrier for physicians who rely on these 
models for clinical decision making [20]. The complexity of these models often obscures the decision-
making process, leading to a lack of confidence among healthcare professionals who are expected to use 
the results [19]. This calls for research that focuses not only on accuracy, but also on the clarity and 
interpretability of predictive models. It is essential that any predictive model used in healthcare is easily 
understood and trusted by its end-user physicians [21], [22]. In addition, the quantity and diversity of 
datasets used in previous studies have often been found to be limited, hindering the generalizability of 
findings to broader patient populations [16], [20]. These limitations may affect the applicability of the 
results and insights derived from the studies, especially given the heterogeneous nature of healthcare 
data [15]. 

By doing a thorough comparison of FNN, random forest, and XGBoost for heart failure outcome 
prediction, this work seeks to close these gaps. In contrast to other research, this study focuses on 
combining these three models into an ensemble method, utilizing their complementing advantages to 
increase resilience and accuracy. To provide a balanced representation of results, the study employs a 
dataset of 299 heart failure patient records with 13 clinical characteristics. The models are assessed using 
performance metrics including accuracy, sensitivity, specificity, and AUC, which offer comprehensive 
insights into their capacity for prediction. 

To make the models more accessible and useful to clinicians, methods such as Feature Significance 
and Shapley Additive Explanations (SHAP) are used to identify the most important variables affecting 
predictions [22], [23]. This study advances our understanding of the use of ensemble learning techniques 
in healthcare by overcoming the shortcomings of previous research and providing a solid, interpretable 
framework. Ultimately, the results should improve patient care and medical decision-making by 
providing insightful information for creating prediction models that are easier to understand and more 
accurate. 

2. Method 
The methodology of this research is designed to build a robust and reliable predictive model for heart 

failure outcomes by employing state-of-the-art ensemble learning techniques. This approach ensures a 
comprehensive and systematic handling of data to address the complexities associated with medical 
datasets. The process includes several critical stages: data collection, preprocessing, model selection, and 
evaluation, as illustrated in Fig. 1. 

 Each stage plays a pivotal role in ensuring that the resulting predictive model not only delivers high 
accuracy but also retains clinical relevance and interpretability. By integrating multiple machine-learning 
models, this methodology aims to harness their complementary strengths, thereby enhancing robustness 
and mitigating potential biases.  

The ultimate goal is to create a model that can effectively handle diverse medical data, provide 
actionable insights, and support informed decision-making in clinical settings. 
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Fig. 1. Research Method 

2.1. Data Collection 
The study used a medical dataset of heart failure patients, which contained 299 records with 13 

variables, including age, anemia, diabetes, creatinine phosphokinase (CPK) levels, cardiac ejection 
fraction, hypertension, platelets, serum creatinine, serum sodium, gender, smoking, and time since the 
first treatment. The dataset was sourced from a public repository on Kaggle, ensuring accessibility and 
credibility for research purposes. Factors such as age, anemia, and diabetes are known to increase the 
risk of death in heart failure patients [24], [25]. High CPK levels indicate myocardial damage and are 
associated with mortality [26]. Low cardiac ejection fraction is an important predictor of mortality [27], 
while uncontrolled hypertension worsens prognosis [28]. In addition, low platelet count and renal 
dysfunction also contribute to poor outcomes [29], [30]. Low serum sodium levels reflect renal 
dysfunction and are associated with mortality [31], and women usually have better survival despite 
frequent hospitalizations for heart failure [32]. Smoking exacerbates the progression of heart failure [33], 
while a more extended time since the first treatment is associated with poor prognosis [34]. The dataset 
is balanced, ensuring an equal representation of patients who survived and those who died. This is critical 
for training predictive models, as an imbalanced dataset could lead to biased predictions. This dataset 
aims to build a predictive model based on existing medical factors, with DEATH_EVENT as the 
prediction target (value 1 for death, 0 for survival). The dataset show in Table 1 and Table 2. 

Table 1.  Dataset 

age anaemia creatinine_phosphokinase diabetes ejection_fraction high blood pressure platelets 
75 0 582 0 20 1 265000 
55 0 7861 0 38 0 263358.03 
65 0 146 0 20 0 162000 
50 1 111 0 20 0 210000 
65 1 160 1 20 0 327000 

Table 2.  Dataset 2 

serum_creatinine serum sodium sex smoking time DEATH EVENT 
01.09 130 1 0 4 1 
01.01 136 1 0 6 1 
01.03 129 1 1 7 1 
01.09 137 1 0 7 1 
02.07 116 0 0 8 1 
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Each entry in this dataset describes factors that can influence a patient's death from heart failure and 
is used to build a predictive model that can help predict the likelihood of death based on available medical 
parameters. 

2.2. Data Pre-Processing 
After data collection, a pre-processing stage is performed to handle errors, missing values, or 

inconsistent formatting in the dataset. The first step is to handle missing data, which incomplete records 
or entry errors can cause. In this study, rows with missing values are deleted. However, imputation 
methods (e.g., replacing missing values with the mean, median, or mode) may be considered according 
to the dataset's characteristics. Approximately 5% of the data contained missing values, which were 
handled through deletion or imputation techniques to minimize bias. Imputation has been widely 
applied in healthcare and clinical prediction models due to its effect on model quality [35]. Next, the 
data is scaled using z-score normalization (standardization), transforming each feature into a mean of 0 
and a standard deviation of 1. This step is important for machine learning algorithms, especially those 
that use distance matrices such as artificial neural networks or support vector machines, to ensure no 
feature dominates the model. This feature scaling improves the training process and the model's overall 
performance [36]. 

2.3. Data Splitting 
After the data is processed, the dataset is divided into training and testing. The training data is used 

to train the model, while the testing data is used to evaluate the model's performance on previously 
unseen data. The division is done at a ratio of 80:20 (80% for training, 20% for testing), although this 
ratio can be adjusted as needed. It is important to ensure that the distribution of the target variable (e.g., 
the number of patients who survive and those who die) remains balanced in both sets. This is achieved 
through stratified sampling, which ensures similar class distributions in both sets and avoids bias towards 
the majority class. This process is crucial in an unbalanced dataset, such as this one, where the number 
of patients who survived far outweighs those who died, which can cause bias if not handled appropriately. 
With stratified sampling, the model is trained with a more balanced representation of both classes, 
improving its ability to generalize the results [37], [38]. 

2.4. Model Selection 
In the model selection stage, three machine-learning models were selected for this classification 

problem. The first model is the Feedforward Neural Network (FNN), an effective deep-learning 
architecture for capturing complex patterns in data, especially when the relationship between features is 
not linear. FNN has been shown to excel in medical classification tasks, where this deep learning 
technique can capture complex feature interactions and outperform traditional models [2]. The second 
model is Random Forest, a decision tree-based ensemble method. Random Forest improves the 
performance of decision trees by combining predictions from multiple trees, reducing the risk of 
overfitting and improving generalization ability. This method effectively handles unbalanced datasets by 
using weighted averages to balance predictions and giving more weight to minority classes [39]. The 
third model is XGBoost, which uses gradient-boosting techniques to improve model accuracy. In 
XGBoost, weak models are trained sequentially to correct the previous model's errors. XGBoost also has 
a scale_pos_weight parameter, which adjusts the model's sensitivity to minority classes, especially useful 
in unbalanced datasets [40]. These three models were chosen for their respective advantages, and an 
ensemble model combining all three is expected to outperform a single model. 
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2.5. Ensamble 
After selecting individual models, the next step is to combine them in an ensemble model to improve 

the overall performance. The purpose of the ensemble method is to utilize the diversity of different 
models. In this study, the Voting Classifier combined the predictions of the three models: FNN, 
Random Forest, and XGBoost. The Voting Classifier can use either hard or soft voting. In soft voting, 
each model calculates the class probability for each prediction and selects the class with the highest 
average probability among all models. This approach allows ensemble models to produce more robust 
and reliable predictions, combining various algorithms' strengths. The Voting Classifier was chosen due 
to its ability to aggregate the strengths of individual models, increasing robustness and accuracy while 
mitigating the weaknesses of each individual model. For example, FNN can capture complex patterns, 
while Random Forest and XGBoost are more effective in handling imbalanced data and improving 
accuracy. Combining these three models makes the ensemble more resistant to overfitting and more 
capable of generalizing to data that has never been seen before [41]–[43]. 

2.6. Evaluation 
The next step is to evaluate the ensemble model using cross-validation techniques. Stratified Cross-

Validation ensures that the distribution of target classes in each fold of the training set is the same as 
the original dataset. This process divides the training data into five subsets (folds), where the model is 
trained on four subsets, and the remaining subset is used for validation. This cycle is repeated five times, 
with each fold serving as a one-time validation set. This approach helps ensure that the model is not 
overly dependent on a particular subset of data, providing a more accurate assessment of its generalization 
ability [44], [45]. Various performance metrics were calculated for each fold, including accuracy, 
precision, recall, F1 score, and ROC-AUC. These metrics provide an overall picture of the model's 
performance, including its accuracy and ability to handle false positives and negatives [46]. After cross-
validation, the model is retrained using all the training data and tested on the test set to assess its 
performance on unseen data. This evaluation provides an idea of the model's readiness to be applied in 
real-world clinical settings [47]. 

3. Results and Discussion 

3.1. Result 
The following Table 3 presents a comparison of model performance in predicting heart failure 

outcomes based on commonly used metrics: accuracy, precision, recall, F1 score, and ROC-AUC. 

Table 3.  Result 

Model Accuracy Precision recall F1 Score ROC-AUC 
FNN 0,8455 0,8016 0,7033 0,7468 0,8817 

Random Forest 0.8497 0.8014 0.7417 0.7648 0.9117 
XGBoost 0.8371 0.7867 0.7017 0.7385 0.9130 
Ensemble 0,8413 0,8008 0,7017 0,7439 0,9134 

 

The evaluation results of the machine learning models used in this study show that the ensemble 
model performs best among all tested models. With an ROC-AUC score of 0.9134, the ensemble model 
showed the highest ability to distinguish between the positive and negative classes, i.e., patients with 
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heart failure and those without. The F1 score of the ensemble model also reached the highest value of 
0.7439, reflecting a good balance between precision (0.8008) and recall (0.7017). This indicates that the 
ensemble model can identify heart failure cases well while minimizing the number of false positives and 
false negatives. 

Meanwhile, Random Forest came in second place with an ROC-AUC score of 0.9117, slightly lower 
than the ensemble model. While Random Forest was also effective in separating the two classes, it had 
slightly lower precision (0.8014) and recall (0.7417) scores compared to the ensemble model. Although 
Random Forest can handle the dataset well, it is more likely to produce false optimistic predictions than 
the ensemble model. XGBoost, although also a robust model, has an ROC-AUC score (0.9130) similar 
to Random Forest but slightly lower than the ensemble model. The precision and recall scores of 
XGBoost are 0.7867 and 0.7017, respectively, which are also lower than those of Random Forest and 
the ensemble model. This suggests that XGBoost may be more biased towards the majority class, leading 
to a slight decrease in its ability to accurately detect heart failure without generating many false positives. 

Finally, the Feedforward Neural Network (FNN), despite having the highest accuracy (0.8455), 
showed lower performance than the other models regarding discrimination ability between the two 
classes. The ROC-AUC score for FNN was 0.8817, lower than the ensemble and Random Forest models. 
In addition, the precision (0.8016) and recall (0.7033) scores of FNN were lower, reflecting the difficulty 
of this model in discriminating the classes and identifying patients who had heart failure. This is most 
likely due to the FNN's sensitivity to overfitting, which hinders its ability to generalize well to unseen 
data. These results show that the ensemble model is the best choice for predicting heart failure outcomes, 
with better performance in the balance between precision, recall, and class discrimination ability. 
Although Random Forest and XGBoost also performed well, the ensemble model provided the best 
combination of models, making it more effective in predicting heart failure outcomes with lower error 
rates. ROC Curve show in Fig. 2. 

 

 
Fig. 2. ROC Curve 

Confusion Matrix shows in Fig. 3 that the model successfully identified 38 True Negative (TN) and 
12 True Positive (TP) cases, but there were also 3 False Positive (FP) and 7 False Negative (FN). Despite 
the misclassification, the model performed well in distinguishing between heart failure patients and those 
who did not. The ROC curve shows that the ensemble model (FNN, RF, XGBoost) is close to the 
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upper left corner of the graph, indicating a high True Positive Rate (TPR) and low False Positive Rate 
(FPR). AUC values close to 1 indicate the model's excellent ability to discriminate between positive and 
negative classes, with the combination of models providing better performance overall. 

 
Fig. 3. Confusion Matrix 

3.2. Discussion 
This study demonstrates the effectiveness of ensemble learning techniques in predicting heart failure 

outcomes. The ensemble model combining Feedforward Neural Networks (FNN), Random Forest and 
XGBoost achieved the highest ROC-AUC (0.9134) and F1 score (0.7439), outperforming single models 
such as Random Forest (ROC-AUC: 0.9117) and XGBoost (ROC-AUC: 0.9130). These results 
highlight the strength of ensemble methods, which integrate multiple algorithms to achieve superior 
accuracy and robustness in medical prediction tasks [48]. In particular, the ensemble model leverages the 
complementary strengths of its base models: FNN for capturing complex nonlinear relationships, 
Random Forest for robustness against overfitting, and XGBoost for its efficiency in handling feature 
interactions. This synergy ensures a balanced precision-recall performance and robust discriminative 
ability. 

The results are consistent with previous research on machine learning for heart failure prediction. 
For example, Yang et al. [49] reported an AUC of 0.776 using different models to predict heart failure, 
while a study by Wang et al. [50] found that their comprehensive model achieved a higher AUC of 
0.839. However, these studies primarily focused on single models rather than ensemble approaches. The 
superior performance of the ensemble model in this study highlights the potential of combining multiple 
algorithms to achieve higher accuracy and robustness in medical prediction tasks. In addition, Chua et 
al. [51] demonstrated how neural networks could improve accuracy in the diagnosis of cardiac diseases, 
achieving an AUC of 0.784 in one of their validation cohorts. These findings highlight the importance 
of exploring ensemble methods and deep learning architectures in the pursuit of more reliable heart 
failure prediction models. Random Forest performed well with a ROC-AUC of 0.9117, but was slightly 
outperformed by the ensemble model. Its sensitivity to overfitting, likely due to the small dataset size 
(299 records) and class imbalance, affected its ability to generalize to minority cases. XGBoost achieved 
a ROC-AUC of 0.9130 and an F1 score of 0.7385, but exhibited a slight bias toward the majority class, 
reducing recall for minority cases [52]. This highlights the need for careful parameter tuning to optimize 
its performance in unbalanced medical datasets [53]. Despite having the highest accuracy (0.8455), FNN 
underperformed in ROC-AUC and recall-precision balance, suggesting that it struggles with overfitting 
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in unbalanced datasets such as heart failure prediction [54]. Its lower performance indicates challenges 
in distinguishing between positive and negative classes, which affects its predictive accuracy. 

While ensemble learning shows promise for predicting heart failure, the challenges of applying 
machine learning to medical data must be addressed. Model interpretability is critical, as clinicians need 
insight into the factors that drive predictions. Although SHAP (Shapley Additive Explanations) has 
been used to interpret feature importance, the complexity of ensemble models, particularly due to 
nonlinear relationships, poses significant barriers to clinical adoption [55], [56]. Future work should 
focus on hybrid approaches that balance accuracy and interpretability and address interpretability 
challenges [57]. Another challenge is bias in medical data. While datasets may be balanced with respect 
to survival and mortality outcomes, inherent biases related to demographics, comorbidities, or treatment 
protocols can skew results [58], [59]. For example, the lack of socioeconomic data, which significantly 
influences heart failure outcomes, and the reliance on limited data sets limit the generalizability of the 
findings [60]. Future studies should include larger, multicenter datasets with diverse patient populations 
and additional variables, including socioeconomic factors, genetic markers, and imaging data, to improve 
the real-world applicability of predictive models in heart failure [61]–[63]. 

There are several limitations to this study. First, the data set is relatively small (299 records), which 
may limit the generalizability of the results to larger populations. Second, the binary classification 
approach oversimplifies the complex nature of heart failure progression, which often involves multiple 
stages and outcomes. Third, the dataset lacks certain clinical features, such as genetic markers, imaging 
data, or longitudinal patient records, which could further improve predictive accuracy. Despite these 
limitations, this study contributes to the growing body of knowledge on the application of machine 
learning in healthcare and provides a robust framework for predicting heart failure outcomes. Potential 
future research includes exploring stacking ensemble techniques, where predictions from base models 
are refined by a metamodel, potentially leading to higher accuracy and discrimination [64]. The use of 
deep learning architectures, such as CNNs and RNNs, could also be explored to process more complex 
datasets, including sequential data such as ECG signals. Combining these techniques with transfer 
learning could enable adaptation to smaller medical datasets, improving scalability and efficiency. In 
addition, efforts should be made to improve the interpretability and fairness of medical prediction models 
to ensure their effectiveness in real-world applications. 

4. Conclusion 
This study demonstrates the effectiveness of an ensemble model combining Feedforward Neural 

Networks (FNN), Random Forest, and XGBoost for predicting heart failure outcomes. Using a dataset 
of 299 patient records with 13 medical variables, the ensemble model achieved the highest F1 score 
(0.7439) and ROC-AUC (0.9134), outperforming individual models such as Random Forest (ROC-
AUC: 0.9117) and XGBoost (ROC-AUC: 0.9130). These results highlight the potential of ensemble 
learning to provide robust and reliable predictions in medical applications, especially when dealing with 
small, unbalanced datasets - a common challenge in healthcare. Compared to previous studies, this 
research contributes by showing how ensemble methods can better balance precision and recall than 
single models, which often suffer from overfitting or bias. For example, despite having the highest 
accuracy (0.8455), FNN underperformed in recall and precision due to its sensitivity to overfitting. 
Similarly, XGBoost exhibited a slight bias toward the majority class, reducing its recall for minority cases. 
The ensemble model addressed these limitations by leveraging the complementary strengths of its base 
models: FNN for capturing complex nonlinear relationships, Random Forest for robustness, and 
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XGBoost for efficient feature handling. However, there are limitations to this study. The dataset size is 
relatively small (299 records), which may limit its generalizability to larger populations. The binary 
classification approach also simplifies the complex nature of heart failure progression, which often 
involves multiple stages and outcomes. In addition, the dataset lacks certain clinical features, such as 
genetic markers, imaging data, or socioeconomic information, which could further improve predictive 
accuracy. These limitations highlight the need for more comprehensive datasets and advanced methods 
to improve the robustness of predictive models. Future research should focus on several key areas. First, 
exploring stacking ensemble techniques, where predictions from base models are refined by a meta-
model, could lead to even greater accuracy and discrimination. Second, incorporating medical image-
based data, such as echocardiograms or MRI scans, could provide additional insight into the progression 
of heart failure. Third, the use of deep learning architectures such as CNNs and RNNs could be explored 
to process more complex data sets, including sequential data such as ECG signals. Combining these 
techniques with transfer learning could enable adaptation to smaller medical datasets, improving both 
scalability and efficiency. Finally, efforts should be made to improve the interpretability and fairness of 
medical prediction models to ensure that clinicians can trust and effectively use these tools in real-world 
applications. 

Declarations 
Author contribution. All authors contributed equally to the main contributor to this paper. All authors 
read and approved the final paper. 
Funding statement. None of the authors have received any funding or grants from any institution or 
funding body for the research. 
Conflict of interest. The authors declare no conflict of interest. 
Additional information. No additional information is available for this paper. 

References 
[1] M. S. Akter, H. Shahriar, R. Chowdhury, and M. R. C. Mahdy, “Forecasting the Risk Factor of Frontier 

Markets: A Novel Stacking Ensemble of Neural Network Approach,” Futur. Internet, vol. 14, no. 9, p. 
252, Aug. 2022, doi: 10.3390/fi14090252. 

[2] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: review, 
opportunities and challenges,” Brief. Bioinform., vol. 19, no. 6, pp. 1236–1246, Nov. 2018, doi: 
10.1093/bib/bbx044. 

[3] E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, “Using recurrent neural network models for early detection 
of heart failure onset,” J. Am. Med. Informatics Assoc., vol. 24, no. 2, pp. 361–370, Mar. 2017, doi: 
10.1093/jamia/ocw112. 

[4] L. Rasmy et al., “A study of generalizability of recurrent neural network-based predictive models for heart 
failure onset risk using a large and heterogeneous EHR data set,” J. Biomed. Inform., vol. 84, pp. 11–16, 
Aug. 2018, doi: 10.1016/j.jbi.2018.06.011. 

[5] T. R. Albernaz, E. P. De Souza, M. N. R. Da Silva, and H. S. Carvalho, “An Approach To Computer-
Aided Diagnosis Of Heart Disorders Using Wavelets And Deep Learning Applied To Electrocardiograms 
(Ekgs),” Rev. FOCO, vol. 16, no. 9, p. e2974, Sep. 2023, doi: 10.54751/revistafoco.v16n9-164. 

[6] L. M. Dang et al., “Toward explainable heat load patterns prediction for district heating,” Sci. Reports 
2023 131, vol. 13, no. 1, pp. 1–13, May 2023, doi: 10.1038/s41598-023-34146-3. 

[7] L.-L. Xu et al., “Machine learning in predicting T-score in the Oxford classification system of IgA 
nephropathy,” Front. Immunol., vol. 14, p. 1224631, Aug. 2023, doi: 10.3389/fimmu.2023.1224631. 

https://doi.org/10.3390/fi14090252
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1093/jamia/ocw112
https://doi.org/10.1016/j.jbi.2018.06.011
https://doi.org/10.54751/revistafoco.v16n9-164
https://doi.org/10.1038/s41598-023-34146-3
https://doi.org/10.3389/fimmu.2023.1224631


ISSN 2829-4998 Applied Engineering and Technology 185 
 Vol. 3, No. 3, December 2024, pp. 175-188 

 

 Ariyanta et al. (Ensemble learning approaches for predicting heart failure outcomes….) 

[8] C. Huang, F. Li, L. Wei, X. Hu, and Y. Yang, “Landslide Susceptibility Modeling Using a Deep Random 
Neural Network,” Appl. Sci., vol. 12, no. 24, p. 12887, Dec. 2022, doi: 10.3390/app122412887. 

[9] X. Wang, X. Zhao, G. Song, J. Niu, and T. Xu, “Machine Learning-Based Evaluation on Craniodentofacial 
Morphological Harmony of Patients After Orthodontic Treatment,” Front. Physiol., vol. 13, p. 862847, 
May 2022, doi: 10.3389/fphys.2022.862847. 

[10] W. Lin et al., “Korotkoff sounds dynamically reflect changes in cardiac function based on deep learning 
methods,” Front. Cardiovasc. Med., vol. 9, p. 940615, Aug. 2022, doi: 10.3389/fcvm.2022.940615. 

[11] Y. Zhang et al., “Opening the black box: interpretable machine learning for predictor finding of metabolic 
syndrome,” BMC Endocr. Disord., vol. 22, no. 1, p. 214, Aug. 2022, doi: 10.1186/s12902-022-01121-4. 

[12] A. Baghbani, N. Bouguila, and Z. Patterson, “Short-Term Passenger Flow Prediction Using a Bus 
Network Graph Convolutional Long Short-Term Memory Neural Network Model,” Transp. Res. Rec. J. 
Transp. Res. Board, vol. 2677, no. 2, pp. 1331–1340, Feb. 2023, doi: 10.1177/03611981221112673. 

[13] A. Ferencek, D. Kofjač, A. Škraba, B. Sašek, and M. K. Borštnar, “Deep Learning Predictive Models for 
Terminal Call Rate Prediction during the Warranty Period,” Bus. Syst. Res. J., vol. 11, no. 2, pp. 36–50, 
Oct. 2020, doi: 10.2478/bsrj-2020-0014. 

[14] J. Kwon et al., “Artificial intelligence assessment for early detection of heart failure with preserved ejection 
fraction based on electrocardiographic features,” Eur. Hear. J. - Digit. Heal., vol. 2, no. 1, pp. 106–116, 
May 2021, doi: 10.1093/ehjdh/ztaa015. 

[15] R. D. Prince, A. Akhondi-Asl, N. M. Mehta, and A. Geva, “A Machine Learning Classifier Improves 
Mortality Prediction Compared With Pediatric Logistic Organ Dysfunction-2 Score: Model Development 
and Validation,” Crit. Care Explor., vol. 3, no. 5, p. e0426, May 2021, doi: 
10.1097/CCE.0000000000000426. 

[16] Q. A. Hidayaturrohman and E. Hanada, “Predictive Analytics in Heart Failure Risk, Readmission, and 
Mortality Prediction: A Review,” Cureus, vol. 16, no. 11, p. 11, Nov. 2024, doi: 10.7759/cureus.73876. 

[17] I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and 
Prospects,” IEEE Access, vol. 10, pp. 99129–99149, 2022, doi: 10.1109/ACCESS.2022.3207287. 

[18] D.-K. Nguyen, C.-H. Lan, and C.-L. Chan, “Deep Ensemble Learning Approaches in Healthcare to 
Enhance the Prediction and Diagnosing Performance: The Workflows, Deployments, and Surveys on the 
Statistical, Image-Based, and Sequential Datasets,” Int. J. Environ. Res. Public Health, vol. 18, no. 20, p. 
10811, Oct. 2021, doi: 10.3390/ijerph182010811. 

[19] Y. Gu et al., “Predicting medication adherence using ensemble learning and deep learning models with 
large scale healthcare data,” Sci. Rep., vol. 11, no. 1, p. 18961, Sep. 2021, doi: 10.1038/s41598-021-98387-
w. 

[20] P. Tian et al., “Machine Learning for Mortality Prediction in Patients With Heart Failure With Mildly 
Reduced Ejection Fraction,” J. Am. Heart Assoc., vol. 12, no. 12, p. e029124, Jun. 2023, doi: 
10.1161/JAHA.122.029124. 

[21] J. Zhang, U. Norinder, and F. Svensson, “Deep Learning-Based Conformal Prediction of Toxicity,” J. 
Chem. Inf. Model., vol. 61, no. 6, pp. 2648–2657, Jun. 2021, doi: 10.1021/acs.jcim.1c00208. 

[22] D. Veritti, L. Rubinato, V. Sarao, A. De Nardin, G. L. Foresti, and P. Lanzetta, “Behind the mask: a 
critical perspective on the ethical, moral, and legal implications of AI in ophthalmology,” Graefe’s Arch. 
Clin. Exp. Ophthalmol., vol. 262, no. 3, pp. 975–982, Mar. 2024, doi: 10.1007/s00417-023-06245-4. 

[23] M. S. Barkhordari and L. M. Massone, “Failure Mode Detection of Reinforced Concrete Shear Walls 
Using Ensemble Deep Neural Networks,” Int. J. Concr. Struct. Mater., vol. 16, no. 1, p. 33, Dec. 2022, 
doi: 10.1186/s40069-022-00522-y. 

[24] J. Tromp et al., “Age-Related Characteristics and Outcomes of Patients With Heart Failure With 
Preserved Ejection Fraction,” J. Am. Coll. Cardiol., vol. 74, no. 5, pp. 601–612, Aug. 2019, doi: 
10.1016/j.jacc.2019.05.052. 

[25] S. Paul and R. V. Paul, “Anemia in Heart Failure,” J. Cardiovasc. Nurs., vol. 19, no. Supplement, pp. S57–
S66, Nov. 2004, doi: 10.1097/00005082-200411001-00008. 

https://doi.org/10.3390/app122412887
https://doi.org/10.3389/fphys.2022.862847
https://doi.org/10.3389/fcvm.2022.940615
https://doi.org/10.1186/s12902-022-01121-4
https://doi.org/10.1177/03611981221112673
https://doi.org/10.2478/bsrj-2020-0014
https://doi.org/10.1093/ehjdh/ztaa015
https://doi.org/10.1097/CCE.0000000000000426
https://doi.org/10.7759/cureus.73876
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.3390/ijerph182010811
https://doi.org/10.1038/s41598-021-98387-w
https://doi.org/10.1038/s41598-021-98387-w
https://doi.org/10.1161/JAHA.122.029124
https://doi.org/10.1021/acs.jcim.1c00208
https://doi.org/10.1007/s00417-023-06245-4
https://doi.org/10.1186/s40069-022-00522-y
https://doi.org/10.1016/j.jacc.2019.05.052
https://doi.org/10.1097/00005082-200411001-00008


186 Applied Engineering and Technology ISSN 2829-4998 
 Vol. 3, No. 3, December 2024, pp. 175-188 

 
 

 Ariyanta et al. (Ensemble learning approaches for predicting heart failure outcomes….) 

[26] B. Zareini et al., “Type 2 Diabetes Mellitus and Impact of Heart Failure on Prognosis Compared to Other 
Cardiovascular Diseases,” Circ. Cardiovasc. Qual. Outcomes, vol. 13, no. 7, pp. 386–394, Jul. 2020, doi: 
10.1161/CIRCOUTCOMES.119.006260. 

[27] J. P. Curtis et al., “The association of left ventricular ejection fraction, mortality, and cause of death in 
stable outpatients with heart failure,” J. Am. Coll. Cardiol., vol. 42, no. 4, pp. 736–742, Aug. 2003, doi: 
10.1016/S0735-1097(03)00789-7. 

[28] J. Slivnick and B. C. Lampert, “Hypertension and Heart Failure,” Heart Fail. Clin., vol. 15, no. 4, pp. 
531–541, Oct. 2019, doi: 10.1016/j.hfc.2019.06.007. 

[29] J. Wang et al., “Impact of heart failure and preoperative platelet count on the postoperative short‐term 
outcome in infective endocarditis patients,” Clin. Cardiol., vol. 47, no. 1, p. e24171, Jan. 2024, doi: 
10.1002/clc.24171. 

[30] J. C. Schefold, M. Lainscak, L. M. Hodoscek, S. Blöchlinger, W. Doehner, and S. von Haehling, “Single 
baseline serum creatinine measurements predict mortality in critically ill patients hospitalized for acute 
heart failure,” ESC Hear. Fail., vol. 2, no. 4, pp. 122–128, Dec. 2015, doi: 10.1002/ehf2.12058. 

[31] S. Peng, J. Peng, L. Yang, and W. Ke, “Relationship between serum sodium levels and all-cause mortality 
in congestive heart failure patients: A retrospective cohort study based on the Mimic-III database,” Front. 
Cardiovasc. Med., vol. 9, p. 1082845, Jan. 2023, doi: 10.3389/fcvm.2022.1082845. 

[32] N. Fluschnik et al., “Gender differences in characteristics and outcomes in heart failure patients referred 
for end‐stage treatment,” ESC Hear. Fail., vol. 8, no. 6, pp. 5031–5039, Dec. 2021, doi: 
10.1002/ehf2.13567. 

[33] D. Kamimura et al., “Cigarette Smoking and Incident Heart Failure,” Circulation, vol. 137, no. 24, pp. 
2572–2582, Jun. 2018, doi: 10.1161/CIRCULATIONAHA.117.031912. 

[34] A. Abdin et al., “‘Time is prognosis’ in heart failure: time‐to‐treatment initiation as a modifiable risk 
factor,” ESC Hear. Fail., vol. 8, no. 6, pp. 4444–4453, Dec. 2021, doi: 10.1002/ehf2.13646. 

[35] K. Seu, M.-S. Kang, and H. Lee, “An Intelligent Missing Data Imputation Techniques: A Review,” JOIV  
Int. J. Informatics Vis., vol. 6, no. 1–2, p. 278, May 2022, doi: 10.30630/joiv.6.1-2.935. 

[36] M. Ahsan, M. Mahmud, P. Saha, K. Gupta, and Z. Siddique, “Effect of Data Scaling Methods on Machine 
Learning Algorithms and Model Performance,” Technologies, vol. 9, no. 3, p. 52, Jul. 2021, doi: 
10.3390/technologies9030052. 

[37] V. Sarraju, J. Pal, and S. Kamilya, “SRS: Gender-based heart disease prediction using stratified random 
sampling approach,” in AIP Conference Proceedings, May 2024, vol. 3164, no. 1, p. 020005, doi: 
10.1063/5.0216559. 

[38] P. Mooijman, C. Catal, B. Tekinerdogan, A. Lommen, and M. Blokland, “The effects of data balancing 
approaches: A case study,” Appl. Soft Comput., vol. 132, p. 109853, Jan. 2023, doi: 
10.1016/j.asoc.2022.109853. 

[39] T. E. Tarigan, E. Susanti, M. I. Siami, I. Arfiani, A. A. Jiwa Permana, and I. M. Sunia Raharja, 
“Performance Metrics of AdaBoost and Random Forest in Multi-Class Eye Disease Identification: An 
Imbalanced Dataset Approach,” Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, pp. 84–94, Nov. 2023, doi: 
10.56705/ijaimi.v1i2.98. 

[40] S. Das, S. P. Nayak, B. Sahoo, and S. C. Nayak, “Evaluating Ensemble Models on Imbalanced Data Sets: 
A Comparative Study across Varied Minority Class Ratios,” in 2024 International Conference on Emerging 
Systems and Intelligent Computing (ESIC), Feb. 2024, pp. 774–779, doi: 
10.1109/ESIC60604.2024.10481583. 

[41] N. Buslim, “Ensemble learning techniques to improve the accuracy of predictive model performance in 
the scholarship selection process,” J. Appl. Data Sci., vol. 4, no. 3, pp. 264–275, Sep. 2023, doi: 
10.47738/jads.v4i3.112. 

https://doi.org/10.1161/CIRCOUTCOMES.119.006260
https://doi.org/10.1016/S0735-1097(03)00789-7
https://doi.org/10.1016/j.hfc.2019.06.007
https://doi.org/10.1002/clc.24171
https://doi.org/10.1002/ehf2.12058
https://doi.org/10.3389/fcvm.2022.1082845
https://doi.org/10.1002/ehf2.13567
https://doi.org/10.1161/CIRCULATIONAHA.117.031912
https://doi.org/10.1002/ehf2.13646
https://doi.org/10.30630/joiv.6.1-2.935
https://doi.org/10.3390/technologies9030052
https://doi.org/10.1063/5.0216559
https://doi.org/10.1016/j.asoc.2022.109853
https://doi.org/10.56705/ijaimi.v1i2.98
https://doi.org/10.1109/ESIC60604.2024.10481583
https://doi.org/10.47738/jads.v4i3.112


ISSN 2829-4998 Applied Engineering and Technology 187 
 Vol. 3, No. 3, December 2024, pp. 175-188 

 

 Ariyanta et al. (Ensemble learning approaches for predicting heart failure outcomes….) 

[42] A. Mohammed and R. Kora, “A comprehensive review on ensemble deep learning: Opportunities and 
challenges,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 2, pp. 757–774, Feb. 2023, doi: 
10.1016/j.jksuci.2023.01.014. 

[43] J. Zhao, J. Jin, S. Chen, R. Zhang, B. Yu, and Q. Liu, “A weighted hybrid ensemble method for classifying 
imbalanced data,” Knowledge-Based Syst., vol. 203, p. 106087, Sep. 2020, doi: 
10.1016/j.knosys.2020.106087. 

[44] J. Qiu, “An Analysis of Model Evaluation with Cross-Validation: Techniques, Applications, and Recent 
Advances,” Adv. Econ. Manag. Polit. Sci., vol. 99, no. 1, pp. 69–72, Sep. 2024, doi: 10.54254/2754-
1169/99/2024OX0213. 

[45] Y. Wen, M. Kalander, C. Su, and L. Pan, “An Ensemble Noise-Robust K-fold Cross-Validation Selection 
Method for Noisy Labels,” arxiv Artif. Intell., pp. 1–9, 2021, [Online]. Available at: 
http://arxiv.org/abs/2107.02347. 

[46] C. Miller, T. Portlock, D. M. Nyaga, and J. M. O’Sullivan, “A review of model evaluation metrics for 
machine learning in genetics and genomics,” Front. Bioinforma., vol. 4, p. 1457619, Sep. 2024, doi: 
10.3389/fbinf.2024.1457619. 

[47] L. Sweet, C. Müller, M. Anand, and J. Zscheischler, “Cross-Validation Strategy Impacts the Performance 
and Interpretation of Machine Learning Models,” Artif. Intell. Earth Syst., vol. 2, no. 4, Oct. 2023, doi: 
10.1175/AIES-D-23-0026.1. 

[48] P. Mahajan, S. Uddin, F. Hajati, M. A. Moni, and E. Gide, “A comparative evaluation of machine learning 
ensemble approaches for disease prediction using multiple datasets,” Health Technol. (Berl)., vol. 14, no. 
3, pp. 597–613, May 2024, doi: 10.1007/s12553-024-00835-w. 

[49] X. Yang, L. Wen, M. Sun, J. Yang, and B. Zhang, “Prediction of cardiac deterioration in acute heart 
failure patients: Evaluation of the efficacy of single laboratory indicator models versus comprehensive 
models,” Medicine (Baltimore)., vol. 103, no. 44, p. e40266, Nov. 2024, doi: 
10.1097/MD.0000000000040266. 

[50] Q. Wang et al., “Machine learning‐based risk prediction of malignant arrhythmia in hospitalized patients 
with heart failure,” ESC Hear. Fail., vol. 8, no. 6, pp. 5363–5371, Dec. 2021, doi: 10.1002/ehf2.13627. 

[51] W. Chua et al., “An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial 
fibrillation from other concomitant cardiovascular conditions,” Sci. Rep., vol. 13, no. 1, p. 16743, Oct. 
2023, doi: 10.1038/s41598-023-42331-7. 

[52] C. Vlachas et al., “Random forest classification algorithm for medical industry data,” SHS Web Conf., vol. 
139, p. 03008, May 2022, doi: 10.1051/shsconf/202213903008. 

[53] J. C. Yang, “The prediction and analysis of heart disease using XGBoost algorithm,” Appl. Comput. Eng., 
vol. 41, no. 1, pp. 61–68, Feb. 2024, doi: 10.54254/2755-2721/41/20230711. 

[54] S. Decherchi, E. Pedrini, M. Mordenti, A. Cavalli, and L. Sangiorgi, “Opportunities and Challenges for 
Machine Learning in Rare Diseases,” Front. Med., vol. 8, p. 747612, Oct. 2021, doi: 
10.3389/fmed.2021.747612. 

[55] Q. Gao, “Application of Machine Learning in the field of Heart Disease Prediction and its Accuracy 
Study,” Sci. Technol. Eng. Chem. Environ. Prot., vol. 1, no. 8, Aug. 2024, doi: 10.61173/24749p02. 

[56] D. Bertsimas, L. Mingardi, and B. Stellato, “Machine Learning for Real-Time Heart Disease Prediction,” 
IEEE J. Biomed. Heal. Informatics, vol. 25, no. 9, pp. 3627–3637, Sep. 2021, doi: 
10.1109/JBHI.2021.3066347. 

[57] M. Qiu, L.-L. Ding, and H.-R. Zhou, “Factors affecting the efficacy of SGLT2is on heart failure events: 
a meta-analysis based on cardiovascular outcome trials,” Cardiovasc. Diagn. Ther., vol. 11, no. 3, pp. 699–
706, Jun. 2021, doi: 10.21037/cdt-20-984. 

[58] P. Bhattarai and M. Karki, “The Unrepaired Tetralogy of Fallot: A Tale of Delayed Presentation and 
Limited Access to Care,” Cureus, vol. 16, no. 1, Jan. 2024, doi: 10.7759/cureus.52407. 

https://doi.org/10.1016/j.jksuci.2023.01.014
https://doi.org/10.1016/j.knosys.2020.106087
https://doi.org/10.54254/2754-1169/99/2024OX0213
https://doi.org/10.54254/2754-1169/99/2024OX0213
http://arxiv.org/abs/2107.02347
https://doi.org/10.3389/fbinf.2024.1457619
https://doi.org/10.1175/AIES-D-23-0026.1
https://doi.org/10.1007/s12553-024-00835-w
https://doi.org/10.1097/MD.0000000000040266
https://doi.org/10.1002/ehf2.13627
https://doi.org/10.1038/s41598-023-42331-7
https://doi.org/10.1051/shsconf/202213903008
https://doi.org/10.54254/2755-2721/41/20230711
https://doi.org/10.3389/fmed.2021.747612
https://doi.org/10.61173/24749p02
https://doi.org/10.1109/JBHI.2021.3066347
https://doi.org/10.21037/cdt-20-984
https://doi.org/10.7759/cureus.52407


188 Applied Engineering and Technology ISSN 2829-4998 
 Vol. 3, No. 3, December 2024, pp. 175-188 

 
 

 Ariyanta et al. (Ensemble learning approaches for predicting heart failure outcomes….) 

[59] E. M. DeFilippis et al., “Impact of socioeconomic deprivation on evaluation for heart transplantation at 
an urban academic medical center,” Clin. Transplant., vol. 36, no. 6, p. e14652, Jun. 2022, doi: 
10.1111/ctr.14652. 

[60] R. S. Walia and R. Mankoff, “Impact of Socioeconomic Status on Heart Failure,” J. Community Hosp. 
Intern. Med. Perspect., vol. 13, no. 6, p. 24, Nov. 2023, doi: 10.55729/2000-9666.1258. 

[61] O. A. Akinyemi et al., “Evaluating the Predictive Accuracy of Socioeconomic Metrics on Heart Failure 
Risk and Outcomes in Maryland,” Cureus, vol. 16, no. 9, Sep. 2024, doi: 10.7759/cureus.69474. 

[62] A. Sinha et al., “Interconnected Clinical and Social Risk Factors in Breast Cancer and Heart Failure,” 
Front. Cardiovasc. Med., vol. 9, p. 847975, May 2022, doi: 10.3389/fcvm.2022.847975. 

[63] L. de Tantillo, B. E. McCabe, M. Zdanowicz, J. Ortega, J. M. Gonzalez, and S. Chaparro, “Implementing 
Strategies to Recruit and Retain a Diverse Sample of Heart Failure Patients,” Hisp. Heal. Care Int., vol. 
23, no. 1, pp. 9–17, Mar. 2025, doi: 10.1177/15404153241248144. 

[64] C.-C. Chiu, C.-M. Wu, T.-N. Chien, L.-J. Kao, C. Li, and H.-L. Jiang, “Applying an Improved Stacking 
Ensemble Model to Predict the Mortality of ICU Patients with Heart Failure,” J. Clin. Med., vol. 11, no. 
21, p. 6460, Oct. 2022, doi: 10.3390/jcm11216460. 

 

 

 

 

 

 

 

 

 

 

 

  

https://doi.org/10.1111/ctr.14652
https://doi.org/10.55729/2000-9666.1258
https://doi.org/10.7759/cureus.69474
https://doi.org/10.3389/fcvm.2022.847975
https://doi.org/10.1177/15404153241248144
https://doi.org/10.3390/jcm11216460

