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1. Introduction 
Cervical cancer stands as the second most prevalent cancer and a prominent cause of cancer-related 

mortality among women globally [1]. While developed nations exhibit a decreasing trend in cervical 
cancer incidence, developing and underdeveloped countries are witnessing a surge in the occurrence of 
cervical cancer [2], [3]. Colposcopy is a procedure during which a solution called acetic acid is smeared 
on the cervix region and a sequence of images of the cervix are captured using the probe [4]. These 
images are called cervigrams [5]. Cervigrams often contain surrounding organs like vaginal walls 
separated through a spatial dimension. In addition to that, there are undesired medical image equipment 
like speculum and stretcher. Precisely delineating critical organs or structures in medical images, 
including magnetic resonance (MR) [6], computed tomography (CT) [7], and cervigrams obtained 
through colposcopy, holds paramount importance in clinical practice. This significance is particularly 

A R T I C L E  I N F O 

 

ABST RACT  

 

 

Article history 

Received March 09, 2024 

Revised March 27, 2024 

Accepted April 02, 2024 

Available online April 03, 2024 

 Artificial intelligence assisted cancer detection has changed the ream of 
diagnosis precision. This study aims to propose a segmentation network 
using artificial intelligence for accurately segmenting the cervix region and 
acetowhite lesions in cervigram images, addressing the shortage of skilled 
colposcopists and streamlining the training process. A computational 
approach is employed to develop and train a deep learning model specifically 
tailored for cervix region and acetowhite lesion segmentation in cervigram 
images. A dataset acquired in collaboration with KIDWAI memorial cancer 
research institute is used for building the model. Cervigram images are 
collected for training and validation, and a deep learning architecture is 
constructed and trained using annotated datasets. The segmentation 
network  based on efficientnet architecture and atrous spatial pyramid 
pooling is designed to accurately identify and delineate the target regions, 
with performance evaluation conducted using precision, accuracy, recall, 
dice score, and specificity metrics. The proposed segmentation network 
achieves a precision of 0.7387±0.1541, accuracy of 0.9291, recall of 
0.7912±0.1439, dice score of 0.7431±0.1506, and specificity of 
0.9589±0.0131, indicating its reliability and robustness in segmenting 
cervix regions and acetowhite lesions in cervigram images. This research 
demonstrates the feasibility and effectiveness of using artificial intelligence-
based computational models for cervix region and acetowhite lesion 
segmentation in cervigram images. It provides a foundation for further 
investigations into classifying cervix malignancy using AI techniques, 
potentially enhancing early detection and treatment of cervical cancer while 
addressing the shortage of skilled professionals in the field.  
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pronounced in the context of the escalating use of medical imaging for the diagnosis and treatment of 
various diseases, notably cancer [8], [9]. Segmentation precision not only paves the way for further 
quantitative evaluations of regions of interest it also proves instrumental in facilitating accurate diagnoses, 
prognostic predictions, and strategic planning for surgical interventions, including intra-operative 
guidance [10]. Presently, the acknowledged gold standard for segmentation outcomes is derived from 
the discerning expertise of seasoned physicians and radiologists who rely on visual scrutiny and manual 
delineation [11]. Due of its intrinsic subjectivity, manual labelling has a high potential for inter-observer 
variability and limited reproducibility. The segmentation quality outcomes are markedly impacted by the 
doctor’s knowledge and experience in this regard [12]. Therefore, the imperative need for automated 
segmentation algorithms becomes evident, particularly when aiming to efficiently attain reproducible 
and precise results of segmentation in routine clinical practice. Automatic segmentation of cervix [13] is 
a formidably challenging task. Among patients, there is often notable variability in both the shape and 
appearance of the targeted objects [14]. To confront these challenges, a plethora of algorithms has been 
thoroughly investigated in the past decades. Level sets, active contours, multi-atlas, statistical shape 
modelling, and graphical models, with hand-crafted features—these have all been extensively explored 
to address the challenges posed by medical image segmentation. Yet, the representation capability of 
these handcrafted features often proves insufficient to address the extensive variations in appearance and 
shape. Subsequently, there has been an exploration of learning-based methods to harness more potent 
features. However, these methods still encounter challenges in fully leveraging the spatial information 
inherent in images to attain segmentation results of the desired quality. Natural image processing has 
seen a revolution recently thanks to convolutional neural networks (CNNs), which take advantage of 
their hierarchically obtained highly representative features [4], [5], [10]. Medical image analysis has 
benefitted significantly by this development [15]–[17].  Deep learning-methodologies emerged as a fierce 
and pivotal alternative arena to address conventional challenges in medical image segmentation tasks. 
Cervigram images exhibit significantly more intricate anatomical environments in comparison to CT 
scans and other modality medical images. Automated identification of cervical cancer from colposcope 
images using deep learning has garnered a significant amount of traction in the past two decades. The 
accuracy of diagnosis during colposcopy analysis is heavily reliant on the efficacy of cervix segmentation, 
making it a critical component in the training of deep learning models. Some models have attempted 
unsupervised segmentation with reasonable accuracy [10], [18]–[20].  Deep learning (DL) has displayed 
significant progress in image analysis tasks. Several priorly trained models that can be employed as 
backbone networks for image classification tasks have proven to be promising. Transfer learning is a 
system that uses DL models without having to develop and train them from scratch. A few DL models 
used to deal with a colposcope-based cervical cancer diagnosis are mask R-CNN, Faster R-CNN and 
Deeplab V3, Squeezenet, Resnet, VGG 16. The findings of these studies consistently report that the DL 
models have good performance accuracy at classification [21]. Nevertheless, several of those models work 
well on segmentation tasks as well. Machine learning (ML) has been a go-to solution for cancer diagnosis 
in the past couple of decades as well, and a considerable volume of research has been carried out to 
categorize abnormal lesions in the cervix [8]. Various ML-based image processing techniques like 
Gaussian mixture modelling, mean shift algorithm, canny edge detector, pyramid feature extraction, etc., 
proved to be efficient means to achieve the task. Table 1 displays the methods employed in cervix image 
segmentation over the past few years. Althogh the methods have performed satirsfactorily the support 
vector machine, mean shift algorithm, and canny edge detector have suffered from the methodological 
fallability of over segmentation. Although the K means and gaussian mixture models need further 
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research in terms of how to optimize hyperparameters like mixture co-efficient, eigen vector and 
covariance matrix. 

Cervical cancer diagnosis presents a multifaceted challenge characterized by intricate anatomical 
structures, varied lesion appearances, and the inherent subjectivity of visual interpretation. The 
complexity of this disease is compounded by the limitations of conventional diagnostic methods, such 
as colposcopy and histopathology, which rely heavily on the expertise of clinicians and pathologists. 
Moreover, the detection and delineation of cervical lesions within medical imaging data, particularly in 
modalities like colposcopy images or cervical histology slides, demand precise segmentation to 
distinguish abnormal tissues from the surrounding normal structures accurately. The pivotal role of 
segmentation in this context lies in its capacity to facilitate the identification and characterization of 
subtle or ambiguous lesions, thereby enabling clinicians to make informed diagnostic and treatment 
decisions. 

To overcome the said difficulties in cervix segmentation task, this paper presents a novel 
segmentation module that uses Faster RCNN in combination with a segmentation network.  The main 
contributions and objectives of the paper are listed as: 1) In order to recover the cervical region and 
eliminate instrument and vaginal wall interference noise from the colposcope pose-acetic-acid images, a 
faster RCNN was employed; 2) It uses a novel cervical lesion segmentation network. The extraction of 
features from the cervical area was done using EfficientNet-B3; 3) The result of segmentation was 
conveniently transferred back to the original image for medical professionals to review. Following that, 
a heatmap was used to demonstrate the model’s performance. 

2. Method 
The segmentation task is achieved in three steps. First, the cervix region is extracted. Subsequently 

a network for cervical segmentation is proposed. After the image has been restored, it is then mapped 
using the zoom ratio back to the original image. The proposed architecture is presented in Fig. 1. 

 

Fig. 1. Proposed architecture 
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2.1. Cervix Region of Interest Extraction 
The cervical region was identified using the RCNN target detection method. In contrast to earlier 

segmentation techniques with uneven cervical borders and k-means clustering [22], the results of the 
segmentation performed in a rectangular format were beneficial for the simulations that followed. While 
the amount of time is similar, the enhanced Greater detection accuracy is provided by a faster R-CNN 
method that references Mask R-CNN and uses ROI Align technology than Faster R-CNN and other 
target detection methods. Due to the large size of the original colposcopic post-acetic-acid image and 
the extraction region, the extraction region was uniformly decreased to 640 × 640. The scale did not 
impair the lesion's later analysis. This made it easy to process the segmentation network that followed 
while upholding clarity. Fig. 1A depicts the general architecture of the cervical region extraction model, 
whereas Fig. 1B shows Faster R-CNN’s enhanced structure. After the cervical area was removed, the 
coordinates of the rectangular frame's top left corner point, width, and height were documented; these 
coordinates are represented as (x, y, w, h). 

The dataset contained 906 uterine cervix images of saline, acetic acid, and Lugol's iodine stages. The 
target classes are Normal, CIN 1 (cervical intraepithelial neoplasia), and CIN 2. Each case contained 
three cervix images captured by a colposcope in the time intervals 0 seconds, 60 seconds, and 120 seconds. 
In addition to that, clinical data pertaining to age, HPV test result, CIN grade, observations, proposed 
course of treatment etc., corresponding to images is available for each case. The data was split in an 80:20 
ratio for training the model and testing it. 

2.2. Cervix Segmentation Framework 
The suggested model used an encoder-decoder structure that was in an end-to-end format; Fig. 1C 

depicts the general architecture. During the encoding phase, the cervical lesion region's features were 
extracted using the accurate and efficient EfficientNet-B3 [23] network. The proportions of the feature 
map were 1/32 of feature 2's original size on the 28th layer and 1/16 of feature 1's original size on the 
20th layer. The two retrieved layers, which have superior deep pragmatic features, were the final layers 
below this size and in the subsampling procedure are two of the smallest sizes. 

Low level characteristics included greater location and comprehensive information, along with a 
higher resolution. They contained more noise and less semantic information, nevertheless, because of 
the decreased convolution. Stronger semantic information was present in high-level characteristics, but 
they also exhibited poorer resolution and detail perception. Consequently, at the decoding phase, a 
multiscale feature fusion approach across layers was applied. After the convolutional layer and BN layer 
with a convolutional kernel of 1 × 1, the size of feature 1 was 1/16 of the original picture size. This was 
consistent with the 1/16 of the original size obtained by feature 2 with the ASPP module created for 
this lesion after two upsampling layers. After fusing the characteristic data from the nearby high and low 
layers, the sample was upsampled 16 times to its original size. 

• The segmentation methodology utilized in this study employed an encoder-decoder structure, 
depicted in Fig. 1C, designed in an end-to-end format. 

• Initially, during the encoding phase, features representing the cervical lesion region were extracted 
using the EfficientNet-B3 network, chosen for its balance of accuracy and efficiency. 

• Specifically, the feature map proportions were set to 1/32 of the original size of feature 2 on the 
28th layer and 1/16 of the original size of feature 1 on the 20th layer. 
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• These two layers, situated at the final stages of the encoding process and featuring superior deep 
pragmatic features, were identified as the most pertinent for segmentation due to their smaller size 
obtained through subsampling. Below is a detailed description of the ASPP module and the 
EfficientNet-B3 module, respectively. 

2.2.1. EfficientNet Architecture 
A standardized model extension technique called EfficientNet [24] achieves a great balance between 

the 3 parameters of model resolution, depth, and width. The squeezing method in SENet is utilized for 
network topology’s optimization, and from MobileNetV2 [25], EfficientNet uses MBConv as the model's 
backbone network. The baseline model, EfficientNet-B0, was created using AutoML MNAS. In this 
work, feature extraction was accomplished using ImageNet pretrained EfficientNet-B3. Fig. 1D 
illustrates that of the 34 layers in the model, only the layer preceding the 28th layer was utilized in this 
work. 

2.2.2. Atrous Spatial Pyramid Pooling 
The ASPP [26] module uses a dilated convolution with several sampling speeds to sample the input 

feature graph in parallel. Then, using a 1 × 1 convolution, it concatenates the results to raise the channel 
number and decreases it to the output channels number. It also uses many scales to acquire visual feature 
information. 

The ASPP module that was appropriate for the lesion's sample rate was redesigned in this paper 
using the DeepLabV3+ ASPP, which included six branches, one global average pooling four 3 × 3 dilated 
convolutions with rates{2,4,6,8}, and a 1 × 1 convolution,. This was done based on the lesion region's 
large area difference and size after subsampling. Next, in order to obtain multiscale information, we fused 
the features of six branches using a convolution fuse. Next, we lessened the channels to ½ of the original 
input layer using a 1 × 1 convolution. Fig. 1E displays the ASPP module's architecture. 

2.3. Original image mapping 
For the convenience of the colposcopists, the width and height coordinates (x, y, w, h) of the 

rectangular frame were used to map the segmentation image to the original image and upper-left corner 
point (y). This resulted in an image with a size of 640 × 640. Translucent black masks were used to 
overlay the normal region, while the lesion zone lacked any original appearance. As depicted in Fig. 1F. 

3. Results and Discussion 
This section presents and discusses the results obtained by the segmentation module proposed: 

3.1. Dataset 
The templ To assess the impact of our methodology for uterine cervix image segmentation, we 

utilized a dataset comprising 906 images representing saline smeared cervix, acetic acid smeared cervix, 
and Lugol's iodine smeared cervix stages. The dataset contains high resolution multistate cervix images 
taken with a colposcope of Field-of-View: 52° and Depth of View: 5mm - 120mm. Additionally, the 
clinical inferences are also present alongside the pathological report the result of which is used to label 
the classes. A Leisegang 3Ml LED colposcope with a Field-of-View of 52° and Depth of View ranging 
from 5mm to 120mm was employed. The target classes include Normal, CIN 1 (cervical intraepithelial 
neoplasia), and CIN 2. Each case in the dataset consists of three cervix images captured at time intervals 
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0 seconds, 60 seconds, and 120 seconds using a colposcope. Additionally, comprehensive clinical data, 
including information on age, HPV test results, CIN grade, observations, and proposed courses of 
treatment, is available for each case. The dataset was partitioned in an 80:20 ratio for testing and training 
the model. 

3.2. Evaluation Metrics 
The performance of several models was assessed using the five widely used criteria—dice, recall, 

accuracy, specificity and precision—which are as follows: 

𝐷𝑖𝑐𝑒 =  
2 ×𝑇𝑃

𝐹𝑃+𝐹𝑁+2×𝑇𝑃
   (1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100   (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (5) 

𝑆𝑐𝑜𝑟𝑒 =  
𝐷𝑖𝑐𝑒+𝑅𝑒𝑐𝑎𝑙𝑙

2
   (6) 

Here, FP denotes false positives FN denotes false negatives, TP stands for true positives and TN 
stands for true negatives. In the segmentation process, dice play a crucial role. Acetowhite lesions in 
cervix call for lower incidence of absented diagnoses nevertheless a reasonable percentage of 
misdiagnoses. As a result, the Specificity must be within a particular bracket and the Recall must be 
high. 

3.3. Model Performance 
Initially, we extracted the cervical region's features using the enhanced Faster R-CNN, and the 

AP@0.8 = 0.995 resulted. As a result, out of the 210 test sets, just one has an IOU lower than 0.8. Our 
conditions are satisfied by the AP@0.8 = 0.995. Fig. 2 displays the prediction box (green Pre) and ground 
truth box (red GT). In the original Faster R-CNN, AP@0.8 = 0.98. It is evident that applying ROI 
Align for correction results in an improvement in average precision (AP).  

 

Fig. 2. Cervix region marking 
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Fig. 3 displays the validation and training loss alongside the score curves for the suggested model. At 
the 25th cycle, convergence begins between training and validation sets. 

  

Fig. 3. A,B: Accuracy and loss training and validation curves 

In the evaluation of segmentation performance, our proposed method was benchmarked against 
state-of-the-art techniques, including FCN8, UNet, SegNet, DeepLabV3+, and CCNet. Table 1 
presents a comprehensive comparison of performance metrics such as Dice coefficient, Specificity, Recall, 
and others. Notably, our proposed model demonstrated superior performance across these metrics, 
outperforming existing methods. Particularly, the Dice coefficient and Accuracy are pivotal indicators in 
segmentation evaluation, with higher values signifying better segmentation quality. Our method 
achieved the highest Dice coefficient of 0.7431, surpassing UNet by 0.1124 and CCNet by 0.0582, 
consequently minimizing missed diagnoses. Additionally, all models exhibited high specificity values 
exceeding 0.95, indicating minimal misdiagnosis rates. Notably, our proposed framework achieved a 
precision of 0.7387, surpassing SegNet by 0.052 and CCNet by 0.0123, thus minimizing false positive 
cases and enhancing the reliability of positive predictions, thereby mitigating unnecessary therapeutic 
interventions for patients. 

Table 1.  Performance metrics with comparison with state of the art 

Model  Precision  Accuracy  Recall Dice Specificity 
DeepLabV3+ [27] 0.6889±0.2101  0.9083  0.6828±0.1945 0.6416±0.1816 0.9545±0.0167 

CCNet[28] 0.7264±2.003 0.9191 0.7179±0.1898 0.6849±0.1802 0.9560±0.0196 
FCN8x [29] 0.7102±0.2287 0.9094 0.6434±0.2097 0.6311±0.2059 0.9522±0.0185 
UNet [30] 0.6941±0.2321 0.9073 0.6593±0.2233 0.6307±0.2175 0.9575±0.0223 

SegNet [31] 0.6867±0.1898 0.9097 0.7057±0.1733 0.6600±0.1637 0.9517±0.0117 
Proposed 0.7387±0.1541 0.9291 0.7912±0.1439 0.7431±0.1506 0.9589±0.0131 

 
The results of the segmentation of the visible partial method are less accurate because, as Fig. 4 

illustrates, they comprise a scaly normal SE (squamous epithelium) region that is extremely comparable 
to the acetowhite lesion zone. The segmentation findings of the approach suggested in have successfully 
distinguished between the lesion region and squamous epithelium region (Fig. 4). 

The results of our study have several implications for existing literature in the field of cervical cancer 
diagnosis and segmentation. Firstly, our findings underscore the significance of leveraging advanced 
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segmentation techniques, such as the encoder-decoder architecture employed in our proposed 
methodology, in improving diagnostic accuracy. By achieving a Dice coefficient of 0.7431, our method 
surpasses previous state-of-the-art approaches, demonstrating its efficacy in accurately delineating 
cervical lesions from medical imaging data. 

Furthermore, our study contributes novel insights into the performance of segmentation models, 
particularly in the context of cervical cancer diagnosis. While previous studies have reported on the 
effectiveness of various segmentation algorithms, our research extends this knowledge by highlighting 
the strengths of the proposed method in minimizing missed diagnoses and false positive cases. These 
findings suggest that our framework offers a more reliable and precise approach to cervical cancer 
segmentation, with potential implications for enhancing patient care and treatment outcomes. 

 
Fig. 4. Visualization A)Cervix image B) the ground truth C) Deeplab V3 D) CCNet E) FCN8X F) Unet G) 

SegNet H) Proposed method 

4. Conclusion 
In conclusion, this study addresses the pressing need for accurate cervical cancer diagnosis, particularly 

in regions with high disease burden. Our methodology focuses on delineating the cervix area from 
colposcope images, laying the groundwork for subsequent classification and automated cancer 
identification. Leveraging a Faster RCNN module for region extraction and a segmentation network for 
acetowhite segmentation, our approach demonstrates superior performance compared to existing 
methods. Through rigorous evaluation using standard metrics such as precision, Dice coefficient, 
accuracy, recall, and specificity, we validate the efficacy of our model. Importantly, our methodology's 
applicability to real-world clinical scenarios is highlighted by its ability to accurately identify cervical 
lesions, as confirmed against ground truth data. The presented framework holds significant promise for 
advancing uterine cervix image segmentation, with potential to enhance diagnostic accuracy and patient 
outcomes. Future research endeavors could explore integrating this framework as a preprocessing module 
for lesion classification, further augmenting its utility in clinical practice. 
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