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1. Introduction 
Scientific journals have long served as the cornerstone of academic discourse, housing the cumulative 

knowledge, observations, and discoveries of researchers [1]. These journals are more than mere 

repositories; they are a testament to the relentless pursuit of knowledge and the rigorous scientific 

methodology [2]. They not only serve as references but also play a pivotal role in shaping the future 

course of scientific exploration [3]. In today's research landscape, the significance of high-quality journals 

is exemplified by their inclusion in esteemed databases like Scopus, with SCImago Journal Rank (SJR) 
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 Journals play a pivotal role in disseminating scientific knowledge, housing 

a multitude of valuable research articles. In this digital age, the evaluation 

of journals and their quality is essential. The SCImago Journal Rank (SJR) 

stands as one of the prominent platforms for ranking journals, categorizing 

them into five index classes: Q1, Q2, Q3, Q4, and NQ. Determining these 

index classes often relies on classification methodologies. This research, 

drawing inspiration from the Cross-Industry Standard Process for Data 

Mining (CRISP-DM), seeks to employ the Random Forest method to 

classify journals, thus contributing to the refinement of journal ranking 

processes. Random Forest stands out as a robust choice due to its 

remarkable ability to mitigate overfitting, a common challenge in machine 

learning classification tasks. In the context of approximating SJR index 

classes, Random Forest, when utilizing the Gini index, exhibits promise, 

albeit with an initial accuracy rate of 62.12%. The Gini index, an impurity 

measure, enables Random Forest to make informed decisions while 

classifying journals into their respective SJR index classes. However, it is 

worth noting that this accuracy rate represents a starting point, and further 

refinement and feature engineering may enhance the model's performance. 

This research underscores the significance of machine learning techniques 

in the domain of journal classification and journal-ranking systems. By 

harnessing the power of Random Forest, this study aims to facilitate more 

accurate and efficient categorization of journals, thereby aiding researchers, 

academics, and institutions in identifying and accessing high-quality 

scientific literature.  
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being a prominent player in journal quality assessment [4]. The methodology underpinning SJR quartile 

classification holds profound implications for the evaluation of scholarly publications. 

Previous research in the field of journal evaluation has highlighted several limitations and challenges 

that warrant further investigation [5], [6]. One significant gap in knowledge pertains to the inability of 

traditional methods to effectively capture the nuanced relationships and interactions among various 

journal metrics [7]. These methods often rely on linear models or heuristic approaches that may 

oversimplify the intricate dynamics of scholarly communication. Additionally, existing classification 

techniques may struggle to handle the heterogeneous nature of journal data, which encompasses diverse 

metrics such as citations, publications, and journal prestige. 

In this dynamic era of data-driven decision-making, the fusion of data mining and journal quartile 

classification emerges as a novel and promising approach. Classification, a fundamental task within data 

mining, entails predicting the category to which a given dataset belongs [8]. While data mining-driven 

classification [9], has permeated various domains, encompassing manufacturing [10], agriculture [11], 

economics [12], education [13], and healthcare [14], the adaptation of these techniques to journal 

quartile classification remains an underexplored frontier. The landscape of classification models presents 

a rich tapestry, including K-Nearest Neighbors (KNN) [15], Support Vector Machines (SVM) [16], 

Naïve Bayes [17], Multi-Layer Perceptron (MLP) [18], and Random Forest [19].  

Compared to alternative classification methods such as SVM or Naïve Bayes, Random Forest offers 

several distinct advantages in the context of journal classification [20], [21]. SVM, while powerful in 

high-dimensional spaces, may struggle with large-scale datasets and require careful tuning of 

hyperparameters. Naïve Bayes, on the other hand, assumes independence among features, which may 

not hold true for complex journal metrics characterized by interdependencies and correlations. In 

contrast, Random Forest's ensemble approach and flexibility in handling diverse data types make it a 

robust and practical choice for SJR classification. 

The selection of the Random Forest method as the primary approach for journal quartile classification 

stems from its unique blend of versatility, robustness, and interpretability. Unlike traditional statistical 

approaches that assume linear relationships or simplistic models, Random Forest excels in capturing 

complex interactions and nonlinear patterns within multidimensional datasets. Its ensemble learning 

framework, which combines multiple decision trees trained on bootstrapped subsets of the data, 

mitigates the risk of overfitting and enhances generalization performance [22], [23]. Moreover, Random 

Forest's ability to handle categorical, numerical, and mixed data types, as well as its inherent feature 

selection capabilities, make it well-suited for the heterogeneous nature of journal metrics and attributes 

[24].  Notably, each tree in the Random Forest ensemble provides an estimation error known as out-of-

bag (OOB) error [25], affording valuable insights into model performance. 

By leveraging the Random Forest method, this research aims to surpass the limitations of traditional 

journal classification approaches and unlock hidden insights within journal metrics. Through rigorous 

analysis and experimentation, we seek to demonstrate the superiority of Random Forest in capturing the 

multidimensional complexities of journal data, ultimately advancing the theoretical foundations of 

journal classification and laying the groundwork for future research in this domain. What sets this 

research apart is its unwavering commitment to scrutinize the Random Forest method's performance 

across distinct criterion parameters, including the Gini Index, Information Gain, and Gain Ratio [26]. 

This endeavor is marked by its focus on the universality of SJR classification, transcending disciplinary 

boundaries. The anticipated results of this study hold significant implications for the field of scholarly 

publishing and academic evaluation. We expect to provide fresh insights into the strengths and 

limitations of data mining methodologies in the context of journal classification, paving the way for 

more accurate and nuanced approaches to evaluating scholarly impact. Moreover, by elucidating the 

potential of Random Forest in SJR classification, our research may inspire further exploration into the 

application of machine learning techniques in academic assessment. Ultimately, our findings have the 

potential to inform and shape future research directions in this area, contributing to a deeper 

understanding of the complex dynamics underlying scientific communication and dissemination. 
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2. Related works 

2.1. Classification 
Classification, a pivotal aspect of supervised learning within data mining, offers a systematic approach 

to organizing diverse datasets into predefined classes [27]. It serves as a guiding principle across various 

domains, akin to a taxonomist's role in categorizing species based on distinct attributes. While 

classification empowers machines to make informed decisions by extracting hidden patterns from data, 

critical analysis unveils potential challenges. One such challenge lies in the dependence on labeled 

training data, which may not always capture the full complexity of real-world scenarios. This reliance 

raises questions about the scalability and adaptability of classification algorithms in dynamic 

environments where labeled data may be scarce or outdated. 

The journey of classification unfolds through the interplay between training and testing data, where 

models learn from past experiences and refine their predictive capabilities [28]. While classification finds 

extensive applications in email filtering, medical diagnosis, and fraud detection, its effectiveness hinges 

on the quality and representativeness of the training data [29]. Synthesizing existing literature reveals 

ongoing debates regarding the interpretability of classification models. While these models excel in 

accuracy and predictive power, understanding the rationale behind their decisions remains a challenge. 

Addressing this gap requires further exploration into techniques for enhancing model interpretability 

without compromising performance, thus bridging the divide between theoretical understanding and 

practical application in classification tasks. 

2.2. Random Forest 
The evolution of the "Random Forest" (RF) method, pioneered by Tin Kam Ho and further 

developed by Leo Breiman, represents a significant milestone in data science [30]. RF leverages Bagging 

and random feature selection to create an ensemble of decision trees, offering robustness and resilience 

to noise and overfitting [31], [32]. While the ensemble approach enhances predictive performance, 

critical analysis reveals potential trade-offs between model complexity and interpretability. The intricate 

nature of RF models poses challenges in understanding and explaining their decision-making processes, 

raising concerns about their applicability in domains requiring transparent and interpretable models. 

Criteria such as Information Gain, Gini Index, and Gain Ratio guide the construction of decision 

trees within the RF framework, facilitating informed splitting decisions [33]. But this is not the extent 

of its magic; RF also wields a trio of criteria: the enigmatic Information Gain, the insightful Gain Ratio, 

and the formidable Gini Index [26]. These criteria stand as the gatekeepers, guiding the formation of 

the decision tree's root node and branching rules, much like a trio of guardians overseeing the growth 

of a majestic tree. The Information Gain criterion, in particular, ascends to its zenith when it identifies 

the attribute that imparts the most knowledge, serving as the foundation upon which the tree's wisdom 

is rooted. The calculation of Information Gain as in (1). 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −  𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝  (1) 

Meanwhile, the Gini Index is obtained by calculating the squared probability of each class in the 

dataset. The equation of Gini Index as in (2). 

𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = 1 −  ∑ (𝐸𝐸𝑖𝑖)2𝐶𝐶
𝑖𝑖=1     (2) 

Then, the gain ratio is obtained from the ratio of the information gain and split information values 

by selecting the lowest subset of each attribute. Gain Ratio calculation as in (3). 

𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑆𝑆,𝐴𝐴) = 𝐺𝐺𝑝𝑝𝑖𝑖𝑝𝑝 (𝑆𝑆,𝐴𝐴)
𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆(𝑆𝑆,𝐴𝐴)

   (3) 

However, synthesizing existing literature sheds light on the need for deeper exploration into the 

interpretability of RF models. While these criteria optimize predictive accuracy, their implications for 

model transparency and explainability warrant further investigation. Addressing these concerns can 
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enhance the trustworthiness and adoption of RF models across diverse domains, fostering a deeper 

understanding of their strengths and limitations in real-world applications. 

2.3. Cross Validation (K-Fold) 
K-fold cross-validation stands as a quintessential evaluation technique, a bedrock upon which the 

edifice of machine learning model assessment is built [34]. Its overarching aim? To provide an insightful 

estimation of a model's performance accuracy, an invaluable metric for data scientists and practitioners 

seeking to understand the true potential of their algorithms [35]. Like a seasoned conductor 

orchestrating a symphony, K-fold cross-validation extracts the full melodic range of a dataset, allowing 

the model to train and perform against various slices of the data, thus unveiling its robustness and 

adaptability. 

In the grand tableau of machine learning, the essence of K-fold cross-validation takes form in Figure 

1, a visual representation that encapsulates the iterative process of model training and validation. Each 

fold, like a distinct movement in a symphony, represents a unique segment of the dataset, with the 

model performing a graceful dance across these segments. The harmonious collaboration of training and 

testing phases, as depicted in Fig. 1, paints a vivid picture of how K-fold cross-validation encapsulates 

the essence of model evaluation, forging a path towards a comprehensive understanding of a model's 

capabilities. Through this cyclic process, K-fold cross-validation bestows upon data scientists a refined 

appreciation of their models, allowing them to fine-tune their algorithms and strike the right chord in 

the ever-evolving symphony of machine learning. 

 

Fig. 1. Cross-validation 

However, critical synthesis suggests exploring potential biases in certain data distributions or the 

impact of hyperparameters on cross-validation results. Identifying such nuances could enrich the 

understanding of a model's true capabilities. 

3. Method 
The Cross Industry Standard Process for Data Mining (CRISP-DM) research method is chosen. 

CRISP-DM is a stage that focuses on research on data mining [36]. The CRISP-DM method has six 

stages of the research flow listed in Fig. 2. 

3.1. Business Understanding 
The preliminary stage of business understanding serves as the compass guiding the data-driven 

journey, with the primary goal of discerning and addressing the needs and objectives from a business 

perspective [37]. In the context of our study, this phase takes on particular significance as we delve into 

the realm of SCImago Journal Rank (SJR) and its unique SJR classification system. Our quest for 

insights begins with the extraction of data from SCImago Journal Rank, explicitly focusing on journals 
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spanning the year 2020. Within the landscape of scholarly journals, SJR classification wields a distinct 

influence, acting as a lodestar for academia. In our pursuit, this classification system becomes the focal 

point, as we navigate through the labyrinthine corridors of data to uncover patterns, trends, and 

invaluable intelligence. By tapping into the wealth of data within SJR, encompassing the diverse tapestry 

of journals, we aim to illuminate the landscape of scholarly publishing for the year 2020. Through the 

lens of business understanding, our mission crystallizes: to extract actionable insights from this data 

trove, shedding light on the dynamics and nuances that underpin the world of academic journals in the 

contemporary era. 

 

Fig. 2. CRIPS-DM Research Model 

3.2. Data Understanding 
In the intricate tapestry of our data-driven journey, the data understanding stage emerges as the vital 

bridge that spans the chasm between raw data and actionable insights [38]. This pivotal phase is dedicated 

to the meticulous collection and comprehensive assessment of data quality, laying the foundation upon 

which our analysis shall rest. The crux of this stage is to foster a profound understanding of the dataset 

in all its intricate detail, unfurling the rich narrative it carries. The dataset in our possession presents 

itself as a mosaic composed of 20 distinct attributes, each possessing its unique data type, weaving a 

tapestry of complexity and diversity. This mosaic encompasses a grand total of 26,497 instances, a vibrant 

and dynamic tapestry that mirrors the rich ecosystem of scholarly journals. Within this expansive 

landscape, we encounter the quintessential quartile classification, represented by Q1, Q2, Q3, and Q4, 

each a distinct facet in the scholarly gemstone. Yet, amidst these quartile luminaries, we also find the 

intriguing presence of NQ (Non-Quartile), a category that beckons us to explore its unique 

characteristics. To unveil the secrets embedded within this dataset, we turn our gaze to the meticulous 

documentation encapsulated in Table 1 and Table 2. 

Table 1.  Dataset Attribute Details 

Attributes Data Type Description 

Rank Integer 1 – 24978 
SJR Integer 100 – 62937 

SJR Best Quartile Nominal Q1, Q2, Q3, Q4, NQ 

H Index Integer 0 – 1226 

Total Docs. (2017) Integer 0 – 21801 

Total Docs. (3years) Integer 1 – 61528 

Total Refs Integer 0 – 1033089 

Total Cites (3years) Integer 0 – 282734 

Citable Docs.(3years) Integer 1 – 61524 

Cites/Doc.(2years) Real 0 – 126340 

Ref. / Doc Real 0 – 859500 

Source Real 12001-19600157914 

Title Nominal 2D Materials, 3 Biotech, etc 

Type Nominal Journal 

Issn Nominal 12343, 12610, etc 

Country Nominal Albania, Argentina, etc 

Region Nominal Africa, Africa/Middle East 

Publisher Nominal Association pour la Diffusion de la Recherche liltteraire, etc 

Coverage Nominal 2015, 2017, etc 

Categories Nominal Accounting (Q1), etc 
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Table 1 and Table 2 serve as treasure maps, guiding us through the labyrinthine dataset, revealing 

the attributes and their diverse data types. As we traverse this landscape, we shall unearth hidden 

patterns, discern valuable insights, and ultimately, harness the power of data to shed light on the intricate 

world of journal classification. In this endeavor, the data understanding stage is the lantern that 

illuminates our path, ensuring that we tread with clarity and purpose on our journey of discovery. The 

value of NQ makes the percentage unbalanced in each class label. The smallest class is NQ, with a 

percentage of 5.73%, and the highest is Q1, with a value of 28.61% 

Table 2.  Number of SJR 2020 

Category Number of Instances Percentage 
Q1 7580 28,61% 

Q2 6411 24,20% 

Q3 5829 21,99% 

Q4 5158 19,47% 

NQ 1519 5,73% 

Total 26.497 100% 

 

3.3. Data Preparation 
The data preparation stage emerges as the forge where raw data is refined and shaped into a form 

suitable for analysis, a crucial juncture in our data-driven odyssey [39]. This stage is aptly described as 

the preprocessing stage, where the art of data refinement takes center stage. Within the realm of 

preprocessing, we wield four potent methods, each a distinct tool in our arsenal: data cleaning [40], data 

transformation [41], data reduction [42], and data integration [43]. However, in the context of this 

research, our focus narrows to the skilled application of two specific methods—data cleaning and data 

transformation. 

3.3.1. Data Cleaning 
Data cleaning, the first pillar of our preparation journey, is akin to the meticulous restoration of a 

priceless artifact. It involves the art of identifying and rectifying inaccuracies, anomalies, and 

inconsistencies that may tarnish the purity of our dataset. Through this process, we endeavor to ensure 

that our data gleams with accuracy, laying a solid foundation for our analysis. The data cleaning process 

removes missing values in the dataset [44]. From the data, we obtained 26497, with details in Table 3. 

Table 3 explains five classes in the SJR dataset, namely Q1, Q2, Q3, Q4 and NQ. This research categorizes 

journals with quartile values so that the NQ class label can be removed. 

Table 3.  Number of SJR 2020 without NQ 

Category Number of Instances Percentage without NQ 
Q1 7580 30.35% 

Q2 6411 25.67% 

Q3 5829 23.34% 

Q4 5158 20.65% 

Total 26.497 100% (24.978) 

 

The removed NQ value can increase the percentage of each class label. The largest class is Q1, with 

a value of 30.35%, and the lowest is Q4, with a value of 20.65%. From the percentage range, it can be 

assumed that data cleaning on NQ class labels can make the data balanced to eliminate the re-sampling 

process. 

3.3.2. Data Transformation 
Data transformation, is the alchemical process through which we transmute raw data into a more 

refined and insightful form [45]. Like a sculptor shaping a block of marble into a masterpiece, data 

transformation allows us to extract relevant features, encode categorical variables, and normalize 

distributions. Through this metamorphosis, we aim to unlock the latent potential within our dataset, 
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enabling it to reveal its secrets and nuances with greater clarity. Data transformation is used to modify 

data modifications made using attribute selection and normalization. Of the 20 attributes, only nine 

attributes are used. These attributes were chosen because they will be displayed on the old SCImago 

Journal Rank for normalization using min-max normalization. Min-max normalization was chosen 

because it matches the Random Forest method and dataset [46]. Selected attributes show as Table 4. 

Table 4.  Details of Selected Attributes 

Attributes Data Type Description 

SJR Best Quartile Nominal Q1, Q2, Q3, Q4 
H Index Real 0 – 1 

Total Docs. (2017) Real 0 – 1 

Total Docs. (3years) Real 0 – 1 

Total Refs Real 0 – 1 

Total Cites (3years) Real 0 – 1 

Citable Docs.(3years) Real 0 – 1 

Cites/Doc.(2years) Real 0 – 1 

Ref. / Doc Real 0 – 1 

 

The yellow color means the attribute class label. The class attribute is the target class used as the 

quartile class in each journal. The numeric data type is still used because the Random Forest classification 

model can process it. 

3.4. Modeling 
The modeling stage creates a model for this research [47]. The model used is the Random Forest 

method. Random Forest is a development model of a decision tree with ensemble (bagging) techniques 

[48]. The modeling framework is shown in Fig. 3. 

 

Fig. 3. Research framework 

Three scenarios will be applied to the Random Forest algorithm. Each scenario will use criterion 

parameters, number of trees, and max depth. Scenario 1 contains the criterion gini index, scenario 2 

contains information gain, and scenario 3 contains the gain ratio. Pseudocode of the Random Forest 

scenario is shown in pseudocode 1 (Fig. 4). 
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Start 

Dataset input Preprocessing 

Cross Validation (K-Fold) Random Forest Classifier 

Show Confusion matrix, Accuracy, Precision, Recall, and F1 Score 

End 

Fig. 4. Random forest  

The pseudocode conveys the classification process with Random Forest in general. The process will 

begin with the input dataset and then proceed with preprocessing. Then, proceed with the model with 

scenario 1, scenario 2, and scenario 3, changing the criterion, number of trees, and max depth. Then, the 

results will be displayed as a confusion matrix. Details of the type of criterion, Number of trees, and 

Max_Depth are in Table 5. 

Table 5.  NoT and Max depth values 

Scenario 
Criterion Criterion Criterion 

Gini_Index 100 5 

Information_Gain 150 6 

Gain ratio 200 7 

 250 8 

  9 

 

3.5. Evaluation 
The evaluation stage is used to show the validation results of a study [49]. This stage displays the 

confusion matrix value. Confusion matrix is a tool to analyze the method's performance [50]. The results 

obtained from CM are statistical values: accuracy, recall, precision, and f1 score. The description of CM 

can be seen in Table 6. 

Table 6.  Confusion Matrix 

 Pre Positive Pre Negative 
Positive Act TP (True Positive) FN (False Negative) 

Negative Act FP (False Positive) TN (True Negative) 

 

where TP is the amount of true data with the truth value being true, TN is the number of false-valued 

data whose truth value is true, FP is the amount of data that is true with a truth value that is false, and 

FN is the number of false-valued data whose truth value is false. 

Table 6 produces accuracy, precision-recall, and f1 score values. Accuracy is the percentage of 

correctness of a model [51]. Recall is a level of sensitivity showing success in retrieving information [52]. 

Precision is the prediction of the total positive ratio [53]. The F1 score is the ratio of precision and recall 

[54]. The equation of accuracy, recall, precision, and F1 Score respectively as in (4) to (7). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐸𝐸 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

   (4) 

𝑅𝑅𝑅𝑅𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

   (5) 

𝑃𝑃𝐼𝐼𝑅𝑅𝐴𝐴𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

   (6) 

𝐹𝐹1 𝑆𝑆𝐴𝐴𝐼𝐼𝐼𝐼𝑅𝑅 =  2 𝑥𝑥 (𝑅𝑅𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖+𝑇𝑇𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝑝𝑝)
(𝑅𝑅𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖+𝑇𝑇𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝑝𝑝)

   (7) 
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3.6. Deployment 
The deployment stage is the final stage of the CRISP-DM process. This stage contains a report on 

the evaluation results of the research [55]. The results are presented as a confusion matrix, and the result 

values are in the form of accuracy, recall, precision, and f1 score. The evaluation value is obtained on the 

test results in each criterion: gini index, information gain, and gain ratio. Each criterion has several tree 

parameters with four combinations and is then supported by the max depth parameter with five 

combinations. 

4. Results and Discussion 
This research uses the Random Forest method as the primary model for classification testing in 

analyzing the performance of Random Forest using the criterion Gini index, information gain, and gain 

ratio. Each criterion will use a combination of several trees and max depth. The research results are 

shown in Table 7. 

Table 7.  Evaluation Results 

Criterion NoT Max depth Accuracy (%) Recall (%) Precision (%) F1-Score(%) 

Gini index 

100 

5 57.83 58.57 57.40 57.98 

6 58.40 59.03 57.83 58.42 

7 59.48 60.13 59.19 59.66 

8 60.53 60.98 60.08 60.53 

9 62.12 62.47 61.78 62.12 

150 

5 57.89 58.61 57.42 58.01 

6 58.42 59.03 57.84 58.43 

7 59.35 59.98 58.97 59.47 

8 60.53 60.97 60.07 60.52 

9 62.08 62.45 61.76 62.10 

200 

5 57.86 58.60 57.40 57.99 

6 58.47 59.12 57.97 58.54 

7 59.44 60.08 59.12 59.60 

8 60.63 61.06 60.22 60.64 

9 62.01 62.38 61.71 62.04 

250 

5 57.97 58.72 57.57 58.14 

6 58.60 59.62 58.15 58.88 

7 59.54 60.18 59.19 59.68 

8 60.69 61.11 60.29 60.70 

9 61.99 62.37 61.69 62.03 

 

 

 

 

 

 

 

 

 

Information 

gain 

100 

5 57.67 58.31 56.81 57.55 

6 58.37 58.92 57.52 58.21 

7 58.89 59.38 58.25 58.81 

8 60.23 60.59 59.6 60.09 

9 61.35 61.68 60.7 61.19 

150 

5 57.54 58.24 56.86 57.54 

6 58.19 58.78 57.48 58.12 

7 58.87 59.41 58.21 58.80 

8 60.10 60.53 59.49 60.01 

9 61.45 61.80 60.86 61.33 

200 

5 57.54 58.26 56.93 57.59 

6 58.23 58.84 57.56 58.19 

7 58.86 59.38 58.21 58.79 

8 60.16 60.59 59.57 60.08 

9 61.54 61.88 61.01 61.44 

250 

5 57.58 58.29 56.96 57.62 

6 58.29 58.91 57.64 58.27 

7 58.86 59.38 58.19 58.78 

8 60.11 60.54 59.49 60.01 

9 61.55 61.89 60.99 61.44 
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Criterion NoT Max depth Accuracy (%) Recall (%) Precision (%) F1-Score(%) 

Gain ratio 

100 

5 56.29 56.53 55.43 55.97 

6 56.08 56.71 55.16 55.92 

7 56.40 56.97 55.59 56.27 

8 56.02 56.53 55.55 56.04 

9 56.55 57.11 55.99 56.54 

150 

5 56.60 57.16 55.44 56.29 

6 56.17 56.80 55.21 55.99 

7 56.45 57.02 55.63 56.32 

8 55.94 56.45 55.36 55.90 

9 56.19 56.73 55.61 56.16 

200 

5 54.26 53.94 55.78 54.84 

6 56.79 57.40 55.76 56.57 

7 56.49 57.04 55.71 56.37 

8 56.00 56.54 55.44 55.98 

9 56.22 56.78 55.71 56.24 

250 

5 53.68 53.05 56.27 54.61 

6 56.93 57.34 55.82 56.57 
7 56.39 56.93 55.63 56.27 

8 55.91 56.44 55.44 55.94 

9 56.37 56.92 55.92 56.42 

 

Table 7 shows that the best value on the criterion gini index is at several trees 100 with max depth 9. 

The values obtained on the criterion gini index are accuracy 62.12%, recall 62.47%, precision 61.78%, 

and f1 score 62.12%. At the same time, the lowest performance is at several trees 100 max depth 5. 

When added, the number of trees on the gini index can decrease the accuracy value, as shown in Fig. 5. 

This is because adding the value of the number of trees increases the value of the gini impurity so that 

it approaches 1 [56]. 

 

Fig. 5. Accuracy Change of Number of Tree Value 

Table 7 conveys that criterion information gain obtained the best value at several trees 250 with max 

depth 9: accuracy 61.55%, recall 61.89%, precision 60.99%, and F1 Score 61.44%. The lowest 

performance is several trees 150 with a max depth of 5. Adding several trees in criterion information 

gain causes an increase in accuracy value. Adding the number of tree values makes the entropy value low, 

making it better at separating information [57]. The increase in accuracy value can be seen in Fig. 6. 

 

Fig. 6. Accuracy Change of Number of Tree Value 
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Table 7 conveys the optimal results on the gain ratio criterion at several trees 250 with max depth 6. 

The performance values obtained are accuracy 56.93%, recall 57.34%, precision 55.82%, and f1 score 

56.57%. Unlike the previous criterion, the gini index criterion on each number of trees and max depth 

obtained varying values. This is due to the uneven ratio value with split information, so the number of 

trees and max depth obtain different values [58]. Fig. 7 conveys the difference in accuracy values at each 

number of trees and max depth. 

 

Fig. 7. Accuracy Change of Number of Tree Value 

From the Gini index criterion, information gain and gain ratio, the best performance is on the Gini 

index criterion with an accuracy value of 62.12%. This is because the advantage of the Gini index 

performance is that it focuses on selecting the subset with the lowest value from the dataset that is 

partitioned to be purer so that the separation of the target class becomes more efficient [59]. Other 

research also supports this by conveying the criterion of the Gini index obtaining the highest value [60]. 

In addition, other research conveyed that from the criterion gini index, information gain, and gain ratio, 

the gini index obtained the highest value [61]. These results cannot be separated from the weaknesses 

of information gain, namely that bias can occur if too much data is used [62]. However, it cannot be 

separated from the weakness of the gain ratio, namely, the more complex the data results in overfitting 

and poor generalized data [63]. Overall, this analysis provides valuable insights into the performance of 

Random Forest using different criteria, emphasizing the strengths and weaknesses of each criterion in 

the context of journal quartile classification. These findings can inform the selection of an appropriate 

criterion for specific classification tasks and contribute to a more nuanced understanding of their impact 

on model performance. 

From the results obtained, it is essential to note that the Random Forest method, although powerful 

and versatile, is not immune to specific challenges. One limitation is the potential complexity of the 

model, especially when using large numbers of trees and deep trees. While increasing the number of 

trees and tree depth can improve model performance, it also increases computational complexity and the 

risk of overfitting, especially with limited training data. Additionally, the Random Forest algorithm may 

not capture subtle nonlinear relationships or interactions present in the data, which may impact its 

ability to accurately classify journals based on SJR. Additionally, Random Forest performance may be 

sensitive to the choice of hyperparameters, such as the number of features considered at each split and 

the minimum samples required for leaf nodes, which may require careful tuning to optimize model 

performance. These methodological limitations underscore the importance of rigorously validating 

model results and considering alternative approaches to ensure robust and reliable classification results. 

5. Conclusion 
In conclusion, the results of our tests have led to several significant findings. Firstly, it is evident that 

the Gini index criterion outperformed both the information gain and gain ratio criteria in the context 

of classifying journal quartiles. This assertion is strongly supported by the extensive analysis presented 

in the evaluation results, which meticulously compares the performance of different criteria across various 

combinations of the number of trees and maximum depth. Specifically, the Gini index consistently 

exhibits higher accuracy, recall, precision, and F1-score values compared to alternative criteria, such as 
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information gain and gain ratio. This underscores the importance of selecting the proper criterion for 

decision tree-based algorithms, with the Gini index proving to be a superior choice in this instance. 

Moreover, the optimal accuracy of 62.12% achieved by the Random Forest method highlights its 

potential for enhancing the classification of journal quartiles. However, this achievement also suggests 

the need for further exploration and refinement. For future research, we recommend a more granular 

approach by separating data into distinct domains rather than amalgamating them. This can potentially 

yield more precise insights and improve classification outcomes. Additionally, the success of the Gini 

index criterion prompts us to encourage researchers to explore its use in tandem with appropriate model 

tuning, as it could further enhance the performance of Random Forest for similar datasets. 
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