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1. Introduction 

Precise angle estimation is crucial in engineering domains including robotics, aircraft, and 

navigation systems, where accurate orientation is vital for operational dependability and control [1], 

[2]. Accurate angle estimation is essential in biomedical applications, particularly surgical robots for 
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 In engineering, especially for robots, navigation, and biomedical uses, 

accurate angle estimation is absolutely crucial. Using data from the 

IMU6050 sensor, which combines accelerometer and gyroscope readings, 

this work contrasts two sensor fusion methods: the Kalman filter and the 

complementary filter. The aim of the research is to find the most efficient 

filtering method for preserving accuracy and resilience throughout several 

motion contexts, including low-noise (standard rotation) and high-noise 

(external disturbances). With an eye toward improving sensor accuracy in 

dynamic applications, the study contribution is a thorough investigation of 

filter performance under different noise levels. MATLAB quantified 

estimate accuracy using key metrics like root mean square error (RMSE) 

and mean absolute error (MAE). Under controlled noise levels, our 

approach included methodical error analysis of both filters. Results show 

that, especially under low-noise conditions, the Kalman filter beats the 

complementary filter in terms of lower MAE and RMSE; it also shows 

adaptability and robustness in high-noise environments with much fewer 

errors than accelerometer-only and complementary filter outputs. These 

results show the relevance of the Kalman filter in practical settings like 

robotic control, motion tracking, and possible biomedical equipment, 

including patient positioning systems and wheelchairs with balance 

control. Future studies might investigate the implementation of the Kalman 

filter in sophisticated systems requiring accuracy, such as telemedicine 

robots or autonomous navigation. This work develops sensor fusion 

techniques and offers understanding of consistent sensor data processing in 

several operating environments. 
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precise motions and autonomous drones for stability maintenance [3]. Traditional methods that depend 

either on gyroscopes or accelerometers are often susceptible to noise, drift, and external interferences, 

resulting in significant estimate inaccuracies [4]-[6]. Inertial Measurement Units (IMUs), which 

combine accelerometers and gyroscopes, enhance angle estimation precision; nonetheless, the 

successful fusion of data from many sensors continues to pose challenges for consistent and accurate 

orientation monitoring [7]-[9]. To tackle these issues, sensor fusion methods, including the Kalman 

filter and complementary filter, are extensively used in angle estimation applications [10]-[12]. The 

Kalman Filter is distinguished by its capacity to handle noisy input and adapt dynamically in real-time 

via continuous updates, rendering it very useful in applications including autonomous navigation, state 

prediction, and control systems for robots and drones [13]-[17]. Conversely, the complementary filter 

offers a more straightforward and computationally effective method by amalgamating high-frequency 

gyroscope data with low-frequency accelerometer data, yielding reliable orientation estimations for 

applications that value real-time performance [18]-[21]. Nonetheless, advanced Kalman filter models, 

particularly those employing Multiple Model (MM) filters, demonstrate enhanced reliability in 

intricate and noisy environments; yet, difficulties remain in adapting these filters to swift variations 

in dynamic systems [22]-[24]. 

Notwithstanding their efficacy, a thorough evaluation of these filters under diverse noise 

circumstances is still constrained. Although previous research has investigated their applicability in 

areas such as drone navigation, robotic tracking, and wearable devices [25]-[31], there is an absence 

of systematic assessment contrasting their performance in low-noise (standard rotations) and high-

noise (disturbance) conditions. Advanced iterations of the Kalman Filter, such as the Extended 

Kalman Filter (EKF) and Unscented Kalman Filter (UKF), have shown resilience in managing 

dynamic situations and superiority in intricate contexts [32]-[39]. Nonetheless, the efficacy of the 

complementary filter may diminish considerably in dynamic or high-noise environments, especially 

where swift environmental alterations transpire, as it lacks the robust adaptability exhibited by 

advanced Kalman filter variants, which are more appropriate for conditions characterized by 

fluctuations and sensor uncertainties [34]-[36]. 

This work seeks to address the research gap by assessing the efficacy of the Kalman Filter and 

Complementary Filter using data from the IMU6050 sensor, which amalgamates accelerometer and 

gyroscope measurements [40]-[42]. Experiments are performed under diverse motion situations, 

including conventional rotations and produced disturbances, to identify the most precise and resilient 

filtering strategy for angle estimation. The research utilizes performance indicators, including mean 

absolute error (MAE) and root mean square error (RMSE), to assess the efficacy of each filter at 

various noise levels [43]-[45]. Furthermore, the Exogenous Kalman Filter (XKF) and hybrid neural 

network methods, which involve the combination of LSTM neural networks with Kalman filters, 

have also demonstrated potential in specialized contexts. These methods provide robustness in 

applications that necessitate state estimation under ambiguous conditions [46], [47]. The filtering 

accuracy and adaptability in dynamic settings, such as self-balancing and other robotics applications, 

have been further enhanced by techniques such as the dual augmented Kalman filter and 

reinforcement learning-integrated Kalman filtering [48], [49]. 

This study provides two main contributions. First, it provides empirical analysis of the strengths 

and constraints of several filters in diverse motion environments, thereby guiding the choice of the 

most appropriate filters for certain purposes [50]-[52]. Second, it shows how in dynamic settings 

adaptive filtering improves sensor fusion accuracy. These results should help to build strong 

orientation tracking systems in sectors including autonomous systems, biomedical devices, and 

advanced robotic control systems [53]-[57] that call for accuracy and adaptability. 

2. Method 

The method used in this study is made up of five main parts. First, a Kalman Filter method for 

estimating angle is created using information from the MPU6050 sensor, which records readings 

from both the gyroscope and the accelerometer. Two important parameters, Q (process noise 
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covariance) and R (measurement noise covariance), are changed dynamically in reaction to changes 

in sensor data to improve the accuracy and stability of estimation. The second part goes into detail 

about how to use the gyroscope and accelerometer data from the MPU6050 sensor, including how it 

is set up and the equations needed to estimate angles. This sets the stage for the Kalman and 

complementary filter analysis that follows. In the third step, a complementary filter is used to 

combine data from the gyroscope and accelerometer. This lowers the drift of the gyroscope and 

lowers the noise from the accelerometer. Equations that explain the process of data fusion show how 

the complementary filter helps make angle accuracy better. In the fourth step, a one-dimensional 

Kalman filter model is made just for estimating angles. This includes creating equations for time 

update (prediction) and measurement update (correction) to make sure the filter stays accurate as 

sensor data changes. Finally, the fifth step is all about finding the best values for Q and R in the 

Kalman filter. Here, Q and R are drawn from 20 sets of data, which lets the filter keep getting better 

by recalibration. Adjusting Q and R in this way makes it possible to get accurate and reliable angle 

estimates in a wide range of situations, which makes the filter useful in changing settings. 

2.1. Algorithm Design of Kalman Filter for Angle Estimation in MPU 6050 Sensor System  

The Kalman Filter algorithm for angle estimation, as depicted in Fig. 1, is intended to improve 

accuracy by perpetually updating two critical parameters: measurement noise covariance (R) and 

processing noise covariance (Q).  

 
Fig. 1. Block diagram of the kalman filter algorithm 

At first, Q and R are given numbers that are close to zero because giving them absolute zero 

would not work. The gyroscope and accelerometer's initial values are set to zero to make sure the 

device is stable. The 13-millisecond data acquisition frequency is meant to combine processing speed 

with timely updates. There are two separate parts to the Kalman filter: time update (prediction) and 

measurement update (correction). The Time Update guesses the current state based on the last state, 

and the Measurement Update improves this guess by using real-time sensor data from the MPU6050 

sensor, which collects both gyroscopic and accelerometric data. For this study, rubber hammer 

impacts are used to create a simulated vibration environment that is meant to mimic the conditions 

of systems that are sensitive to vibrations, such as balancing robots and setups that are placed on 

vehicles. The goal of these tests is to see how well changing Q and R dynamically works compared 
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to using static values. This will improve the filter's ability to change and work well in changing 

environments. More mathematics information is given in Section 2.4. 

2.2. Application of Gyroscope and Accelerometer: A Case Study of MPU6050 

This study has selected the MPU6050 sensor, a 6 Degrees of Freedom (6DOF) Inertial 

Measurement Unit (IMU), for its cost-effectiveness and the incorporation of two critical sensors, a 

gyroscope and an accelerometer, in a single chip (see Fig. 2). This integration facilitates the 

synchronization of measurements and simplifies the calibration procedure. The MPU6050 is a critical 

component of a variety of engineering applications, such as balance robots and unmanned aerial 

vehicles (UAVs), as it provides essential data for motion and rotation. 

 

Fig. 2. MPU6050 

The incorporated Digital Motion Processor (DMP) of the MPU6050 sensor enables rapid data 

processing by measuring rotational and acceleration parameters across three axes. The I2C protocol 

facilitates communication, rendering the sensor compatible with a diverse array of programming 

tools. The MPU6050 facilitates the transmission of high-resolution data by incorporating a 16-bit 

analog-to-digital converter (ADC). The gyroscope is calibrated to measure up to±500 degrees per 

second, while the accelerometer is calibrated to capture measurements up to±4 g. These limits have 

been chosen for applications in which rotation velocities are less than 500 degrees per second and 

acceleration forces do not exceed 4 g. 

The gyroscope's angular velocity (𝜔𝑔𝑦𝑟𝑜) is determined by applying the method in (1), with a 

measurement range of 500 degrees per second. In this context, the raw output of the gyroscope is 

denoted by 𝐿𝑆𝐵𝑟𝑒𝑎𝑑, the baseline measurement is 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 when the device is 

stationary, and the typical sensitivity is a constant provided by the manufacturer.  

𝜔𝑔𝑦𝑟𝑜 =  
𝐿𝑆𝐵𝑟𝑒𝑎𝑑 − 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (1) 

For the accelerometer, angle estimation relies on Earth’s gravity. The angle (θ) is determined 

based on the raw sensor data, as shown in (2). Similar to the gyroscope, 𝐿𝑆𝐵𝑟𝑒𝑎𝑑 represents the raw 

output, 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 is the baseline when stationary, and Nominal sensitivity converts the 

data into a physical quantity, 

𝜃𝐴𝑐𝑐𝑒𝑙𝑒 𝐼 =   𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐿𝑆𝐵𝑟𝑒𝑎𝑑 − 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
) (2) 

Under certain conditions, the angle  𝜃𝐴𝑐𝑐𝑒𝑙𝑒 can be refined by incorporating data from the Z-axis 

to account for additional directional forces, as shown in (3). This adjusted equation improves angle 

estimation accuracy by considering X, Y, and Z axis data. 
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𝜃𝐴𝑐𝑐𝑒𝑙𝑒 𝐼𝐼 =   𝑎𝑟𝑐𝑡𝑎𝑛 ((
𝐿𝑆𝐵𝑟𝑒𝑎𝑑 − 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
) (

𝐿𝑆𝐵𝑟𝑒𝑎𝑑 𝑍 − 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑍

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑍
)⁄ ) (3) 

The concept of angular output from the accelerometer in relation to gravitational forces is 

illustrated in Fig. 3. This configuration enables the MPU6050 to detect and adjust to disturbances, 

rendering it well-suited for environments with vibration or minor impacts, such as those that are 

replicated by applying force to the testing surface to simulate real-world scenarios. The selection of 

the MPU6050 also demonstrates the necessity for a sensor that can generate consistent and 

dependable data within the constraints of low-cost systems, despite the potential for signal latency to 

be a limiting factor in comparison to analog sensors. 

 

Fig. 3. Output of angular    

2.3. Complementary Filter 

The integration of data from devices with varying frequency characteristics produces a 

complementary filter that improves measurement precision [12]. This method, commonly employed 

in systems with dual input types, transmits high-frequency noise through a low-pass filter while 

utilizing low-frequency data, resulting in a process analogous to Wiener filtering. It effectively 

combines data from an accelerometer and a gyroscope, employing a complimentary filter to mitigate 

the limitations of each sensor while enhancing their advantages. This filter was selected because to 

its computational simplicity compared to more intricate filtering methods, while yet providing 

effective performance. Its uncomplicated design, necessitating only two configurable parameters, 

renders it optimal for fundamental angle estimation applications. The complementary filter is 

especially appropriate for embedded systems that prioritize real-time performance and precision due 

to its straightforward implementation and minimum computational resource requirements. The 

gyroscope delivers precise short-term rotational speed information but is prone to drift over time, 

whereas the accelerometer gives consistent long-term tilt measurements but is susceptible to short-

term disturbances. By reducing the gyroscope's high-frequency noise and boosting the 

accelerometer's low-frequency stability, the complementary filter brings the two inputs together. This 

makes angle measurements accurate and reliable. The filter produces the outcome that is indicated 

in (4). 

𝛾𝑘 = 𝜌𝛼𝑘−1 + 𝜎𝛽𝑘−1 + 𝜀𝑘−1 (4) 

These coefficients, 𝜌 and 𝜎, represent the proportional weights assigned to the input of each 

sensor in this model. The noise component, denoted by the symbol  𝜀𝑘, is frequently assumed to be 

zero in this context. The parameter dt is a minuscule constant of 0.013 seconds that specifies the time 

step. It is chosen to be consistent with the system's computational constraints and the frequency of 

data collection of the sensor. The Arduino Uno, which operates via RS232 and has restricted 
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processing capabilities, is guaranteed to adhere to the computational limitations of data collection 

and processing during this time phase. In order to obtain an appropriate balance between 

responsiveness and stability for this application, the parameters were manually adjusted to 𝜌 = 0.9 

and 𝜎 = 0.1. The computed values for 𝛼𝑘 and 𝛽𝑘 are presented in (5) and (6).  

𝛼𝑘 = (𝛾𝑘−1 + (𝑑𝑡 ×  𝜔𝑔𝑦𝑟𝑜)) (5) 

𝛽𝑘 =  𝜃𝐴𝑐𝑐𝑒𝑙𝑒 (6) 

The complementary filter's design achieves a balance between the accelerometer's long-term 

stability and the gyroscope's short-term precision, making it an appropriate choice for applications 

that require accurate angle estimates. This configuration is highly advantageous in practical 

applications that have limited computational capabilities, such as fundamental motion-tracking 

systems and balancing robotics. The block diagram of the complementary filter system is illustrated 

in Fig. 4. 

 

Fig. 4. Block diagram of complementary filter    

2.4. Kalman filter 

The Kalman filter [53] is a potent algorithm that is employed to estimate the state of dynamic 

systems by processing sequential data that is collected over time. It employs two fundamental 

processes, Time Update (Prediction) and Measurement Update (Correction), to progressively refine 

state estimates while operating in a discrete-time framework. The state variable at any given time, 𝑡𝑘

, is represented as 𝑥𝑘, with the time steps designated as 𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝑘, where k indicates the iteration 

step. The forthcoming state is predicted by the state transition model in (7), which provides an 

evolving estimate with each step, based on the current state and control inputs. 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1 (7) 

For a two-dimensional state variable model, (8) is used. 

[
𝜃𝑘

𝜔𝑘
] = [

1 0
0 0

] [
𝜃𝑘−1

𝜔𝑘−1
] + [

𝛿𝑡
1

] 𝑢𝑘−1 + [
0
1

] 𝑤𝑘−1 (8) 

Here, 𝑤𝑘−1 represents the process noise, assumed to be a Gaussian random variable with zero 

mean, as expressed by (9) and variance 𝑄𝑤, as depicted in (10). This assumption is essential for the 

Kalman filter's optimal performance in minimizing the estimation error. The process noise is further 

described as follows, 

𝜇𝑤𝑘
= 𝐸[𝑤𝑘] = 0 (9) 

𝑄𝑤 = 𝐸[𝑤𝑘𝑤𝑘
𝑇] = 𝐸[𝑤𝑘𝑤𝑗] = {

𝑄𝑤 , 𝑓𝑜𝑟 𝑘  =  𝑗
0 ,  𝑓𝑜𝑟 𝑘 ≠  𝑗

 (10) 

The measurement model is defined in (11), which relates the observed measurement  𝑧𝑘  to the 

current state, 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (11) 

For a two-dimensional measurement model, (12) is used. 
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[
𝜃𝑘

𝜔𝑘
] = [1 0] [

𝜃𝑘−1

𝜔𝑘−1
] + [

0
1

] 𝑤𝑘−1 (12) 

where 𝑣𝑘  is the measurement noise with zero mean (13) and variance 𝑅𝑣 as indicated in (14), 

𝜇𝑣𝑘
= 𝐸[𝑣𝑘] = 0 (13) 

𝑅𝑣 = 𝐸[𝑣𝑘𝑣𝑘
𝑇] = 𝐸[𝑣𝑘𝑣𝑗] = {

𝑅𝑣 , 𝑓𝑜𝑟 𝑘  =  𝑗
0 ,  𝑓𝑜𝑟 𝑘 ≠  𝑗

 (14) 

The expectation operator 𝐸[−] signifies the expected value. 

The Kalman filter involves two primary stages, Time Update (Prediction) and Measurement 

Update (Correction) as shown in (5). Process of the kalman filter shown in Fig. 5. 

 

Fig. 5. Process of the kalman filter 

The prediction and correction phases are both included in the discrete-time Kalman filter 

equations. 

Time Update (Prediction) Equations 

Predicted (a priori) state estimate (15). 

𝑥𝑘
−   =  𝐴𝑥𝑘−1   +  𝐵𝑢𝑘−1 (15) 

Predicted (a priori) estimate covariance (16). 

𝑃𝑘
−   =  𝐴𝑃𝑘−1𝐴𝑇  +  𝐵𝑄𝐵𝑇 (16) 

Measurement Update (Correction) Equations Optimal Kalman gain 

Optimal Kalman gain (17). 

𝐾𝑘   =   𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 (17) 

Updated (a posteriori) state estimate (18). 

𝑥𝑘   =   𝑥𝑘
−  +   𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘

−) (18) 

Updated (a posteriori) estimate covariance (19). 

𝑃𝑘   =   (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
− (19) 

The MPU6050 sensor, which integrates measurements from the accelerometer and gyroscope, 

utilizes the Kalman filter to process data. Fig. 6 illustrates the standard Kalman filter structure, while 
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Fig. 7 illustrates an enhanced model. The accelerometer outputs are initially processed through an 

averaging filter in this enhanced configuration before being inputted into the Kalman filter. This filter 

is designed to enhance the accuracy of angle estimation by reducing noise and improving data 

stability. 

 

Fig. 6. Block diagram of kalman filter  

These are the initialized key parameters for this Kalman filter configuration, 𝐴 = 1, 𝐵 = 0.013, 

𝑄 = 1 × 10−12,𝑅 = 1 × 10−12, 𝐻 = 1, and 𝐼 = 1. The filter is optimized for real-time applications 

by meticulously selecting these values to achieve a balance between computational efficiency and 

accuracy.  

𝑢𝑘 = 𝜔𝑔𝑦𝑟𝑜 (20) 

𝑧𝑘 =  𝜃𝐴𝑐𝑐𝑒𝑙𝑒 (21) 

The estimated angle is represented by the output state variable 𝑥𝑘 in this system. The angular 

velocity measured by the gyroscope is denoted by 𝑢𝑘 =  𝜔𝑔𝑦𝑟𝑜, while the angle obtained from the 

accelerometer is represented by  𝑧𝑘 = 𝜃𝐴𝑐𝑐𝑒𝑙𝑒, as described in (20) and (21). By continuously revising 

the process and measurement noise covariances, the Kalman filter is intended to manage sensor drift 

and noise, thereby enabling it to adapt to environmental fluctuations and preserve robustness. This 

implementation is especially beneficial for applications that necessitate precise angle estimation and 

stability, such as balance control mechanisms, automotive systems, and robotics.  

2.5. Determining Q and R Values in Kalman Filter Implementation 

The precise identification of Q and y values is essential for the efficient implementation of the 

Kalman filter. The values are obtained from the variance of sensor data, with Q indicating the 

variation of gyroscope readings and R denoting the variance of accelerometer readings. This 

derivation is essential as it allows the filter to enhance its performance by considering both process 

noise and measurement noise. The input data for the Kalman filter is defined as follows 

𝜔𝑘 = 𝜔𝑔𝑦𝑟𝑜 (22) 

𝜃𝑘 =  𝜃𝐴𝑐𝑐𝑒𝑙𝑒 (23) 

At the initial time step k=1, Q and R are set to predefined constant values, 

𝐶𝑜𝑣(𝑄) = 1 × 10−12 (24) 

𝐶𝑜𝑣(𝑅) = 1 × 10−12 (25) 

These initial values are essential for establishing a baseline noise assumption for the Kalman filter. 

As the time step progresses, specifically for k < N, the values of Q and R are recalculated using 

the variance of the available data up to that point. This recalibration is expressed by the following 

equations, 

𝐶𝑜𝑣(𝑄) =
1

𝑁 − 1
∑ (𝜔𝑖 − 𝜔̅)2

𝑁

𝑖=1
 (26) 
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𝐶𝑜𝑣(𝑅) =
1

𝑁 − 1
∑ (𝜃𝑖 − 𝜃̅)2

𝑁

𝑖=1
 (27) 

When the time step k reaches N, Q and R values are then calculated based on the variance from 

the most recent N time steps, as shown in the following equations, 

𝐶𝑜𝑣(𝑄) =
1

𝑁 − 1
∑ (𝜔𝑖 − 𝜔̅)2

𝑘

𝑖=(𝑁−𝑘)
 (28) 

𝐶𝑜𝑣(𝑅) =
1

𝑁 − 1
∑ (𝜃𝑖 − 𝜃̅)2

𝑘

𝑖=(𝑁−𝑘)
 (29) 

 

Fig. 7. Algorithm for estimating Q and R values in kalman filter   

This strategy ensures the filter adeptly adjusts to variations in sensor data, which is essential for 

maintaining optimal performance. The Kalman filter's ability to precisely track and forecast system 

states in chaotic environments is enhanced by the ongoing adjustment of Q and R. The filter improves 

state prediction accuracy by dynamically adjusting to varying noise characteristics through 

recalibration of values using either the complete dataset or recent observations. This versatility is 

crucial for the precise and reliable filtration of dynamic environments. The pseudocode delineates a 

thorough approach for ascertaining the values of Q and R. To create a baseline for noise assumptions, 

Q and R are first assigned a minimal constant value of 1 × 10−12. The calculate_mean and 

calculate_variance functions are crucial for ascertaining the mean and variance of designated data 

ranges, thereby allowing Q and R to adapt constantly to real-time sensor inputs, as seen in Fig. 7. 
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During each iteration of the primary loop, the filter utilizes the initial constant values for Q and R 

when 𝑘 = 1. Q and R are recalibrated utilizing all accessible data, adapting to cumulative noise 

characteristics, as 𝑘 grows while remaining below N. When 𝑘 approaches or surpasses N, the most 

recent N intervals are utilized to update Q and R. This guarantees the system's responsiveness to the 

latest alterations in sensor data. The ongoing recalibration enables the Kalman filter to adeptly handle 

varying noise levels, thereby enhancing the accuracy of system state estimates. The Kalman filter 

enhances angle estimations and guarantees dependable monitoring and prediction of system states, 

even in turbulent situations, by executing its prediction and correction phases subsequent to the 

adjustment of Q and R. 

3. Results and Discussion 

This study evaluates the effectiveness of the Kalman Filter and the Complementary Filter in two 

distinct environments: high-noise and low-noise conditions. In order to determine the effectiveness 

of each filter in maintaining reliable outputs under a variety of conditions, the evaluation prioritizes 

critical performance indicators, including robustness and accuracy. The efficacy of each filtering 

approach for accurate angle estimation in dynamic systems is critically examined in this comparison 

research, which elucidates their advantages and disadvantages. The testing procedure was facilitated 

by the development of a specialized apparatus that captured the angular measurements of the system, 

as illustrated in Fig. 8. This configuration consisted of a mechanical apparatus that was connected to 

a 1K adjustable resistor and was intended to accurately measure angles in degrees. The system 

generated critical angle measurements that were supplied by the MPU6050 sensor, which was 

connected to the device. The accelerometer was configured to detect forces of up to 4g, while the 

gyroscope was calibrated for a measurement range of 500 degrees per second. For optimum data 

logging efficacy, data was captured every 13 milliseconds at a baud rate of 250,000. The algorithm's 

estimation precision was improved by configuring the Kalman Filter with N set to 20. The 

experimental findings are detailed in the following sections, and MATLAB was employed to conduct 

a comprehensive data analysis. The graph titled “Gyroscope” was generated by estimating the 

angular measurements obtained from the gyroscope using equation (8). Equations (2) and (3) were 

employed to analyze the accelerometer data for “Accelerometers I” and “Accelerometers II,” 

respectively. The gyroscope and accelerometer were used to obtain the inputs for the Complementary 

Filter, which led to the development of “Complementary Filter I.” In the same vein, the inputs used 

by “Kalman Filter I” were identical. The data from “Accelerometers II” was used to generate the 

outputs for “Complementary Filter II” and “Kalman Filter II.” This methodical approach enabled a 

comprehensive assessment of the various filtration methods. 

  

Fig. 8. Mechanical structure for angular measurement  
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3.1. Evaluation of Angle Measurement Design Under Non-Disturbance Conditions 

Using data from the MPU6050 sensor, which provides both accelerometer and gyroscope 

readings, this work examined how well the Kalman filter and complementary filter approaches for 

determining angles performed. The experiment was placed in a location free of disturbances; hence, 

there was no measurement noise. Fig. 9 displays the angle estimates derived from Complementary 

Filters I, II, and Kalman Filters I and II. With relatively minor variations, the data reveal that every 

filtering technique got quite near to the real angle. This underlined the accuracy of every technique 

in low-noise environments. As demonstrated in Fig. 10, the fact that the prediction error for all filters 

kept inside ±2.5 degrees indicated that these techniques performed effectively in this context. The Q 

and R numbers, which represent process noise and measurement noise covariance, were adjusted on 

demand throughout the experiment to provide even better filters. These figures are quite significant 

as they guide the response of every filter to variations in sensor values. Fig. 7 provides the technique 

for altering these values. Fig. 10 displays the changes in the Q and R values with time. This 

guarantees that the filters will perform effectively under the circumstances arising throughout the 

experiment. The gyroscope data (shown in green in Fig. 11) demonstrated quite minimal variance 

during the experiment when compared to the Kalman and complementary filters. This implied that 

it performed effectively in conditions of stability. But the stand-alone gyroscope displayed an 

inaccuracy that grew with dynamic circumstances added. This is a common issue when angles are 

estimated using gyroscopes without any other kind of correcting mechanism. Particularly from 

Accelerometer II, the accelerometer readings displayed considerable fluctuation and a greater error 

rate. This implies that more precise angle estimations depend on sensor fusion techniques. The 

Kalman filter demonstrated how robust it was by lowering these errors the greatest while handling 

both stationary and dynamic circumstances.  

 

Fig. 9. Angle estimation comparison under non-disturbance conditions 
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Fig. 9 also offers a thorough comparison of the Kalman filter's and complementary filter's 

performance. Results from Kalman Filter I and Kalman Filter II were regularly closer to the correct 

angle than those of their complementary filter equivalents. The gyroscope first produced quite 

accurate estimates, but as the test went on, the accumulated drift caused more inaccuracy. This 

phenomenon emphasizes, especially in dynamic contexts, the limits of employing a stationary 

gyroscope in angle measurement activities.  

Fig. 10 show the estimated errors resulting from accelerometer I, accelerometer II, and the 

gyroscope (red line). Although the gyroscope had quite constant error levels all during the test, with 

time the cumulative drift became increasingly clear. On the other hand, Accelerometer II's sensitivity 

to vibrations and quick motions caused noticeably more inaccuracies at designated intervals. 

Complementary filters and Kalman filters helped lower these mistakes; the Kalman filter routinely 

shows the lowest total error in all possible cases.  

 

Fig. 10. Error comparison of sensors and filters under non-disturbance conditions  

At last, Fig. 11 shows the variances in data gathered from the gyroscope (green), accelerometer 

I (blue), and accelerometer II (black). Especially at times of fast movement, the gyroscope showed 

less variance than the accelerometers. Accelerometer I and Accelerometer II both displayed great 

fluctuation in some areas (e.g., between 10 and 20 seconds), thereby highlighting the instability of 

applying accelerometer-based readings for precise angle estimation. By reducing these fluctuations, 

the Kalman filter produced more consistent and steady angle predictions in practical applications, 

particularly in cases of fast movement or outside disturbance presence.  

Finally, the results of this experiment amply show that in terms of angle estimation accuracy, 

the Kalman filter beats the complementary filter and single sensors. This is especially true in dynamic 
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surroundings when drift and noise are major issues. Applications include robotics and motion 

tracking, where exact angle estimation is essential for system performance and benefit from the 

Kalman Filter's ability to adapt to different noise levels and retain low error rates. 

 

Fig. 11. Covariance of gyroscope and accelerometers under non-disturbance conditions  

3.2. Evaluation of Angle Measurement Design Under Disturbance Conditions 

Under disturbance conditions, where measurement noise is included in the system, this part of 

the research assesses the Kalman filter's and complementary filter's performance for angle 

estimation. The MPU6050 sensor integrated gyroscope and accelerometer measurements gathered 

the data for this investigation. The aim was to evaluate, under high noise, the accuracy and resilience 

of every filtering method. 

Fig. 12 shows the angular estimations produced by Kalman Filters I and II, Complementary 

Filters I and II. Although all filters showed variations in noisy conditions, the Kalman filter 

constantly produced the most accurate estimations, according to the results.  

Especially as shown in Fig. 13, the estimate errors for Kalman Filters I and II stayed between 

±2.8 and ±2.5 degrees, respectively, thereby verifying their better performance in noisy 

environments. Dynamic adjustment of values of 𝑄 and 𝑅, which indicate process and measurement 

noise covariance, helped to maximize filter performance in high-noise environments.  

By showing the changes in these values over time, Fig. 14 enables the Kalman Filter to preserve 

correct estimations independent of changing noise levels. By comparison, the complementary filters 

had larger error margins; complementary filter I showed an inaccuracy of ±4.5 degrees, while 

complementary filter II reached ±13.7 degrees. 
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Although drift accumulated over time, a typical problem with standalone gyroscopes, 

particularly in dynamic environments, the gyroscope data (shown in Fig. 12) demonstrated better 

accuracy than the accelerometer data under disturbance conditions when compared to the Kalman 

and complementary filters. Particularly Accelerometer II, which showed inaccuracies up to ±153 

degrees due to its sensitivity to vibrations and fast motions, Accelerometer I and Accelerometer II 

showed notably greater error rates. The Kalman Filter's strong ability to control gyroscope drift and 

accelerometer variation helped to greatly lower these mistakes. 

 

Fig. 12. Angle estimation comparison under disturbance conditions  

Fig. 13 also offers a comparison between Kalman filter and complementary filter error margins. 

With Kalman Filter II performing somewhat better than Kalman Filter I, both filters maintained lower 

total error rates than the complementary filters. The gyroscope and complementary filters first 

generated quite precise readings, but when noise levels rose, the complementary filters found it 

difficult to remain accurate, and so there were notable variations. This emphasizes the restrictions on 

complementary filters in highly dynamic or high-noise environments.  

Fig. 14 shows even more the differences in the gyroscope and accelerometer data collection. 

The gyroscope showed quite low variation across the trial, suggesting constant functioning even in 

noisy surroundings. But both Accelerometer I and Accelerometer II showed notable variation, 

especially in highly disturbed times, that is, between 15 and 25 seconds. More consistent and precise 

angle estimations made by the Kalman filter helped to minimize these deviations than by the 

independent sensors.  

All things considered, the findings of this experiment amply show that in high-noise 

environments, the Kalman filter beats the complementary filter and stationary sensors. Although the 

Kalman Filter was more successful in eliminating cumulative drift and lowering error due to noise 

and disturbances, the gyroscope gave quite steady performance under noisy settings. Applications 
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needing an exact angle estimate in contexts where measurement noise is common, including robotics 

and motion tracking systems, would find the Kalman filter to be the perfect solution as it can 

dynamically respond to changing noise circumstances. 

 

Fig. 13. Error comparison of sensors and filters under disturbance conditions  

3.3. Performance Analysis of Filtering Techniques in Low-Noise and Noisy Conditions 

With an especially strong emphasis on two important performance indicators, MAE and Root 

Mean Square Error (RMSE), this portion offers a thorough study of the filters' performance in both 

low-noise and high-noise environments. Since they represent both the average error and the degree 

of more significant deviations in estimate results, these signals are crucial for evaluating the accuracy 

of angle estimation in dynamic systems. Table 1 shows the performance of every filter under low-

noise situations based on the results of Section 3.1. Table 2 shows the results for high-noise 

conditions in Section 3.2. By reducing both the average error and the amplitude of error deviations, 

Kalman Filter I attained the lowest MAE of 0.6513 and RMSE of 0.8044 in low-noise settings (Table 

1), thereby proving its better accuracy in angle estimation. By comparison, the gyroscope filter 

highlighted its lack of precision without noise mitigation by displaying the greatest MAE (1.0387) 

and RMSE (1.1940). This suggests that, although offering a baseline approximation, stand-alone 

sensors such as the gyroscope lack accuracy when compared to filtering methods. Because of the 

measurement noise introduced in noisy conditions (Table 2), all filters had greater MAE and RMSE 

values. Particularly the Accelerometer II filter displayed a notable rise with an MAE of 1.7690 and 

an RMSE of 6.6957, thereby highlighting its great sensitivity to noise. With an MAE of 0.8354 and 

an RMSE of 1.0055, the Kalman filter maintained quite good performance despite the rising error 

across all filters. Compared to other filters, this little increase in error emphasizes the Kalman Filter's 

resilience as it dynamically changes to more successfully manage measurement noise. Especially 

appropriate for high-noise environments, the rather constant MAE and RMSE figures show the 

Kalman Filter's capacity to restrict average and severe mistakes. 
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Fig. 14. Covariance of gyroscope and accelerometers under non-disturbance conditions  

Table 1.  Filter performance in low-noise system 

Filter Type MAE RMSE 

Gyro 1.0387 1.1940 

Accelerometer 0.7611 0.9612 

Accelerometer II 0.6950 0.8776 

Complementary Filter I 0.7463 0.9148 

Complementary Filter II 0.6709 0.8256 

Kalman Filter 0.7240 0.8913 

Kalman Filter I 0.6513 0.8044 
 

Table 2.  Filter performance in noise system 

Filter Type MAE RMSE 

Gyro 0.9514 1.1071 

Accelerometer 1.5817 4.0350 

Accelerometer II 1.7690 6.6957 

Complementary Filter I 1.1506 1.5360 

Complementary Filter II 1.2568 1.9170 

Kalman Filter 0.8354 1.0055 

Kalman Filter I 0.7782 0.9156 

 

In terms of MAE and RMSE, the Kalman filter clearly beats other filtering methods when 

comparing outcomes under both low- and high-noise environments. The complementary filters still 

have an advantage over stand-alone gyroscope and accelerometer filters, even if their performance 

suffers when noise is added. This study emphasizes the need for choosing a suitable filter depending 
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on the working environment. The Kalman Filter's capacity to keep MAE and RMSE values quite low 

provides a consistent way for dynamic systems experiencing different degrees of noise to retain 

accuracy. 

4. Conclusion 

This study examined the Kalman filter and complementary filter for angle estimation with 

accelerometer and gyroscope data from the IMU6050 sensor. The trials repeatedly demonstrated the 

Kalman Filter's improved angle estimate precision, particularly in high-noise settings and during 

rapid movements, while being run under a variety of motion scenarios, including ordinary rotations 

and scenarios with disturbances and noise. The Kalman filter's durability and adaptability were 

demonstrated by the lowered mean absolute error and root mean square error measurements. As a 

result, it is perfect for applications that need precise and consistent angle estimations, such as 

robotics, motion tracking, and advanced control systems. The dynamic adjustment of Q and R values 

in the Kalman filter boosts dependability in a variety of conditions and improves responsiveness to 

variable noise levels, giving it a competitive advantage over static filtering techniques. Furthermore, 

it enhances reliability. Future research may look at the Kalman Filter's usefulness in complex, real-

world settings like autonomous automobiles or wearable technologies, where accuracy and 

processing efficiency are crucial. This may include an evaluation of its performance across several 

sensor types. Furthermore, its future applications in biomedical engineering are promising. The 

Kalman Filter can increase angle measurement accuracy in medical devices such as motor The 

Kalman Filter helps increase angle measurement accuracy in medical devices, including motorized 

wheelchairs that balance and lift, telemedicine robots with head-tracking for remote consultations, 

and adjustable hospital beds. These examples demonstrate the Kalman Filter's effectiveness as a 

dependable solution in complex systems that require precise control and durable performance in 

dynamic environments. 

 

Author Contribution: All authors contributed equally to the main contributor to this paper. All authors read 

and approved the final paper. 

Funding: Research Institute, Academic Services Center, and College of Biomedical Engineering, Rangsit 

University. 

Acknowledgment: The researcher would like to thank the Research Institute, Academic Services Center, and 

College of Biomedical Engineering, Rangsit University for the grant of research funding to the research team. 
Furthermore, it is confirmed that the project has been reviewed by the Ethics Review Board of Rangsit 

University, with reference number RSUERB2024-002, which certifies that the research does not involve human 

subjects. 

Conflicts of Interest: The authors declare no conflict of interest.  

 

References 

[1] M. Barbary and M. H. A. ElAzeem, “Drones tracking based on robust cubature Kalman-TBD-multi-

Bernoulli filter,” ISA Transactions, vol. 114, pp. 277-290, 2021, 

https://doi.org/10.1016/j.isatra.2020.12.042.  

[2] K. Ansari and P. Jamjareegulgarn, "Effect of Weighted PDOP on Performance of Linear Kalman Filter 

for RTK Drone Data," IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-4, 2022, 

https://doi.org/10.1109/LGRS.2022.3204323  

[3] M. L. Hoang, M. Carratù, V. Paciello, and A. Pietrosanto, “Fusion Filters between the No Motion No 

Integration Technique and Kalman Filter in Noise Optimization on a 6DoF Drone for Orientation 

Tracking,” Sensors, vol. 23, no. 12, p. 5603, 2023, https://doi.org/10.3390/s23125603.  

https://doi.org/10.1016/j.isatra.2020.12.042
https://doi.org/10.1109/LGRS.2022.3204323
https://doi.org/10.3390/s23125603


18 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 1, 2025, pp. 1-21 

 

 

Phichitphon Chotikunnan (Comparative Analysis of Sensor Fusion for Angle Estimation Using Kalman and 

Complementary Filters) 

 

[4] E. Lim, "Pose Estimation of a Drone Using Dynamic Extended Kalman Filter Based on a Fuzzy 

System," 2021 9th International Conference on Control, Mechatronics and Automation (ICCMA), pp. 

141-145, 2021, https://doi.org/10.1109/ICCMA54375.2021.9646187.  

[5] F. J. González-Castaño, F. Gil-Castiñeira, D. Rodríguez-Pereira, J. Á. Regueiro-Janeiro, S. García-

Méndez and D. Candal-Ventureira, "Self-Corrective Sensor Fusion for Drone Positioning in Indoor 

Facilities," IEEE Access, vol. 9, pp. 2415-2427, 2021, https://doi.org/10.1109/ACCESS.2020.3048194.  

[6] Z. Dai and L. Jing, "Lightweight Extended Kalman Filter for MARG Sensors Attitude Estimation," IEEE 

Sensors Journal, vol. 21, no. 13, pp. 14749-14758, 2021, https://doi.org/10.1109/JSEN.2021.3072887.  

[7] F. Marino and G. Guglieri, “Beyond Static Obstacles: Integrating Kalman Filter with Reinforcement 

Learning for Drone Navigation,” Aerospace, vol. 11, no. 5, p. 395, 2024, 

https://doi.org/10.3390/aerospace11050395.  

[8] W. An, T. Lin, and P. Zhang, “An Autonomous Soaring for Small Drones Using the Extended Kalman 

Filter Thermal Updraft Center Prediction Method Based on Ordinary Least Squares,” Drones, vol. 7, no. 

10, p. 603, 2023, https://doi.org/10.3390/drones7100603.  

[9] S. Srey and S. Srang, “Adaptive Controller Based on Estimated Parameters for Quadcopter Trajectory 

Tracking,” International Journal of Robotics and Control Systems, vol. 4, no. 2, pp. 480-501, 2024, 

https://doi.org/10.31763/ijrcs.v4i2.1342.  

[10] I. Kurniasari and A. Ma'arif, “Implementing PID-Kalman Algorithm to Reduce Noise in DC Motor 

Rotational Speed Control,” International Journal of Robotics and Control Systems, vol. 4, no. 2, pp. 958-

978, 2024, https://doi.org/10.31763/ijrcs.v4i2.1309.  

[11] R. Ikhsan Alfian, A. Ma'arif, and S. Sunardi, “Noise Reduction in the Accelerometer and Gyroscope 

Sensor with the Kalman Filter Algorithm,” Journal of Robotics and Control (JRC), vol. 2, no. 3, pp. 180-

189, 2021, https://doi.org/10.18196/jrc.2375.  

[12] V. Mansur, S. Reddy, S. R and R. Sujatha, "Deploying Complementary filter to avert gimbal lock in 

drones using Quaternion angles," 2020 IEEE International Conference on Computing, Power and 

Communication Technologies (GUCON), pp. 751-756, 2020, 

https://doi.org/10.1109/GUCON48875.2020.9231126.  

[13] A. Basiri, V. Mariani, and L. Glielmo, “Improving Visual SLAM by Combining SVO and ORB-SLAM2 

with a Complementary Filter to Enhance Indoor Mini-Drone Localization under Varying Conditions,” 

Drones, vol. 7, no. 6, p. 404, 2023, https://doi.org/10.3390/drones7060404.  

[14] H. Dong, J. Liu, C. Wang, H. Cao, C. Shen and J. Tang, "Drone Detection Method Based on the Time-

Frequency Complementary Enhancement Model," IEEE Transactions on Instrumentation and 

Measurement, vol. 72, pp. 1-12, 2023, https://doi.org/10.1109/TIM.2023.3328072.  

[15] N. Srinidhi, J. Shreyas, and E. Naresh, “Establishing Self-Healing and Seamless Connectivity among IoT 

Networks Using Kalman Filter,” Journal of Robotics and Control (JRC), vol. 3, no. 5, pp. 646-655, 2022, 

https://doi.org/10.18196/jrc.v3i5.11622.  

[16] B. Skorohod, “Finite Impulse Response Filtering Algorithm with Adaptive Horizon Size Selection and 

Its Applications,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 836-847, 2023, 

https://doi.org/10.18196/jrc.v3i6.16058.  

[17] V. Shenoy and S. Vekata, “Estimation of Liquid Level in a Harsh Environment Using Chaotic Observer,” 

Journal of Robotics and Control (JRC), vol. 3, no. 5, pp. 566-582, 2022, 

https://doi.org/10.18196/jrc.v3i5.16183.  

[18] W. T. Higgins, "A Comparison of Complementary and Kalman Filtering," IEEE Transactions on 

Aerospace and Electronic Systems, vol. AES-11, no. 3, pp. 321-325, 1975, 

https://doi.org/10.1109/TAES.1975.308081.  

[19] P. Vlastos, G. Elkaim and R. Curry, "Low-Cost Validation for Complementary Filter-Based 

AHRS," 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 1444-1451, 2020, 

https://doi.org/10.1109/PLANS46316.2020.9109965.  

https://doi.org/10.1109/ICCMA54375.2021.9646187
https://doi.org/10.1109/ACCESS.2020.3048194
https://doi.org/10.1109/JSEN.2021.3072887
https://doi.org/10.3390/aerospace11050395
https://doi.org/10.3390/drones7100603
https://doi.org/10.31763/ijrcs.v4i2.1342
https://doi.org/10.31763/ijrcs.v4i2.1309
https://doi.org/10.18196/jrc.2375
https://doi.org/10.1109/GUCON48875.2020.9231126
https://doi.org/10.3390/drones7060404
https://doi.org/10.1109/TIM.2023.3328072
https://doi.org/10.18196/jrc.v3i5.11622
https://doi.org/10.18196/jrc.v3i6.16058
https://doi.org/10.18196/jrc.v3i5.16183
https://doi.org/10.1109/TAES.1975.308081
https://doi.org/10.1109/PLANS46316.2020.9109965


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

19 
Vol. 5, No. 1, 2025, pp. 1-21 

  

 

Phichitphon Chotikunnan (Comparative Analysis of Sensor Fusion for Angle Estimation Using Kalman and 

Complementary Filters) 

 

[20] M. Al Borno et al., “OpenSense: An open-source toolbox for inertial-measurement-unit-based 

measurement of lower extremity kinematics over long durations,” Journal of Neuroengineering and 

Rehabilitation, vol. 19, no. 1, p. 22, 2022, https://doi.org/10.1186/s12984-022-01001-x.  

[21] R. V. Vitali, R. S. McGinnis and N. C. Perkins, "Robust Error-State Kalman Filter for Estimating IMU 

Orientation," IEEE Sensors Journal, vol. 21, no. 3, pp. 3561-3569, 2021, 

https://doi.org/10.1109/JSEN.2020.3026895.  

[22] M. Khodarahmi and V. Maihami, “A review on Kalman filter models,” Archives of Computational 

Methods in Engineering, vol. 30, no. 1, pp. 727-747, 2023, https://doi.org/10.1007/s11831-022-09815-7.  

[23] J. Khodaparast, "A Review of Dynamic Phasor Estimation by Non-Linear Kalman Filters," IEEE Access, 

vol. 10, pp. 11090-11109, 2022, https://doi.org/10.1109/ACCESS.2022.3146732.  

[24] A. K. Singh, "Major development under Gaussian filtering since unscented Kalman filter," IEEE/CAA 

Journal of Automatica Sinica, vol. 7, no. 5, pp. 1308-1325, 

2020, https://doi.org/10.1109/JAS.2020.1003303.  

[25] H. Liu, F. Hu, J. Su, X. Wei and R. Qin, "Comparisons on Kalman-Filter-Based Dynamic State Estimation 

Algorithms of Power Systems," IEEE Access, vol. 8, pp. 51035-51043, 2020, 

https://doi.org/10.1109/ACCESS.2020.2979735.  

[26] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided invariant extended Kalman 

filtering for robot state estimation,” The International Journal of Robotics Research, vol. 39, no. 4, pp. 

402-430, 2020, https://doi.org/10.1177/0278364919894385.  

[27] Y. T. Bai, X. Y. Wang, X. B. Jin, Z. Y. Zhao, and B. H. Zhang, “A neuron-based kalman filter with 

nonlinear autoregressive model,” Sensors, vol. 20, no. 1, p. 299, 2020, https://doi.org/10.3390/s20010299.  

[28] I. Ullah, X. Su, X. Zhang, and D. Choi, “Simultaneous localization and mapping based on Kalman filter 

and extended Kalman filter,” Wireless Communications and Mobile Computing, vol. 2020, p. 2138643, 

2020, https://doi.org/10.1155/2020/2138643.  

[29] P. Poncela, E. Ruiz, and K. Miranda, “Factor extraction using Kalman filter and smoothing: This is not 

just another survey,” International Journal of Forecasting, vol. 37, no. 4, pp. 1399-1425, 2021, 

https://doi.org/10.1016/j.ijforecast.2021.01.027.  

[30] Y. Huang, Y. Zhang, Y. Zhao, P. Shi and J. A. Chambers, "A Novel Outlier-Robust Kalman Filtering 

Framework Based on Statistical Similarity Measure," IEEE Transactions on Automatic Control, vol. 66, 

no. 6, pp. 2677-2692, 2021, https://doi.org/10.1109/TAC.2020.3011443.  

[31] M. Impraimakis and A. W. Smyth, “An unscented Kalman filter method for real-time input-parameter-

state estimation,” Mechanical Systems and Signal Processing, vol. 162, p. 108026, 2022, 

https://doi.org/10.1016/j.ymssp.2021.108026.  

[32] S. Sharma, A. Majumdar, V. Elvira and É. Chouzenoux, "Blind Kalman Filtering for Short-Term Load 

Forecasting," IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4916-4919, 

2020, https://doi.org/10.1109/TPWRS.2020.3018623.  

[33] Y. Huang, F. Zhu, G. Jia and Y. Zhang, "A Slide Window Variational Adaptive Kalman Filter," IEEE 

Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3552-3556, 2020, 

https://doi.org/10.1109/TCSII.2020.2995714.  

[34] E. R. Potokar, K. Norman and J. G. Mangelson, "Invariant Extended Kalman Filtering for Underwater 

Navigation," IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5792-5799, 

2021, https://doi.org/10.1109/LRA.2021.3085167.  

[35] W. Wen, T. Pfeifer, X. Bai, and L. T. Hsu, “Factor graph optimization for GNSS/INS integration: A 

comparison with the extended Kalman filter,” NAVIGATION: Journal of the Institute of Navigation, vol. 

68, no. 2, pp. 315-331, 2021, https://doi.org/10.1002/navi.421.  

[36] K. D. T. Rocha and M. H. Terra, “Robust Kalman filter for systems subject to parametric uncertainties,” 

Systems & Control Letters, vol. 157, p. 105034, 2021, https://doi.org/10.1016/j.sysconle.2021.105034.  

https://doi.org/10.1186/s12984-022-01001-x
https://doi.org/10.1109/JSEN.2020.3026895
https://doi.org/10.1007/s11831-022-09815-7
https://doi.org/10.1109/ACCESS.2022.3146732
https://doi.org/10.1109/JAS.2020.1003303
https://doi.org/10.1109/ACCESS.2020.2979735
https://doi.org/10.1177/0278364919894385
https://doi.org/10.3390/s20010299
https://doi.org/10.1155/2020/2138643
https://doi.org/10.1016/j.ijforecast.2021.01.027
https://doi.org/10.1109/TAC.2020.3011443
https://doi.org/10.1016/j.ymssp.2021.108026
https://doi.org/10.1109/TPWRS.2020.3018623
https://doi.org/10.1109/TCSII.2020.2995714
https://doi.org/10.1109/LRA.2021.3085167
https://doi.org/10.1002/navi.421
https://doi.org/10.1016/j.sysconle.2021.105034


20 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 1, 2025, pp. 1-21 

 

 

Phichitphon Chotikunnan (Comparative Analysis of Sensor Fusion for Angle Estimation Using Kalman and 

Complementary Filters) 

 

[37] M. Song, R. Astroza, H. Ebrahimian, B. Moaveni, and C. Papadimitriou, “Adaptive Kalman filters for 

nonlinear finite element model updating,” Mechanical Systems and Signal Processing, vol. 143, p. 

106837, 2020, https://doi.org/10.1016/j.ymssp.2020.106837.  

[38] H. Fang, M. A. Haile and Y. Wang, "Robust Extended Kalman Filtering for Systems With Measurement 

Outliers," IEEE Transactions on Control Systems Technology, vol. 30, no. 2, pp. 795-802, 2022, 

https://doi.org/10.1109/TCST.2021.3077535.  

[39] G. Hu, B. Gao, Y. Zhong, and C. Gu, “Unscented Kalman filter with process noise covariance estimation 

for vehicular INS/GPS integration system,” Information Fusion, vol. 64, pp. 194-204, 2020, 

https://doi.org/10.1016/j.inffus.2020.08.005.  

[40] W. Wang, N. He, K. Yao, and J. Tong, “Improved Kalman filter and its application in initial alignment,” 

Optik, vol. 226, p. 165747, 2021, https://doi.org/10.1016/j.ijleo.2020.165747.  

[41] A. Tsiamis and G. J. Pappas, "Online Learning of the Kalman Filter With Logarithmic Regret," IEEE 

Transactions on Automatic Control, vol. 68, no. 5, pp. 2774-2789, 2023, 

https://doi.org/10.1109/TAC.2022.3207670.  

[42] Y. Sun, W. Bao, K. Valk, C. C. Brauer, J. Sumihar, A. H. Weerts, “Improving forecast skill of lowland 

hydrological models using ensemble Kalman filter and unscented Kalman filter,” Water Resources 

Research, vol. 56, no. 8, p. e2020WR027468, 2020, https://doi.org/10.1029/2020WR027468.  

[43] Y. Huang, G. Jia, B. Chen and Y. Zhang, "A New Robust Kalman Filter With Adaptive Estimate of Time-

Varying Measurement Bias," IEEE Signal Processing Letters, vol. 27, pp. 700-704, 2020, 

https://doi.org/10.1109/LSP.2020.2983552.  

[44] S. Yi and M. Zorzi, "Robust Kalman Filtering Under Model Uncertainty: The Case of Degenerate 

Densities," IEEE Transactions on Automatic Control, vol. 67, no. 7, pp. 3458-3471, 2022, 

https://doi.org/10.1109/TAC.2021.3106861.  

[45] M. Bai, Y. Huang, B. Chen and Y. Zhang, "A Novel Robust Kalman Filtering Framework Based on 

Normal-Skew Mixture Distribution," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 

vol. 52, no. 11, pp. 6789-6805, 2022, https://doi.org/10.1109/TSMC.2021.3098299.  

[46] A. Hasan, "eXogenous Kalman Filter for State Estimation in Autonomous Ball Balancing Robots," 2020 

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1522-1527, 

2020, https://doi.org/10.1109/AIM43001.2020.9158896.  

[47] Y. Cheng, Y. Li, K. Li, X. Liu, C. Liu, X. Hao, “Fusing LSTM neural network and expanded disturbance 

Kalman filter for estimating external disturbing forces of ball screw drives,” Robotics and Computer-

Integrated Manufacturing, vol. 89, p. 102776, 2024, https://doi.org/10.1016/j.rcim.2024.102776.  

[48] Y. Kang, Z. Qiu, X. Huang, Z. Kong, F. Gu, A. D. Ball, “Field simultaneous estimation of residual 

unbalance and bearing dynamic coefficients for double-disk rotor-bearing system using dual augmented 

Kalman filter,” Journal of Sound and Vibration, vol. 577, p. 118325, 2024, 

https://doi.org/10.1016/j.jsv.2024.118325.  

[49] A. Srichandan, J. Dhingra, and M. K. Hota, “An improved Q-learning approach with Kalman filter for 

self-balancing robot using OpenAI,” Journal of Control, Automation and Electrical Systems, vol. 32, no. 

6, pp. 1521-1530, 2021, https://doi.org/10.1007/s40313-021-00786-x.  

[50] R. Dian Alarmi, A. Husein Alasiry, N. Fajar Satria and B. Sumantri, "A Sensor Fusion Algorithm in 

Humanoid Robot PD Balancing Control for Walking on Slope," 2020 International Electronics 

Symposium (IES), pp. 289-296, 2020, https://doi.org/10.1109/IES50839.2020.9231674.  

[51] J. Zhao, J. Li, and J. Zhou, “Research on two-round self-balancing robot SLAM based on the gmapping 

algorithm,” Sensors, vol. 23, no. 5, p. 2489, 2023, https://doi.org/10.3390/s23052489.  

[52] W. Youn and S. Andrew Gadsden, "Combined Quaternion-Based Error State Kalman Filtering and 

Smooth Variable Structure Filtering for Robust Attitude Estimation," IEEE Access, vol. 7, pp. 148989-

149004, 2019, https://doi.org/10.1109/ACCESS.2019.2946609.  

[53] H. A. O. Mohamed et al., "Momentum-Based Extended Kalman Filter for Thrust Estimation on Flying 

Multibody Robots," IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 526-533, 2022, 

https://doi.org/10.1109/LRA.2021.3129258.  

https://doi.org/10.1016/j.ymssp.2020.106837
https://doi.org/10.1109/TCST.2021.3077535
https://doi.org/10.1016/j.inffus.2020.08.005
https://doi.org/10.1016/j.ijleo.2020.165747
https://doi.org/10.1109/TAC.2022.3207670
https://doi.org/10.1029/2020WR027468
https://doi.org/10.1109/LSP.2020.2983552
https://doi.org/10.1109/TAC.2021.3106861
https://doi.org/10.1109/TSMC.2021.3098299
https://doi.org/10.1109/AIM43001.2020.9158896
https://doi.org/10.1016/j.rcim.2024.102776
https://doi.org/10.1016/j.jsv.2024.118325
https://doi.org/10.1007/s40313-021-00786-x
https://doi.org/10.1109/IES50839.2020.9231674
https://doi.org/10.3390/s23052489
https://doi.org/10.1109/ACCESS.2019.2946609
https://doi.org/10.1109/LRA.2021.3129258


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

21 
Vol. 5, No. 1, 2025, pp. 1-21 

  

 

Phichitphon Chotikunnan (Comparative Analysis of Sensor Fusion for Angle Estimation Using Kalman and 

Complementary Filters) 

 

[54] P. Chotikunnan and B. Panomruttanarug, “The application of fuzzy logic control to balance a wheelchair,” 

Journal of Control Engineering and Applied Informatics, vol. 18, no. 3, pp. 41-51, 2016, 

http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=3173.  

[55] C. Urrea and R. Agramonte, “Kalman filter: historical overview and review of its use in robotics 60 years 

after its creation,” Journal of Sensors, vol. 2021, p. 9674015, 2021, 

https://doi.org/10.1155/2021/9674015.  

[56] L. Mei et al., “Realtime mobile bandwidth prediction using LSTM neural network and Bayesian 

fusion,” Computer Networks, vol. 182, p. 107515, 2020, https://doi.org/10.1016/j.comnet.2020.107515.  

[57] S. O. H. Madgwick, S. Wilson, R. Turk, J. Burridge, C. Kapatos and R. Vaidyanathan, "An Extended 

Complementary Filter for Full-Body MARG Orientation Estimation," IEEE/ASME Transactions on 

Mechatronics, vol. 25, no. 4, pp. 2054-2064, 2020, https://doi.org/10.1109/TMECH.2020.2992296.  

http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=3173
https://doi.org/10.1155/2021/9674015
https://doi.org/10.1016/j.comnet.2020.107515
https://doi.org/10.1109/TMECH.2020.2992296

