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1. Introduction 

The evolution of the internet, beginning from its origins as ARPANET [1], [2] and evolving into 

the interconnected and intelligent world of web 3.0, reflects the massive increase in global user [3]. 

Once a very rudimentary means for disseminating information across the world, the World Wide Web 

Protocol [4] which supports everything from web 1.0 [5] to the grander and interactive social media 

and platforms of web 2.0 [6] is transforming into an intelligent web 3.0 [7] where computers can 

almost ‘understand’, subsequently work with information as if they were humans themselves [8]. This 

rapid growth has put significant strain on traditional cloud computing systems, emphasizing the 

industry's shift towards edge solutions that offer more efficient management of data-intensive tasks 

[9]. Data offloading has emerged as a critical strategy to manage network congestion and enhance 

overall system performance [10]. This method intelligently distributes data across the network, 
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 Data offloading, a technique that distributes data across the network, is 

crucial for alleviating congestion and enhancing system performance. One 

challenge in this process is optimizing web caching, which can be modeled 

as a dynamic knapsack problem in edge networks. This study introduces a 

Greedy-Assisted Genetic Algorithm (GA-Greedy) to tackle this challenge, 

accelerating convergence and improving solution quality. The greedy 

heuristic is integrated into the GA at two stages: during initialization to 

create a superior starting population, and at the end of each iteration to 

refine solutions generated through genetic operations. The GA-Greedy’s 

effectiveness was evaluated using the IRcache dataset, focusing on hit 

ratio—an indicator of successful cache accesses that reduces network load 

and speeds up data retrieval. Results show that GA-Greedy outperforms 

traditional GA and standalone greedy algorithms, especially with smaller 

cache sizes. For instance, with a 3K cache size, the half-greedy GA 

achieved a hit ratio of 0.55, compared to 0.2 for the pure GA and 0.1 for 

the greedy algorithm. Similarly, the full-greedy GA reached a hit ratio of 

0.45. By enhancing convergence and guiding the search, GA-Greedy 

enables more efficient data distribution in edge networks, reducing latency 

and improving user experience. 
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alleviating the load on central servers. However, the problem of how to select the most effective 

strategy for offloading the data remains, pushing further explication in the UE toward such betterment 

of the approaches as optimization [11]. In this manner, genetic algorithms (GA) are powerful in 

implementation because they are inspired by the principle of evolution in solving complex 

optimization problems [12], [13]. They are able to borrow from the evolutional biological processes 

like selection, crossover, and mutations to improve a given population iteratively [14]. Despite it, 

conventional GA are inefficient because they require too many resources especially brawn one in 

large-scale scenarios of data offloading [15]. To address this, a more efficient strategy utilizing fitness-

based Olympic-type selection has been proposed, improving the speed and accuracy of finding near-

optimal solutions. 

The integration of a greedy heuristic into GA can further enhance its performance, particularly 

for the dynamic and complex task of data offloading in caching systems [16], [17]. Demand for high-

speed internet access is also being influenced by growing numbers of users of bandwidth demanding 

applications i.e. video [18] and gaming [19] applications. There is a need for alternate approaches for 

efficient solutions on the network's edge with the growth of these bandwidth apps demand. Edge 

computing is the solution that augments cloud computing by keeping computing and data intensive 

tasks within proximity to the end user and therefore improving system response time [20]. Considering 

the greater efficiency and versatility of our proposed improved GA, it could assist in the optimal 

decision making of data offloading on edge networks, so that users are able to steadily and quickly 

access information and services. 

Several studies have demonstrated the effectiveness of combining greedy heuristics with genetic 

algorithms in diverse applications. For example, Tong et al. [21] developed the IGAA, a greedy-

optimized annealing algorithm for optimizing the operation paths of automated seedling transplanting 

devices, a problem analogous to the Travelling Salesperson Problem. Cui et al. [22] utilized a parallel 

distribution technique with a greedy algorithm to optimize multiclass hybrid flow shop scheduling 

problems, enhancing computational efficiency. Paulavicius et al. [16] applied a greedy GA in tourist 

trip planning, maximizing user satisfaction within given constraints. Shukla et al. [23] integrated GA 

with a Markov model to generate classical Indian music compositions that adhere to specific musical 

structures. These examples highlight the versatility of greedy-enhanced GAs in solving complex real-

world problems. 

Akila et al. [24] tackled premature convergence in multi-objective optimization with a unique 

strategy that improved classification accuracy. Gangavarapu et al. [25] presented a hybrid feature 

selection method for high-dimensional medical data using genetic algorithms. Brum et al. [26] 

explored how Ant Colony Optimization (ACO) could develop a novel iterative greedy algorithm for 

the Non-Permutation Flow Shop Scheduling Problem, highlighting the potential of such 

combinations. These examples demonstrate the adaptability of greedy-enhanced methods in 

optimizing complex systems, particularly in scenarios that demand both global exploration and local 

refinement. 

Based on the research presentation, greedy has proven to be quite effective in helping the 

performance of genetic algorithms and other meta-heuristic algorithms. The Genetic algorithms are 

the useful tools for optimizing complex problems by imitating processes like natural selections. Their 

main strength is being able to navigate large search spaces and find the best solutions, even for hard 

functions. They work with the assistance of randomness to promote rapid exploration in a wide range 

of directions, while also making it difficult to be entrapped by local optima and maximizing searches 

globally [27]. Unfortunately, they tend to be very effective though random effects sometimes lead to 

premature convergence to sub-optimal solutions. For this, it is essential that greedy algorithms, which 

are well-known for locating local optima faster than their alternatives, are integrated [28]. 

The contribution of this research is enhanced GA with greedy for optimizing data offloading in 

caching system at edge network. The greedy algorithm acts as an initial guide in the optimization 

process using GA. In the initialization stage, greedy is used to select initial individuals that have the 

potential for good solutions based on certain criteria, thus forming a better quality initial GA 
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population. At the end of the iteration, when GA has produced a number of potential solutions, the 

greedy algorithm plays a role again. In this instance, greedy is employed to assess the various solutions 

and choose the one, which more than others, has the highest or most efficient fitness level. That is 

why, greedy ensures that the combination of solutions generated at the end of GA is better than any 

local optimum and is, in fact, a true global optimum. 

2. Method 

2.1. Dataset 

This study has access to the IRcache dataset, which archives caching records from proxy caches 

in a distributed architecture. The first creator of the IRcache dataset is Alex Rousskov [29]. It has sine 

went under the administration of National Laboratory of Applied Network Research [30]. The IRcache 

dataset is representative of a global proxy network provided by a cluster of proxy servers located in 

five cities in the United States: Urbana-Champaign (UC), Boulder (BO2), Silicon Valley (SV), San 

Diego (SD), and New York (NY). There are a lot of datasets aimed at understanding how to model 

the cache replacement policy in data in cache memory and the IRcache dataset is one of such datasets. 

The properties of traffic of the internet in such a case are also capture in the dataset. Within the last 

seven years this IRcache dataset is used by Paul et al. when presented simCache architecture 

framework [31], Ibrahim et al [32] while doing research in cache replacement and Li et al [33] while 

doing research on content caching optimization. The properties, which are presented in the IRcache 

dataset are outlined in Table 1. 

In relation to requested online objects, the dataset records a variety of metadata, such as object 

size (size), response time, and request frequency. By nature the logs provide an insight into the 

behavior of real-world caching systems. A sample of the raw IRcache dataset is presented in Table 1. 

However, for this research, which uses the KP model, some key columns have been used. 

• iddata: It indicates the column with a unique identifier assigned to each object request. Iddata, or 

"id," has been employed in this study to track particular things in order to identify them uniquely 

and subject them to optimization in the future. 

• elapsed: The time in milliseconds required for the object request was completed. Response time 

holds the key deciding factor of the profit of an object in KP model to be selected, meaning that 

in a cache, objects with a faster response time will be more profitable [34], [35]. 

• size: This data presents the size of the object in bytes that was requested. Within the context of 

Knapsack Problem, size is how its called the weight of an object which determines how much 

space in a cache would be taken by this object [36], [37]. 

• Uniform Resource Locators (URL): The URL records requests for specific web objects. From 

this column, we calculated the cumulative number of accesses for each object based on its URL. 

This cumulative access count is then used as a factor to determine the value of the object [38]. 

Frequently requested objects are deemed more valuable to cache since they can significantly 

reduce network load [39], [40]. 

2.1.1. Data Transformation Process 

The IRcache dataset used in this study consists of entries that record object size (size), access 

time (elapsed), and the URL of the object accessed. To adapt this dataset to the 0/1 knapsack problem, 

we perform several transformations. For each item, we first compute a cumulative access metric that 

indicates how frequently the object URL is accessed within the dataset. In order to shed light on the 

complexity of the knapsack problem under consideration, we also determine the total number of 

unique items following the transformation and normalization procedures. This metric will serve as the 

value in the context of the knapsack problem. Next, since the values of size and elapsed have a wide 

range, we normalize these values using (1). This normalization ensures that all features have 

comparable scales, which is essential for the knapsack algorithm. The normalized values are directly 
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integrated into the computation of the objective function, where they impact the choice of items by 

proportionally modifying the weight and profit of each item to conform to the knapsack limitations.  

Following normalization, we use (2) to create the objective function for the knapsack problem. Under 

the knapsack capacity constraints, this objective function seeks to maximize the cumulative access 

value of the chosen objects while maintaining the total normalized size and access time. The weighting 

factors for access value, size, and elapsed time are denoted by b1, b2, and b3, respectively. Lastly, the 

hit ratio serves as the primary performance indicator for the cache system. Finally, to evaluate the 

cache system's performance, we use the hit ratio as the main metric. The hit ratio is calculated from 

the objective function using (3) [41], [42]. This metric reflects the proportion of object requests that 

are successfully satisfied from the cache, which is a direct indicator of the system's effectiveness. With 

this transformation and metric, we can effectively apply the 0/1 knapsack model to the IRcache dataset 

and evaluate various caching strategies based on the resulting hit ratio. A sample of the pivoted dataset 

for KP testing is shown in Table 2. 

 
𝑁𝑜𝑟𝑚𝑣𝑎𝑟(𝑥) =

1
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Research with KP01 modeling is generally tested with choice of data sets of 10, 20, 50 to 100 

[43]-[45]. The number of rows in the IRcache dataset is in the thousands. However, in this research, 

we tried a larger number of KP data, up to more than 300 rows of data. Therefore, it was also possible 

to make use of the dataset for testing the problem of Knapsack after pivoting the dataset. Provided the 

dataset assisted in optimizing the object weight and object value. By utilizing this refined dataset, we 

were able to apply the Knapsack Problem to examine various cache replacement policies. 

Table 1.  IRcache dataset sample 

Field Value 

id : 784 

time_s : 1282363557 

elapsed : 159 

ipclient : 171.27.148.136 

code : TCP_HIT/200 

size : 3106 

method : GET 

url 
: http://www.tokobagus.com/upload/users/561/561065/purple-

1279870160_list.jpg 

type : image/jpeg 

2.2. Proposed Method 

2.2.1. Genetic Algorithm 

Due to their capacity to explore search spaces, genetic algorithms have been used in several 

optimization challenges, including data dumping. Nonetheless, the sluggish convergence of classical 

genetic algorithms in relation to the specified issue space continues to provide a barrier, particularly 

in increasingly complex problem domains [46]. We propose a greedy heuristic to guide the genetic 

algorithm towards regions of the solution space that provide more benefits. The genetic algorithm 

(GA) is considered the foundation of the mission, using the idea of individuals within a population, 

where each person represents a potential candidate solution for the data offloading issue. These 

methodologies use a chromosomal model of solutions, populating the chromosomes with binary or 

http://www.tokobagus.com/upload/users/561/561065/purple-1279870160_list.jpg
http://www.tokobagus.com/upload/users/561/561065/purple-1279870160_list.jpg
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numeric representations that denote the intermediates and cloud resources to which tasks are 

delegated. 

Table 2.  IRcache dataset sample 

iddata size (weigh) elapsed access count 

404052406 3106 23 30 

404018280 9906 13 21 

40403542 3649 7 8 

404021968 20410 4 11 

 

The genetic algorithm drives global exploration and optimization. Each individual is a possible 

data offloading solution. These solutions are represented as chromosomes, using binary or numeric 

representations to indicate which tasks are offloaded to edge servers or cloud resources. A well-

defined fitness function that evaluates the quality of data offloading strategies is used to determine 

each individual's (gen) fitness [47]. This fitness function frequently minimizes cost, delay, and energy 

consumption while taking service level agreement and bandwidth constraints into account. High-

fitness chromosomes are selected, guaranteeing that better solutions will contribute genetic material 

to the following generation. The tournament [48], roulette wheel [49], and rank-based selection [50] 

are common. Tournament selection was used in this study because it can moderate selective pressure 

and preserve solution variety, both of which are important for meeting the cache optimization 

problem's convergence requirements. A crucial genetic operator called crossover enables genetic 

information to be shared between chosen parents. Crossover creates offspring with features from both 

parents by recombining chromosomal segments, which may lead to new and better solutions [51]. Fig. 

1 shows how the crossover mechanism is performed from parent-1 (P-1) and parent-2 (P-2) which 

produces offspring (P'). Mutation, another important operator, randomly modifies the genes, 

introducing diversity into the population [52]. Exploring new areas of the solution space maintains 

population variety and avoids premature convergence to local optima. GA uses crossover, mutation, 

and selection to grow the population over several generations. More suited chromosomes and nearly 

ideal data dumping mechanisms result from this evolutionary process' filtering of solutions. 

2.2.2. Greedy Algorithm 

A greedy strategy is critical in accelerating the convergence of optimization procedure, since it 

offers a way of making local decisions at each step [54]. This algorithm proceeds on the basis of a 

given rule or a decided criterion which values short term benefits only. When applied in data 

offloading, the greedy algorithm could select tasks with the most amount of data or most 

computationally intensive and offload them to the edge server or the cloud where the less current load 

or latency exists. The details about the greedy algorithms adaptations may differ based on the problem 

definitions and goals. Nevertheless, it is therefore proposed as its most important characteristic the 

ability to provide good initial solutions or improve given solutions using local optimization techniques 

[55]. This occurs because such systems are short-sighted and care only about the local gains without 

regard for the repercussions of their actions or the optimality of the solution as a whole. In the case of 

the hybrid approach, the greedy strategy can be incorporated into the genetic algorithm in a number of 

different ways [56]. For one, it can be employed to obtain a better quality initial population for the GA 

so that the population is closer to the optimal solution making the number of generations required for 

convergence fewer. In fact, the greedy method comes in each generation of the GA to post-process the 

solutions obtained after crossover and mutation thereby improving the quality and speed of the search. 

2.2.3. Greedy-Assisted Genetic Algorithm 

This paper presents a new optimized technique, the Greedy-Assisted Genetic Algorithm (GA- 

Greedy) for solving the dynamic web caching knapsack problem. By using a greedy approach inside 

the framework of genetic algorithms, the GA-Greedy further improved the initial population's quality 

and optimized the evolution process [57]. The greedy heuristic has been implemented first in GA-

Greedy since it has the objective of creating a population of solutions that has an edge. So as to make the 
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generation of pure genetic algorithms population easier the random method is resorted to, an 

approximate solution may be attained after many generations [58]. To speed up the process, a greedy 

heuristic is used to build the initial population of chromosomes. This ensures that the search is focused 

on the best area of the solution space. Also, the GA-Greedy algorithm restructures the population at 

the end of every loop and replaces some of the solutions with better ones using the greedy heuristic. 

The goal is to improve the offspring of the children produced by the selection, crossover, and mutation 

genetic operations. The greedy heuristic gives extra attention to the offspring as soon as they are 

produced, and if on the other hand a child either goes outside the given capacity of the knapsack or 

does not have maximum fitness, the child supports policies concerning local improvement [55]. This 

phase allows for precision and a very reasonable high standard of the population quality to be 

maintained throughout the optimization phase. 

 

Fig. 1. Some crossover mechanisms in genetic algorithm [53] 

Even though the greedy heuristic improves the results obtained from the GA-Greedy algorithm, 

the underlying genetic operators remains the same as shown in Fig. 2. In the selection phase, parent 

solutions are determined by this viability criterion, while crossover focuses precisely on transferring 

month attributes from parent solutions to produce children. These procedures which come in a 

developed form using the greedy heuristic, are important for managing exploration inside the solution 

and are effective in its application [54]. Therefore, the anticipation that illogical, yet practical solutions 

are frantically implemented would be detrimental in enhancing the genetic algorithm framework 

incorporating the greedy heuristic. It is presumed genetically engineered algorithms would help in 

making use of an initial close solution as a guide to systematically search for a better solution in a 

shorter period. In addition, there will also be an increase in the confidence in the quality of the 

solutions which will be available as they will be equally feasible and also better in terms of fitness 

values. This work uses the transformed IRcache dataset to apply the GA-Greedy approach to solve 

the knapsack problem in the context of online caching optimization. In order to provide a good starting 

point, the Greedy heuristic starts by initializing the population, either half or all. Greedy is also used 

to replace some of the genes that perform the worst, modifying them to fit within the maximum size 

restriction. The GA naturally manages the next steps, preserving diversity and lowering the possibility 

of local optima by permitting adequate variance in the progeny without overly forceful Greedy 

application. 



1940 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 4, 2024, pp. 1934-1946 

 

 

Mulki Indana Zulfa (Accelerating Convergence in Data Offloading Solutions: A Greedy-Assisted Genetic Algorithm 

Approach) 

 

3. Results and Discussion 

3.1. Result 

The following graphs show the fitness values and the comparison of the average fitness values 

of individuals in the first generation. These graphs are presented to illustrate the implications of 

Greedy-assisted GA on fitness values, which impact the hit ratio. The fitness values for 100 first-

generation individuals using three distinct GA algorithms and a maximum cache size of 200K are 

shown in Fig. 3. In subfigure (a), the full-greedy assisted GA demonstrates a tight clustering of fitness 

values between 113 and 114, reflecting a more optimal population at initialization. This outcome is 

due to the entire population being influenced by the Greedy algorithm, which generates a more refined 

initial fitness distribution. In contrast, subfigure (b) illustrates that the half-greedy assisted GA 

produces a broader fitness range, from 50 to 117, because half of the population is initialized via 

Greedy, while the other half is randomly generated by the GA. Subfigure (c) highlights the pure GA's 

low fitness values, ranging between 9 and 20, as its initial population is entirely random, resulting in 

a less controlled and lower-quality starting point. 

 

Fig. 2. The proposed greedy assisted GA 

The hit percentage for several cities across a range of cache sizes is examined in Fig. 4. Both the 

pure GA and Greedy algorithms struggle to produce the best results across all graphs (a–d), showing 

low hit ratios from 3K to 90K cache sizes. The initial population created in the first generation, on the 

other hand, has a significant impact on the half-greedy and full-greedy assisted GAs' persistent 

superior performance. For instance, subfigure (a), representing city SV, shows that the half- greedy 

assisted GA consistently leads across all cache sizes, suggesting that the city's data offloading patterns 

benefit from higher variability in the initial population. In subfigure (b) for city NY, both greedy-

assisted GAs excel across the cache sizes, with the full-greedy assisted GA outperforming between 

3K and 15K, and the half-greedy taking the lead from 20K to 300K. 

Fig. 4 also highlights the limitations of exact optimization algorithms like Branch and Bound and 

Dynamic Programming, which underperform due to their inability to maintain sufficient variation in 

the data offloading process. In subfigures (c) and (d), representing cities UC and BO2, both the full- 

greedy and half-greedy assisted GAs maintain superior hit ratios across cache sizes, while the pure 

GA consistently delivers the lowest hit ratios. These findings emphasize the importance of population 

initialization in determining cache performance, with greedy-assisted GAs providing a significant 

advantage in generating a more robust starting population, which subsequently impacts the overall hit 

ratio performance. 

3.2. Discussion 

This study's actual findings demonstrate the effectiveness of the GA-Greedy method in solving 

the dynamic web caching knapsack issue. The relevance of incorporating a greedy heuristic into the 

GA framework is highlighted by GA-Greedy's consistent dominance over greedy algorithms and pure 

GA, particularly when cache sizes are smaller. This integration speeds convergence and improves 
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solution quality by strategically directing the search process and improving the produced progeny. 

The enhanced hit rates attained by the GA-Greedy result in a more efficient use of edge network 

resources. The GA-Greedy optimizes data offloading choices, alleviating the strain on backhaul lines 

and core network infrastructure, resulting in reduced latency and enhanced overall network 

performance. This improved efficiency is especially vital in edge computing settings where resources 

are often limited and user demands are elevated. Further confirming GA-Greedy's potential in 

practical applications, a comparison with earlier research shows that it performs better in terms of hit 

rate and convergence, especially in edge contexts with constraints. 

 

Fig. 3. Greedy-assisted implication on first generation 

The effectiveness of GA-Greedy in improving data offloading extends beyond web caching. The 

fundamental ideas of this methodology may be applied to several sectors necessitating effective data 

distribution techniques, including content delivery networks, Internet of Things (IoT) systems, and 

vehicle networks. In these situations, GA-Greedy's capacity to adjust to changing circumstances and 

optimize resource distribution may markedly improve system performance and user experience. 

Although the GA-Greedy exhibits encouraging outcomes, it is essential to recognize its limitations. 

The algorithm's efficacy may be affected by the dataset's particular attributes and the selection of 

parameters. Subsequent study may investigate the formulation of adaptive mechanisms to optimize 
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the GA-Greedy's behavior according to the issue setting. Moreover, exploring the incorporation of 

other optimization methods or machine learning models may augment the algorithm's efficacy. 

 

Fig. 4. Hit ratio comparation 

4. Conclusion 

In order to solve the problem of the dynamic web caching knapsack, this study introduces GA-

Greedy, a novel hybrid approach that integrates a greedy heuristic within a Genetic Algorithm (GA) 

framework to address the dynamic web caching knapsack problem. GA-Greedy consistently 

outperforms both pure GA and traditional greedy algorithms, achieving a hit ratio of approximately 

55% with a 3K cache size, compared to around 20% for the pure GA and 10% for the standalone 

greedy algorithm, based on empirical tests with the IRcache dataset. This demonstrates GA-Greedy’s 

ability to optimize data offloading in edge networks by reducing latency and backhaul strain, leading 

to faster data retrieval and improved user experience. However, the performance of GA-Greedy can 

vary with different datasets and parameter configurations, suggesting the need for adaptive 

mechanisms to adjust parameters dynamically. Future research should focus on integrating AI and 

machine learning techniques, such as reinforcement learning, to enhance GA-Greedy’s adaptability, 

and exploring its application in IoT, content delivery networks, and vehicular systems. Overall, GA-

Greedy proves to be a versatile and robust solution for optimizing data offloading in dynamic 

environments, making it a valuable tool for future edge computing applications. 
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