Syngas Generation Process Simulation: A Comparative Study

(1) Reyner P. P. de Oliveira Mail (Federal University of Technology, Brazil)
(2) Maria E. K. Fuziki Mail (State University of Maringá, Brazil)
(3) Priscila M. L. Z. Costa Mail (Federal University of Technology, Brazil)
(4) Angelo Marcelo Tusset Mail (Federal University of Technology-Paraná (UTFPR), Brazil)
(5) * Giane G. Lenzi Mail (Federal University of Technology, Brazil)
*corresponding author

Abstract


Methane reforming processes are of great importance for both the reduction of this greenhouse gas concentration in the atmosphere and for hydrogen production for energetic or chemical synthesis purposes. The use of Biogas in substitution for methane in reforming processes still provides a solution for the recovery of organic waste capable of producing Biogas. However, an in-depth analysis of the advantages of this substitution from the point of view of process yield is still lacking. Thus, the main contribution of the present research is the focus given to the comparison between methane and biogas as a reactant for the dry and steam reforming processes. In this work, a computational comparison of syngas production processes was performed, considering the system within the open-loop control. The software Aspen Hysys was used based on the minimization of Gibbs free energy in equilibrium. The parameters studied were: molar ratio of reagents (1-5), temperature (600-1000 °C), and pressure (1-5 bar). Dry methane reforming and steam methane reforming units were simulated, as well as both units using Biogas as a methane source. The plant was built in the simulator, and the results obtained indicated that high values in the molar ratio of CO2/CH4, CO2/Biogas, H2O/CH4, and H2O/Biogas, high temperatures, and low pressures favor the maximum conversion of methane. The use of Biogas in replacement of pure methane in the reform process proved to be advantageous for favoring the synthesis gas production reaction, besides adding value to a residue.

Keywords


Dry reforming of methane; Steam reforming of methane; Gibbs energy minimization; Biogas

   

DOI

https://doi.org/10.31763/ijrcs.v2i1.584
      

Article metrics

10.31763/ijrcs.v2i1.584 Abstract views : 1796 | PDF views : 570

   

Cite

   

Full Text

Download

References


[1] V. P. Oktyabrskiy, “A new opinion of the greenhouse effect,” St. Petersbg. Polytech. Univ. J. Phys. Math., vol. 2, no. 2, pp. 124–126, Jun. 2016, https://doi.org/10.1016/j.spjpm.2016.05.008.

[2] J. K. Dahl, J. Tamburini, A. W. Weimer, A. Lewandowski, R. Pitts, and C. Bingham, “Solar-Thermal Processing of Methane to Produce Hydrogen and Syngas,” Energy & Fuels, vol. 15, no. 5, pp. 1227–1232, Sep. 2001, https://doi.org/10.1021/ef0100606.

[3] T. Jiang, X. Ma, Q. Tang, J. Yang, G. Li, and F. Schuchardt, “Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting,” Bioresour. Technol., vol. 217, pp. 210–218, Oct. 2016, https://doi.org/10.1016/j.biortech.2016.01.089.

[4] Y. Luo, G. Li, W. Luo, F. Schuchardt, T. Jiang, and D. Xu, “Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4 emissions during composting,” J. Environ. Sci., vol. 25, no. 7, pp. 1338–1345, Jul. 2013, https://doi.org/10.1016/S1001-0742(12)60126-0.

[5] P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, Jan. 2017, https://doi.org/10.1016/j.rser.2016.09.044.

[6] X. Yang, J. Da, H. Yu, and H. Wang, “Characterization and performance evaluation of Ni-based catalysts with Ce promoter for methane and hydrocarbons steam reforming process,” Fuel, vol. 179, pp. 353–361, Sep. 2016, https://doi.org/10.1016/j.fuel.2016.03.104.

[7] G. G. Lenzi, E. K. Lenzi, C. V. B. Fávero, M. K. Lenzi, R. M. M. Jorge, O. A. A. dos Santos, and L. M. M. Jorge, “Simulation Studies of Steam Reforming of Methane using Ni-Al2O3 Catalysts,” Int. J. Chem. React. Eng., vol. 8, no. 1, Feb. 2010, https://doi.org/10.2202/1542-6580.2110.

[8] R. A. El‐Salamony, S. A. El‐Temtamy, A. M. A. El Naggar, S. A. Ghoneim, D. R. Abd El‐Hafiz, M. A. Ebiad, T. Gendy, and A. M. Al‐Sabagh, “Valuation of catalytic activity of nickel–zirconia‐based catalysts using lanthanum co‐support for dry reforming of methane,” Int. J. Energy Res., vol. 45, no. 3, pp. 3899–3912, Mar. 2021, https://doi.org/10.1002/er.6043.

[9] A. Azizzadeh Fard, A. Bazyari, S. M. Alavi, and A. R. Aghamiri, “The effects of cobalt and cerium promoters on hydrogen production performance of alumina‐supported nickel catalysts in propane steam reforming,” J. Chem. Technol. Biotechnol., vol. 95, no. 12, pp. 3241–3251, Dec. 2020, https://doi.org/10.1002/jctb.6503.

[10] J. N. Armor, “The multiple roles for catalysis in the production of H2,” Appl. Catal. A Gen., vol. 176, no. 2, pp. 159–176, Jan. 1999, https://doi.org/10.1016/S0926-860X(98)00244-0.

[11] T. Ohkubo, Y. Hideshima, and Y. Shudo, “Estimation of hydrogen output from a full-scale plant for production of hydrogen from biogas,” Int. J. Hydrogen Energy, vol. 35, no. 23, pp. 13021–13027, Dec. 2010, https://doi.org/10.1016/j.ijhydene.2010.04.063.

[12] O. A. Bereketidou and M. A. Goula, “Biogas reforming for syngas production over nickel supported on ceria–alumina catalysts,” Catal. Today, vol. 195, no. 1, pp. 93–100, Nov. 2012, https://doi.org/10.1016/j.cattod.2012.07.006.

[13] A. Baccioli, M. Antonelli, S. Frigo, U. Desideri, and G. Pasini, “Small scale bio-LNG plant: Comparison of different biogas upgrading techniques,” Appl. Energy, vol. 217, pp. 328–335, May 2018, https://doi.org/10.1016/j.apenergy.2018.02.149.

[14] T. Rehl and J. Müller, “CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways,” J. Environ. Manage., vol. 114, pp. 13–25, Jan. 2013, https://doi.org/10.1016/j.jenvman.2012.10.049.

[15] P. Weiland, “Biogas production: current state and perspectives,” Appl. Microbiol. Biotechnol., vol. 85, no. 4, pp. 849–860, Jan. 2010, https://doi.org/10.1007/s00253-009-2246-7.

[16] W. Yin, N. Guilhaume, and Y. Schuurman, “Model biogas reforming over Ni-Rh/MgAl2O4 catalyst. Effect of gas impurities,” Chem. Eng. J., vol. 398, p. 125534, Oct. 2020, https://doi.org/10.1016/j.cej.2020.125534.

[17] M. P. Kohn, J. Lee, M. L. Basinger, and M. J. Castaldi, “Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition,” Ind. Eng. Chem. Res., vol. 50, no. 6, pp. 3570–3579, Mar. 2011, https://doi.org/10.1021/ie101937s.

[18] L. E. Øi and J. Hovland, “Simulation of Condensation in Compressed Raw Biogas Using Aspen HYSYS,” Nov. 2018, pp. 31–36, https://doi.org/10.3384/ecp1815331.

[19] G. Ye, D. Xie, W. Qiao, J. R. Grace, and C. J. Lim, “Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus,” Int. J. Hydrogen Energy, vol. 34, no. 11, pp. 4755–4762, Jun. 2009, https://doi.org/10.1016/j.ijhydene.2009.03.047.

[20] D. Chaconas, P. Pichardo, I. V. Manousiouthakis, and V. I. Manousiouthakis, “Equilibrium analysis of CH4, CO, CO2, H2O, H2, C mixtures in C–H–O atom space using Gibbs free energy global minimization,” AIChE Annu. Meet. Conf. Proc., vol. 2020-Novem, no. September, 2020, https://doi.org/10.1002/aic.17052.

[21] Y. Haseli, “Criteria for chemical equilibrium with application to methane steam reforming,” Int. J. Hydrogen Energy, vol. 44, no. 12, pp. 5766–5772, 2019, https://doi.org/10.1016/j.ijhydene.2019.01.130.

[22] H. Nourbakhsh, J. Rahbar Shahrouzi, H. Ebrahimi, and A. Zamaniyan, “Experimental study of ultra-rich thermal partial oxidation of methane using a reticulated porous structure,” Int. J. Hydrogen Energy, vol. 45, no. 22, pp. 12298–12307, 2020, https://doi.org/10.1016/j.ijhydene.2020.02.182.

[23] H. Nourbakhsh, J. Rahbar Shahrouzi, A. Zamaniyan, H. Ebrahimi, and M. R. Jafari Nasr, “A thermodynamic analysis of biogas partial oxidation to synthesis gas with emphasis on soot formation,” Int. J. Hydrogen Energy, vol. 43, no. 33, pp. 15703–15719, 2018, https://doi.org/10.1016/j.ijhydene.2018.06.134.

[24] A. Vita, C. Italiano, D. Previtali, C. Fabiano, A. Palella, F. Freni, G. Bozzano, L. Pino, and F. Manenti, “Methanol synthesis from biogas: A thermodynamic analysis,” Renew. Energy, vol. 118, pp. 673–684, 2018, https://doi.org/10.1016/j.renene.2017.11.029.

[25] W. Fuqiang, J. Lin, C. Ziming, L. Huaxu, and T. Jianyu, “Combination of thermodynamic analysis and regression analysis for steam and dry methane reforming,” Int. J. Hydrogen Energy, pp. 15795–15810, 2019, https://doi.org/10.1016/j.ijhydene.2018.05.177.

[26] P. A. Pichardo and V. I. Manousiouthakis, “Intensified energetically enhanced steam methane reforming through the use of membrane reactors,” AIChE J., vol. 66, no. 2, 2020, https://doi.org/10.1002/aic.16827.

[27] V. R. Bach, A. C. de Camargo, T. L. de Souza, L. Cardozo-Filho, and H. J. Alves, “Dry reforming of methane over Ni/MgO–Al2O3 catalysts: Thermodynamic equilibrium analysis and experimental application,” Int. J. Hydrogen Energy, vol. 45, no. 8, pp. 5252–5263, 2020, https://doi.org/10.1016/j.ijhydene.2019.07.200.

[28] M. D. Özcan, O. Özcan, and A. N. Akın, “Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM,” Environ. Technol. (United Kingdom), vol. 41, no. 1, pp. 14–28, 2020, https://doi.org/10.1080/09593330.2019.1639828.

[29] D. Pashchenko, “First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming,” Energy, vol. 143, pp. 478–487, 2018, https://doi.org/10.1016/j.energy.2017.11.012.

[30] D. Pashchenko, “Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study,” Energy, vol. 185, pp. 573–584, 2019, https://doi.org/10.1016/j.energy.2019.07.065.

[31] M. K. P. Mustafa Kamal Pasha, I. A. Iftikhar Ahmad, J. M. Jawad Mustafa, and M. K. Manabu Kano, “Modeling of a Nickel-based Fluidized Bed Membrane Reactor for Steam Methane Reforming Process,” J. Chem. Soc. pakistan, vol. 41, no. 2, pp. 219–219, 2019, https://doi.org/10.52568/000729/JCSP/41.02.2019.

[32] C. Jensen and M. S. Duyar, “Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas,” Energy Technol., vol. 9, no. 7, pp. 1–12, 2021, https://doi.org/10.1002/ente.202100106.

[33] L. Yu, M. Song, P. T. Williams, and Y. Wei, “Optimized Reforming of Biomass Derived Gas Based on Thermodynamic and Kinetics Analysis with Activated Carbon Fibers Supported Ni-Al2O3,” Bioenergy Res., vol. 13, no. 2, pp. 581–590, 2020, https://doi.org/10.1007/s12155-019-10087-6.

[34] M. Parente, M. A. Soria, and L. M. Madeira, “Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study,” Renew. Energy, vol. 157, pp. 1254–1264, 2020, https://doi.org/10.1016/j.renene.2020.05.023.

[35] X. Chen, J. Jiang, K. Li, S. Tian, and F. Yan, “Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2,” Appl. Energy, vol. 185, pp. 687–697, 2017, https://doi.org/10.1016/j.apenergy.2016.10.114.

[36] N. Chatrattanawet, D. Saebea, S. Authayanun, A. Arpornwichanop, and Y. Patcharavorachot, “Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches,” Energy, vol. 146, pp. 131–140, 2018, https://doi.org/10.1016/j.energy.2017.06.125.

[37] Z. Xu and S. I. Sandler, “Temperature-dependent parameters and the Peng-Robinson equation of state,” Ind. Eng. Chem. Res., vol. 26, no. 3, pp. 601–606, Mar. 1987, https://doi.org/10.1021/ie00063a030.

[38] J. Solsvik, T. Haug-Warberg, and H. A. Jakobsen, “Implementation of chemical reaction equilibrium by Gibbs and Helmholtz energies in tubular reactor models: Application to the steam–methane reforming process,” Chem. Eng. Sci., vol. 140, pp. 261–278, Feb. 2016, https://doi.org/10.1016/j.ces.2015.10.011.

[39] G. Gonçalves, F. Q. Martinelli, C. M. M. Costa, L. M. de M. Jorge, and O. A. A. dos Santos, “Catalisadores sol-gel de Ni-SiO2 e Ni-Al2O3 aplicados na reforma de metano com CO2,” Acta Sci. Technol., vol. 27, no. 1, 2005, https://doi.org/10.4025/actascitechnol.v27i1.1492.

[40] C. S. Lau, A. Tsolakis, and M. L. Wyszynski, “Biogas upgrade to syn-gas (H2–CO) via dry and oxidative reforming,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 397–404, Jan. 2011, https://doi.org/10.1016/j.ijhydene.2010.09.086.

[41] Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, and S. Kawi, “Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts,” Chem. Eng. J., vol. 278, pp. 62–78, Oct. 2015, https://doi.org/10.1016/j.cej.2014.11.143.

[42] D. Pashchenko, “Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation,” Int. J. Hydrogen Energy, vol. 42, no. 22, pp. 14926–14935, Jun. 2017, https://doi.org/10.1016/j.ijhydene.2017.04.284.

[43] L. Fan, L. van Biert, A. Thallam Thattai, A. H. M. Verkooijen, and P. V. Aravind, “Study of Methane Steam Reforming kinetics in operating Solid Oxide Fuel Cells: Influence of current density,” Int. J. Hydrogen Energy, vol. 40, no. 15, pp. 5150–5159, Apr. 2015, https://doi.org/10.1016/j.ijhydene.2015.02.096.

[44] Q. Yuan, R. Gu, J. Ding, and J. Lu, “Heat transfer and energy storage performance of steam methane reforming in a tubular reactor,” Appl. Therm. Eng., vol. 125, pp. 633–643, Oct. 2017, https://doi.org/10.1016/j.applthermaleng.2017.06.044.

[45] T. W. Kim, J. C. Park, T.-H. Lim, H. Jung, D. H. Chun, H. T. Lee, S. Hong, and J.-I. Yang, “The kinetics of steam methane reforming over a Ni/γ-Al2O3 catalyst for the development of small stationary reformers,” Int. J. Hydrogen Energy, vol. 40, no. 13, pp. 4512–4518, Apr. 2015, https://doi.org/10.1016/j.ijhydene.2015.02.014.

[46] C. Ji, L. Gong, J. Zhang, and K. Shi, “A study on the Kinetics of the Catalytic Reforming Reaction of CH4 with CO2: Determination of the Reaction Order,” J. Nat. Gas Chem., vol. 12, no. 3, pp. 201–204, 2003, https://doi.org/10.1023/A:1024904520561.

[47] S. Das, J. Ashok, Z. Bian, N. Dewangan, M. H. Wai, Y. Du, A. Borgna, K. Hidajat, and S. Kawi, “Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights,” Appl. Catal. B Environ., vol. 230, pp. 220–236, Aug. 2018, https://doi.org/10.1016/j.apcatb.2018.02.041.

[48] D. Han, Y. Kim, W. Cho, and Y. Baek, “Effect of Oxidants on Syngas Synthesis from Biogas over 3 wt % Ni-Ce-MgO-ZrO2/Al2O3 Catalyst,” Energies, vol. 13, no. 2, p. 297, Jan. 2020, https://doi.org/10.3390/en13020297.

[49] J. Gao, Z. Hou, H. Lou, and X. Zheng, “Dry (CO2) Reforming,” in Fuel Cells: Technologies for Fuel Processing, pp. 191-221, 2011, https://doi.org/10.1016/B978-0-444-53563-4.10007-0.

[50] K. Chouhan, S. Sinha, S. Kumar, and S. Kumar, “Simulation of steam reforming of biogas in an industrial reformer for hydrogen production,” Int. J. Hydrogen Energy, vol. 46, no. 53, pp. 26809–26824, Aug. 2021, https://doi.org/10.1016/j.ijhydene.2021.05.152.

[51] Y. Cui, H. Zhang, H. Xu, and W. Li, “Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst: The effect of temperature on the reforming mechanism,” Appl. Catal. A Gen., vol. 318, pp. 79–88, Feb. 2007, https://doi.org/10.1016/j.apcata.2006.10.044.

[52] L. Dehimi, Y. Benguerba, M. Virginie, and H. Hijazi, “Microkinetic modelling of methane dry reforming over Ni/Al2O3 catalyst,” Int. J. Hydrogen Energy, vol. 42, no. 30, pp. 18930–18940, Jul. 2017, https://doi.org/10.1016/j.ijhydene.2017.05.231.

[53] B. V. Ayodele and C. K. Cheng, “Process Modelling, Thermodynamic Analysis and Optimization of Dry Reforming, Partial Oxidation and Auto-Thermal Methane Reforming for Hydrogen and Syngas production,” Chem. Prod. Process Model., vol. 10, no. 4, pp. 211–220, Dec. 2015, https://doi.org/10.1515/cppm-2015-0027.

[54] M. K. Nikoo and N. A. S. Amin, “Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation,” Fuel Process. Technol., vol. 92, no. 3, pp. 678–691, Mar. 2011, https://doi.org/10.1016/j.fuproc.2010.11.027.

[55] R. Y. Chein, Y. C. Chen, C. T. Yu, and J. N. Chung, “Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures,” J. Nat. Gas Sci. Eng., vol. 26, pp. 617–629, Sep. 2015, https://doi.org/10.1016/j.jngse.2015.07.001.

[56] E. M. A. Mokheimer, M. Ibrar Hussain, S. Ahmed, M. A. Habib, and A. A. Al-Qutub, “On the Modeling of Steam Methane Reforming,” J. Energy Resour. Technol., vol. 137, no. 1, Jan. 2015, https://doi.org/10.1115/1.4027962.

[57] W.-J. Jang, D.-W. Jeong, J.-O. Shim, H.-M. Kim, H.-S. Roh, I. H. Son, and S. J. Lee, “Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application,” Appl. Energy, vol. 173, pp. 80–91, Jul. 2016, https://doi.org/10.1016/j.apenergy.2016.04.006.

[58] N. H. Elsayed, D. Maiti, B. Joseph, and J. N. Kuhn, “Precious Metal Doped Ni–Mg/Ceria–Zirconia Catalysts for Methane Conversion to Syngas by Low Temperature Bi-reforming,” Catal. Letters, vol. 148, no. 3, pp. 1003–1013, Mar. 2018, https://doi.org/10.1007/s10562-018-2310-y.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Reyner P. P. Oliveira, Maria E. K. Fuziki, Priscila M. L. Z. Costa, Angelo Marcelo Tusset, Giane G. Lenzi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia