Microcontroller Implementation, Chaos Control, Synchronization and Antisynchronization of Josephson Junction Model

(1) * Rolande Tsapla Fotsa Mail (Department of Mechanical Engineering, College of Technology, University of Buea, P. O. Box: 63 Buea, Cameroon, Cameroon)
(2) André Rodrigue Tchamda Mail (University of Dschang, Cameroon)
(3) Alex Stephane Kemnang Tsafack Mail (University of Dschang, Cameroon)
(4) Sifeu Takougang Kingni Mail (University of Maroua, Cameroon)
*corresponding author

Abstract


The microcontroller implementation, chaos control, synchronization, and antisynchronization of the nonlinear resistive-capacitive-inductive shunted Josephson junction (NRCISJJ) model are reported in this paper. The dynamical behavior of the NRCISJJ model is performed using phase portraits, and time series. The numerical simulation results reveal that the NRCISJJ model exhibits different shapes of hidden chaotic attractors by varying the parameters. The existence of different shapes of hidden chaotic attractors is confirmed by microcontroller results obtained from the microcontroller implementation of the NRCISJJ model. It is theoretically demonstrated that the two designed single controllers can suppress the hidden chaotic attractors found in the NRCISJJ model. Finally, the synchronization and antisynchronization of unidirectional coupled NRCISJJ models are studied by using the feedback control method.  Thanks to the Routh Hurwitz stability criterion, the controllers are designed in order to control chaos in JJ models and achieved synchronization and antisynchronization between coupled NRCISJJ models. Numerical simulations are shown to clarify and confirm the control, synchronization, and antisynchronization.

Keywords


Josephson Junction; Hidden Chaotic Attractor; Microcontroller Implementation; Chaos control; Synchronization; Antisynchronization

   

DOI

https://doi.org/10.31763/ijrcs.v1i2.354
      

Article metrics

10.31763/ijrcs.v1i2.354 Abstract views : 1872 | PDF views : 167

   

Cite

   

Full Text

Download

References


[1] B. Soodchomshom, I. M. Tang, and R. Hoonsawat,” Josephson effects in MgB2/ThinInsulator/MgB2 tunnel junction,” Solid State Communications, vol. 149, no. 25-26 pp. 1012-1016, July 2009. https://doi.org/10.1016/j.ssc.2009.04.007

[2] B. D Josephson, “Non-linear conduction in superconductors,” Doctoral Thesis, 1964. https://doi.org/10.17863/CAM.644

[3] J. Clarke, “A superconducting galvanometer employing Josephson tunnelling,” Philosophical Magazine, vol. 13, pp. 115-127, August 2006. https://doi.org/10.1080/14786436608211991

[4] M. Suzuki, M. Hayashi, H. Ebisawa, “Nonlinear dynamics and resistive transition in intrinsic Josephson junctions.,” J. Phys. Chem. Solid, vol. 69, pp. 3253-3256, December 2008. https://doi.org/10.1016/j.jpcs.2008.06.135

[5] G. V. Osipov, A. S. Pikovsky, and J. Kurths, “Phase Synchronization of Chaotic Rotators,” Phys. Rev. Lett, vol. 88, pp. 054102, January 2002. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.054102

[6] V. K. Kornev and A. V. Arzumanov, “Josephson-junction oscillation spectral linewidth for some phase-locked multijunction systems,” J. Phys, vol. 8, pp. 279-282, June 1998. https://doi.org/10.1051/jp4:1998362

[7] A. Kanasugi, M. Morisue, H. Noguchi, M. Yamadaya, and H. Furukawa, “Oscillation modes in a josephson circuit and its application to digital systems,” IEICE Transactions on Electronics, vol. E79-C, pp. 1206-1212, September 1996. https://search.ieice.org/bin/summary.php?id=e79-c_9_1206

[8] E. N. Pozzo, D. Dominguez, “Fidelity and Quantum Chaos in the MesoscopicDevice for the Josephson Flux Qubit,” Phys Rev. Lett, vol. 98, pp. 057006, February 2007. https://doi.org/10.1103/PhysRevLett.98.057006

[9] K. Inomata, S. Sato, K. Nakajima, A. Tanaka, H.B. Wang, M. Nagao, H. Hatano, S. Kawabata, “Macroscopic Quantum Tunneling in a d-Wave High-TC Bi2Sr2CaCu2O8+δ Superconductor,” Phys. Rev. Lett, vol. 95, pp. 107005, September 2005. https://doi.org/10.1103/PhysRevLett.95.107005

[10] M. Machida, T. Kano, S. Yamada, M. Okumora, T. Imamura, T. Koyama, “Quantum effects on capacitively coupled intrinsic Josephson junctions” J. Phys. Chem. Solids, vol. 69, pp. 3221-3224, December 2008. https://doi.org/10.1016/j.jpcs.2008.06.098

[11] Y. L. Feng and K. Shen, “Controlling Chaos in RLC Shunted Josephson Junction by delayed Linear Feedback,” Chinese Physics B, vol. 17, pp. 111-116, 2008. https://doi.org/10.1088/1674-1056/17/1/020

[12] S. P. Benz and C. A. Hamilton, “A pulse-driven programmable Josephson voltage standard,” Applied physics letters, vol. 68, pp. 3171-3179, March 1996. https://doi.org/10.1063/1.115814

[13] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Transactions on Applied Superconductivity, vol. 1, pp. 3-28, March 1991. https://DOI: 10.1109/77.80745

[14] F. Piazza, L. A. Collins, A. Smerzi, “Current-phase relation of a Bose-Einstein condensate flowing through a weak link,” Phy. Rev. A, vol. 81, pp. 033613, April 2010. https://doi.org/10.1103/PhysRevA.81.033613

[15] W. C. Stewart, “Current-Voltage characteristics of Josepfson Junctions,” Appl. Phys. Lett, vol. 12, no. 277, 1968. https://doi.org/10.1063/1.1651991

[16] S. T. Kingni, G. FautsoKuiate, V. Kamdoum Tamba, V.-T. Pham, & D. V. Hoang, “Self-excited and hidden attractors in autonomous Josephson jerk oscillator: Analysis and its application to text encryption,” Journal of Computational and Nonlinear Dynamics, 2019. http://yetl.yabesh.ir/yetl1/handle/yetl/4259159

[17] F. C. Talla, R. Tchitnga, P. H. L. Fotso, R. Kengne, B. Nana, & A. Fomethe, “Unexpected Behaviors in a Single Mesh Josephson Junction Based Self-Reproducing Autonomous System,” International Journal of Bifurcation and Chaos, vol. 30, no. 07, 2050097, 2020. https://doi.org/10.1142/s0218127420500972

[18] S. T. Kingni, G. F. Kuiate, R. Kengne, R. Tchitnga and Paul Woafo, “Analysis of a no equilibrium linear resistive-capacitive-inductance shunted junction model, dynamics, synchronization and application to Digital cryptography in its fractional-order form,” Complexity, vol. 2017, Article ID 4107358, 2017. https://doi.org/10.1155/2017/4107358

[19] F. Salam and S. Sastry, “Dynamics of the forced Josephson junction circuit: the regions of chaos,” IEEE Transactions on Circuits and Systems, vol. 32, no. 8, pp. 784-796, August 1985. https://doi.org/10.1109/TCS.1985.1085790

[20] C. B. Whan, C. J. Lobb, and M. G. Forrester, “Effect of inductance in externally shunted Josephson tunnel junctions,” Journal of Applied Physics, vol. 77, pp. 382, September 1994. https://doi.org/10.1063/1.359334

[21] A. B. cawthorne, C. B. Whan, and C. J. lobb, “complex dynamics of resistively and inductively shunted josephson junctions,” Journal of Applied Physics, vol. 84, pp. 1126-1132, April 1998. https://doi.org/10.1063/1.368113

[22] B. Ramakrishnan, A. Durdu, K. Rajagopal, & A. Akgul, “Infinite attractors in a chaotic circuit with exponential memristor and Josephson junction resonator,” AEU - International Journal of Electronics and Communications, vol. 123, 153319, 2020. https://doi.org/10.1016/j.aeue.2020.153319

[23] S. Vaidyanathan, S. Takougang Kingni, A. Sambas, M. Afendee Mohamed, M. Mamat, “A new chaotic jerk system with three nonlinearities and synchronization via adaptive backstepping control,” International Journal of Engineering and Technology, vol. 7, no. 3, pp. 1936-1943, 2018. https://doi.org/10.14419/ijet.v7i3.15378

[24] S. T. Kingni, K. Rajagopal, V. K. Tamba, C. Ainamon, & J. B. C. Orou, “Analysis and FPGA implementation of an autonomous Josephson junction snap oscillator,” The European Physical Journal B, vol. 92, Article number 227, 2019. https://doi.org/10.1140/epjb/e2019-100304-x

[25] U. E. Vincent, A. Ucar, J. Alaoye, S. O. Kareem, “control and synchronization of chaos in rcl-shunted josephson junction using backstepping design,” Physica C: Superconductivity, vol. 468, no. 5, pp. 374-382, 2008. https://doi.org/10.1016/j.physc.2007.11.012

[26] A. M. Harb, and B. A. Harb, “Controlling chaos in Josephson-junction using nonlinear backstepping controller,” IEEE transactions on applied superconductivity, vol. 16, no. 4, pp. 1988-1998, 2006. https://doi.org/10.1109/TASC.2006.881811

[27] A. N. Njah, K. S. Ojo, G. A. Adebayo, A. O. Obawole, “Generalized control and synchronization of chaos in RCL-shunted josephson junction using backstepping design,” Physica C: Superconductivity, vol. 470, pp. 558–564, 2010. https://doi.org/10.1016/j.physc.2010.05.009

[28] D. Y. Chen, W. L. Zhao, X. Y. Ma and R. F. Zhang, “control and synchronization of chaos in rcl-shunted josephson junction with noise disturbance using only one controller term,” Abstract and Applied Analysis, vol. 2012, article ID 378457, 2012. https://doi.org/10.1155/2012/378457

[29] Y. L. Feng, X. H. Zhang, Z. G. Jian and K. Shen, “Controlling chaos in rcl-shunted Josephson junction by delayed linear feedback,” International Journal of Modern Physics B, vol. 23, no. 18, pp. 3803-3809, 2009. https://doi.org/10.1142/S0217979209052698

[30] N. N. Wang, H. Zhao, X. R. Wang and H. T. Liang, “The chaotic control with only one controller term of josephson junction system,” Advanced Materials Research, vol. 462, pp. 866-872, 2012. https://doi.org/10.4028/www.scientific.net/AMR.462.866


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Rolande Tsapla Fotsa

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org cc to alfian.maarif@te.uad.ac.id
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia