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1. Introduction  

In recent years, with the increase in budget for bridge construction and the strengthening of 

supervision of the safety of old bridges by the government, the issue of bridge crack detection has 

become a hot topic. Currently, the detection of bridge cracks mainly relies on bridge inspection 

vehicles, which use folding or telescopic arms attached to the vehicle or a hybrid aerial ladder to move 

a platform carrying inspection personnel under the bridge for crack detection while driving along the 

edge of the bridge. However, this method wastes manpower, materials, and financial resources, and 

there are significant limitations on the viewing angle of the inspection personnel, and the detection 

results depend on their level of expertise, making it difficult to carry out large-scale inspections. 

Therefore, visual-based bridge inspection projects have emerged, using cameras mounted on drones 

to capture relevant bridge images and utilizing bridge crack target detection algorithms to detect cracks 

on bridges. 

In the past two decades, traditional visual-based methods for detecting bridge cracks have mainly 

used graphical analysis [1], pattern recognition [2], edge detectors [3], [4], line detectors [5], [6], and 

threshold segmentation [7]. These methods can achieve good detection accuracy for continuous cracks 

with high contrast, demonstrating the feasibility of automated detection based on vision. However, 

during the actual process of collecting bridge crack images, factors such as collection equipment, 

shooting angle, external lighting, and vibration often affect the model's ability to achieve good 
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detection results. In response to this situation, simple detection algorithms based on traditional image 

processing can no longer meet the growing production demands in terms of robustness. 

With the development of the machine learning field, it has become possible to detect bridge 

cracks based on vision in complex environments. Henrique et al. [8] proposed a machine learning-

based method that detects crack blocks by statistical processing of the mean and standard deviation of 

the gray values within image blocks. Edrardo Zalama et al. [9] proposed an instrumented vehicle for 

detecting cracks based on an imaging system, two inertial profilers, differential global positioning 

systems, and network cameras. They designed a method based on Gabor filters to identify horizontal 

and vertical cracks, improved single classifier results using the Adaboost algorithm [10], validated the 

feasibility of the solution and method with a large database, and obtained good results through rigorous 

testing. Prateek Prasanna et al. [11] proposed a new automatic crack detection algorithm called 

STRUM (Spatially Tuned Robust Multi-Feature), which was tested on real bridge data using an 

advanced robot bridge scanning system. This algorithm mainly avoids manually adjusting threshold 

parameters through machine learning classification algorithms. It fits potential cracks in space and 

calculates visual features in that area, and the entire algorithm is built using reasonable crack 

information representation and a classifier trained multiple times. Through scientific experiments, the 

improved algorithm achieved the highest accuracy of up to 95%. Cord and Chambon [12] described 

the texture features of cracks in images using a model designed with the AdaBoost algorithm. Shi et 

al. [13] proposed a model based on random forests to extract image features and detect cracks in the 

CrackForest road crack dataset. These traditional object detection methods based on expert features 

have deviations in robustness in practical applications due to their dependence on expert features. 

With the development of deep learning, CNN (Convolutional Neural Networks) based on deep 

learning has gradually become a hot research direction in object detection. Region-based methods 

such as R-CNN [14], Fast R-CNN [15], and Faster R-CNN [16] achieve high detection accuracy but 

have slow detection speeds, which cannot meet practical needs. Regression-based algorithms such as 

YOLO [17] and SSD [18] have good performance in both detection accuracy and speed and have 

become popular model architectures in the field of object detection. 

Convolutional neural network algorithms based on deep learning can also be applied to bridge 

crack detection problems. Zhang et al. [19] used a convolutional neural network to achieve single-

pixel classification, which can predict whether a single pixel belongs to a crack. However, this method 

did not utilize the semantic information of crack targets very well and required manually designed 

feature extractors for image preprocessing, which lacks universality. Zou et al. [20] proposed 

DeepCrack, which is the first detector to use multiscale convolutional features to detect cracks, 

opening up a new path for pixel-level crack detection in bridges based on deep learning. Wang et al. 

[21] used HDCBs to learn spatial features by adding them to the neural network, enlarging the 

receptive field of the convolutional kernel, avoiding the loss of a large amount of semantic information 

due to the grid effect, and maintaining the continuity of pixel-level cracks. Shuai Teng et al. [22] tested 

different object detection algorithms for the detection of bridge surface defects by introducing 

Gaussian white noise. Through experiments, it was found that using transfer learning and data 

augmentation methods to improve the YOLO V3 [23] network can effectively improve the bridge 

defect detection capability but does not address the most important bridge crack recognition problem. 

Jinsong Zhu et al. [24] improved the VGG-16 network classifier and collected real bridge surface 

defect images labeled into seven categories. Through comparison with multiple detection and 

classification algorithms, it was found that the improved algorithm is superior to other algorithms, 

providing a feasible solution for bridge surface defect detection and classification. Philipp Hüthwohl 

et al. [25] collected defect data from many different bridges to create a relevant classification dataset 

and proposed a three-level concrete defect classifier for bridge defect detection, achieving a detection 

accuracy of 85% through experiments. Sizeng Zhao et al. [26] combined the YOLO V5 algorithm 

with 3D photogrammetric reconstruction methods to propose a defect detection method for concrete 

dams. An improved algorithm was proposed for the problems of complex backgrounds and blurred 

boundaries, which improved accuracy by 3.8% compared to the original algorithm, especially for 

small object detection. Gang Li et al. [27] used a fully convolutional network to extract bridge crack 
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features and then used a naive Bayes data fusion model to segment the cracks. Compared with 

traditional visual feature detection methods, there was a significant improvement in accuracy and 

detection time. 

However, none of the above-mentioned studies have explored the issue of high-precision 

localization in bridge crack detection. Insufficient high-precision localization ability can lead to 

successful recognition of the target, but the label box cannot fully enclose the target, which affects the 

subsequent risk assessment of bridge cracks. Therefore, this paper will conduct relevant research on 

the high-precision localization of bridge cracks. 

2. Related Work 

The attention mechanism is a method of allocating limited computing resources to important 

local information. This method is consistent with the cognitive rules of the human brain and eyes and 

is a bionic neural network-assisted algorithm. In recent years, it has been widely used in the field of 

computer vision and has been proven to be beneficial in improving model performance. The essence 

of the attention mechanism is to locate the information that is of interest and beneficial to the 

recognition results, suppress irrelevant information, and output the results in the form of a probability 

map or probability feature vector. 

2.1. Channel Attention Mechanism 

If we divide them by dimension, convolutional neural networks in the field of image processing 

are two-dimensional. One dimension contains information about the spatial scale of the image, namely 

its width and height. The other dimension contains information about the image's channels. There are 

two commonly used channel attention mechanisms: SENet (Squeeze and Excitation Net) [28] and 

ECA modules (Efficient Channel Attention) [29]. 

SENet is a channel-based attention mechanism model that models the importance of each feature 

channel in an image and enhances or suppresses different channel information for different recognition 

tasks. The principle diagram of the SENet module is shown in Fig. 1. 

 

Fig. 1. SENet Module 

In Fig. 1, H and W represent the height and width of the feature map in the spatial dimension, 

while 𝐶 represents the number of channels in the feature map. 

First, the feature map is compressed along the spatial dimensions using a Squeeze operation 

𝐹𝑠𝑞(⋅), similar to global average pooling. After this operation, the number of feature channels remains 

the same. For each feature map channel, a weight value 𝜔 is generated using a function 𝐹𝑒𝑥(⋅, 𝜔), and 

then the weights are normalized and multiplied with the original feature map channel-wise using a 

function 𝐹𝑠𝑐𝑎𝑙𝑒(⋅,⋅) to complete the channel attention operation. The feature weights are learned using 

a fully connected network based on the result of the loss function, avoiding feature weight obtained 

solely based on the numerical values of feature channels. This ensures that the weights of effective 

feature channels are larger, resulting in higher learning efficiency. 

However, the dimensionality reduction used in SENet can affect the predictive performance of 

channel attention and result in low efficiency in capturing channel dependencies in images. Therefore, 

the ECA module was developed to reduce the dimensionality reduction and improve cross-channel 
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interaction capabilities, leading to improved model performance. The principle diagram of the ECA 

module is shown in Fig. 2. 

 

Fig. 2. ECA Module 

First, the input feature map is compressed in spatial dimension by using global average pooling. 

Then, the inter-channel dependencies of the compressed feature map are learned by applying a 1×1 

convolution. Next, the learned channel attention information, which contains the weight information, 

is multiplied by the input feature map channel-wise. 

SENet uses fully connected layers (FC) to globally learn the input channel features, while the 

ECA module uses a 1×1 convolution to locally learn the channel correlation information. By using a 

dynamic convolutional kernel size, the ECA module can learn the correlation between different 

channels. When the number of channels is large, a larger kernel size is used to perform 1×1 

convolution to achieve cross-channel interaction with more channel information. When the number 

of channels is small, a smaller kernel size is used to perform 1×1 convolution to achieve cross-channel 

interaction with less channel information. 

The adaptive function of a dynamic convolution kernel is  

 
𝑘 = 𝜓(𝐶) = |

𝑙𝑜𝑔2(𝐶)

𝛾
+
𝑏

𝛾
|
𝑜𝑑𝑑

 (1) 

where 𝑘 is the convolution kernel size, 𝐶 is the number of channels, which  | |𝑜𝑑𝑑 means an odd 

number for the result, 𝛾 and 𝑏 generally set to 2 and 1, which is used to change the ratio between the 

number of channels 𝐶 and the convolution kernel size 𝑘. 

2.2. Mixed Attention Mechanism 

CBAM (Convolutional Block Attention Module) [30] is one of the representative methods in the 

hybrid attention mechanism, which combines channel attention and spatial attention mechanisms. The 

structure diagram of the CBAM module is shown in Fig. 3. 

Convolutional Block Attention Module

Channel 

Attention 

Module

Spatial 

Attention 

Module

 

Fig. 3. CBAM Module 

CBAM is an improvement based on the SENet method, which models the importance of channel 

features using channel attention and the degree of attention to spatial positions using spatial attention. 

CBAM learns the channel and spatial features of the feature map separately, which allows it to 

improve model performance in most cases and also has a wider range of applications. 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

263 
Vol. 3, No. 2, 2023, pp. 259-269 

  

 

Geng Chuang (Bridge Crack Detection Based on Attention Mechanism) 

 

The channel attention in CBAM is similar to SENet, and its block diagram is shown in Fig. 4. 

Shared MLP

AvgPool

MaxPool

Channel Attention Module

 

Fig. 4. Channel attention in CBAM 

In Fig. 4, both max pooling and average pooling algorithms are used to compress the input feature 

map dimension and then passed through several Shared MLP (Multilayer Perceptron) layers. The 

Shared MLP layers use a 1×1 convolution to extract channel feature information. Finally, the attention 

weights of channel features are obtained through a sigmoid activation function after fusing on two 

channels. The obtained attention weights of channel features are then fused with the original feature 

map and sent as input to the spatial attention module. 

The principle underlying the spatial attention mechanism is that different regions of an image 

contribute differently to the recognition task, and improving the model's performance only requires 

focusing on the regions that have a higher contribution to the task, which can enhance the model's 

performance and reduce computation. Essentially, the spatial attention mechanism locates the target 

and performs some transformations to obtain corresponding weights during the learning process. In 

the mixed-domain attention mechanism, the spatial attention mechanism is shown in Fig. 5. 

Spatial Attention Module

[MaxPool, AvgPool]

 

Fig. 5. Spatial attention in CBAM 

As shown in Fig. 5, the spatial attention mechanism in CBAM first reduces the dimensionality 

of the channels by applying both max-pooling and average-pooling operations. Then, the results are 

concatenated into a feature map, which is further processed by a convolutional layer to learn spatial 

features. Finally, a sigmoid activation function is applied to obtain the attention weights for the spatial 

features. 

In order to improve the performance of the CBAM module for bridge crack recognition tasks and 

enhance the learning efficiency of the module for features, this paper added three convolutional layers 

on top of the CBAM module. The enhanced CBAM module with the additional three convolutional 

layers is referred to as CBAMC3, which has the advantages of high lightweight, strong applicability, 

and strong performance improvement. 

2.3. Fusion with YOLO V5 

YOLO V5 algorithm is a one-stage object detection algorithm based on regression. In the data 

preprocessing process, the same mosaic image online enhancement method as YOLO V4 algorithm 

is used to expand the number of small targets in a single batch, which improves the network's ability 

to recognize small target objects and increases the data information of a single batch. In the backbone 

network, FPN feature pyramid structure is used to extract and fuse feature information from the bottom 

up. In the neck structure, the PAN (Path Aggregation Network) network structure is used to fuse the 
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top-down PAN, shortening the path between the bottom-level features and the prediction layer. The 

CSP (Cross Stage Partial Network) layer is used instead of the residual structure connection layer, 

which enhances the model's learning ability, lightweight the model, maintains the model's accuracy 

performance and reduces the computational bottleneck. 

YOLO V5 algorithm improves the problem of class imbalance that existed in previous YOLO 

algorithms. In previous YOLO algorithms, positive samples were defined based on the IOU value 

between the anchor box and the true target box. When the IOU value was greater than the threshold, 

the anchor box was set as a positive sample. However, due to the one-to-one correspondence between 

anchor boxes and true target boxes, there could only be as many positive samples as true target boxes, 

resulting in class imbalance. YOLO V5 algorithm defines positive samples based on the aspect ratio 

between anchor boxes and true target boxes. When the aspect ratio is less than a threshold, it is defined 

as a positive sample. Additionally, YOLO V5 predicts the same target in nearby grids simultaneously 

to increase the number of positive samples, effectively solving the problem of class imbalance. 

Regarding the problem of bridge crack recognition, because crack targets are elongated, 

discontinuous, and have large-scale changes, using the YOLO V5 algorithm can, to some extent, avoid 

the problem of imbalance between positive and negative samples and further improve model 

performance. However, the accuracy of YOLO V5 algorithm in recognizing some bridge crack targets 

cannot meet the requirements. Therefore, a method of fusing attention mechanism is used to further 

improve the performance of YOLO V5 algorithm. The improved YOLO V5 algorithm network 

structure is shown in Fig. 6. 

C3(128×128)×3 C3(256×256)×6 C3(512×512)×9 C3(1024×1024)×3 SPPF(1024×1024)
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Fig. 6. Improved YOLO V5 Module 

Incorporating attention mechanisms before the convolutional layers in the YOLO V5 network's 

prediction layer can increase the influence of the learned attention weights on the final performance 

of the model. By validating the effectiveness of different attention mechanisms in addressing the 

bridge crack recognition problem, it is possible to better solve real-world bridge crack recognition 

problems. 

3. Experiment 

3.1. Experiment Environment and Evaluation Indicators 

The experimental environment is a high-performance server dedicated to deep learning object 

recognition, with two high-performance RTX 8000 graphics cards running the stable version of 

Ubuntu 20.04.3 LTS. The object recognition framework is PyTorch, version 1.12, and the basic 

YOLO V3 algorithm is the PyTorch version from Ultralytics. The experimental dataset is a self-made 

dataset, which includes images collected from the bridge crack detection dataset and real-world bridge 

crack images. The dataset has been manually annotated and verified multiple times for accuracy and 
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practicality in addressing bridge crack problems. The number of samples in the dataset is shown in  

Table 1. 

Table 1.  Number of samples in the dataset 

Dataset Number of images Bridge crack samples Bridge damage samples 

Train 1225 2568 547 

Val 306 642 137 

Test 306 642 137 

Total 1531 3210 684 

 

The evaluation metric uses the concept of "average precision" referenced in the current 

mainstream VOC 2007. Precision P represents the proportion of correct predictions made by the 

model, while recall R represents the coverage of the target category in the recognition results. In the 

object recognition task, there are two types of samples: positive and negative, and two types of 

detection results: correct and incorrect. Positive samples predicted correctly are defined as TP, positive 

samples predicted incorrectly as FP, negative samples predicted correctly as TN, and negative samples 

predicted incorrectly as FN. Precision and recall can be calculated as (2)-(3). 

 
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (3) 

According to precision, the average precision (AP) for each class can be calculated, 𝐴𝑃 = ∫ 𝑝(𝑟)
1

0
𝑑𝑟 

and then the mean average precision (mAP) for all classes can be computed, 𝑚𝐴𝑃 =
1

𝑚
∫𝐴𝑃 where 

m is the number of classes, the commonly used mAP has different versions depending on the IOU 

threshold used, such as mAP50 and mAP50-95. The latter means that the AP values are calculated 

with IOU thresholds ranging from 0.5 to 0.95 with a step size of 0.05, and then the average value is 

taken. Compared to mAP50, mAP50-95 can better reflect the performance of the algorithm and also 

demonstrates the algorithm's ability to recognize targets with high accuracy and confidence. 

3.2. Comparative Experiments 

To verify the performance improvement brought by the fusion of three different attention 

mechanisms with YOLO V5, a comparative experiment method was adopted to validate. Meanwhile, 

the performance of the improved YOLO V5 algorithm was compared with the original YOLO V5 

algorithm and YOLO V3 algorithm in the bridge crack detection task to evaluate the performance 

parameters. The relevant experiments have carried out the re-clustering of anchor boxes in advance. 

The clustering algorithm used was K-Means algorithm, and the same experimental conditions and 

dataset were used for re-clustering to eliminate external factors that may interfere with the 

performance comparison of the models. The performance indicators of the five algorithm models are 

shown in Table 2. 

Table 2.  Performance comparison experiment 

Method Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) 
YOLO V3 95.3 80.4 94.5 81.4 

YOLO V5 97.4 89.3 97.1 80.5 

YOLO V5 + SENet 97.2 91 95.3 82.8 

YOLO V5 + ECALayer 97.3 90.8 95 84.2 

YOLO V5 + CBAMC3 99.3 92.6 97.6 87 

 

According to Table 2, the YOLO V5 algorithm with CBAMC3 module fusion shows the best 

performance, surpassing other algorithms in precision, recall, mAP50, and mAP50-95. The two 

improved algorithms with fusion channel attention mechanisms did not surpass the original algorithm 
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in mAP50 but did so in mAP50-95, indicating that the improved fusion channel attention mechanisms 

have good performance in addressing the high-precision issue of bridge crack target detection tasks. 

The improved algorithm with fused hybrid domain channel attention mechanism, CBAMC3, achieved 

a 0.5% increase in mAP50 and a 6.57% increase in mAP50-95 compared to the original algorithm, 

showing good improvement for high-precision localization issues. 

3.3. Experiment Results 

The F1 curve and PR curve can effectively demonstrate the convergence process and 

performance of the model. The F1 curve and PR curve for YOLO V5 and the three improved YOLO 

V5 algorithms with fusion attention mechanisms are shown in Fig. 7. 

 
F1-Confidence Curve  P-R Curve  

YOLO V5 

  

YOLO V5-SENet 

  

YOLO V5-ECALayer 

  

YOLO V5-CBAMC3 

  

Fig. 7. F1 and PR curve 

As shown in Fig. 7, it can be observed that the improved YOLO V5 algorithm with fused hybrid 

domain attention mechanism, CBAMC3, has the largest area under the F1 curve and PR curve, 

indicating that the YOLO V5 algorithm with CBAMC3 module fusion has the best convergence effect 

compared to the other three algorithms. 
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4. Conclusion 

This article addresses the issue of incomplete box selection caused by the lack of high-precision 

localization capabilities in bridge crack target detection tasks and selects the YOLO V5 algorithm as 

the backbone network. In response to the YOLO V5 algorithm's inability to achieve expected 

performance in high-precision localization, fusion attention mechanism is used to optimize the YOLO 

V5 algorithm's high-precision localization problem. Two-channel attention mechanisms, SENet and 

ECALayer modules, and one hybrid domain attention mechanism, CBAMC3, were selected for 

fusion, and relevant experiments were conducted. The results show that the fusion attention 

mechanism method can effectively improve the YOLO V5 algorithm's high-precision localization 

performance. Among them, the CBAMC3 module fused with the YOLO V5 algorithm has the best 

effect, and the mAP50-95 is improved by 6.5% for high-precision localization issues. In the future, 

we will conduct research on bridge crack problems in more complex scenarios. We will expand the 

bridge crack dataset by collecting more bridge crack images and conducting algorithm improvement 

research on the object detection problem of bridge crack images under high resolution. High-

resolution images require object detection algorithms to have a larger receptive field range than 

commonly used algorithms, but simply increasing the receptive field may not significantly improve 

the model's performance. Therefore, a better attention mechanism that utilizes information more fully 

is needed to extract feature information from large receptive fields. This will be a feasible method for 

object recognition tasks in high-resolution image detection. 
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