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1. Introduction 

Robot motion planning in dynamic environments is an important thrust area of computer science 

and computational geometry. The fundamental problem of motion planning is to compute a collision-

free path from a ‘start’ to a ‘goal’ for a robot that moves in a static and totally known environment, 

consisting of one or many obstacles.  Robot motion planning in dynamic environments (RMPDE) has 

been studied extensively for the last four decades. Motion planning in dynamic environments with 

moving obstacles and moving targets is a variant of RMPDE. The RMPDE problem is NP-complete, 
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The fundamental problem of robot motion planning in a dynamic 

environment (RMPDE) is to find an optimal collision-free path from the 

start to the goal in a dynamic environment. Our literature survey of over 

100 papers from the last four decades reveals that there are more than 30 

models of RMPDE, and there is no benchmarking criterion to select one 

that is the best in a given situation. In this context, generating a regression-

based model with 10 attributes is the first and foremost contribution of our 

research. Given a highly human-interactive environment like a cafeteria or 

a bus stand, the gross hidden Markov model has special importance for 

modeling a robot path. A variant of the growing hidden Markov model for 

a serving robot in a cafeteria is the second contribution of this paper. We 

simulated the behavior of GHMM in a cafeteria with static and dynamic 

obstacles (static obstacles were both convex and concave) and with three 

different arrangements of the tables and obstacles. Robots have been 

employed in mushroom harvesting. A novel proposition discussed in this 

paper is probabilistic road map planning for a robot that finds an optimum 

path for reaching the ripened mushrooms in a randomly planted mushroom 

farm and a dexterous hand to pluck the selected mushrooms by employing 

inverse kinematics. Further, two biologically inspired meta-heuristic 

algorithms, ant colony optimization, and firefly has been studied for their 

application to latex collection. The simulation results with this environment 

show that the firefly algorithm outperforms ant colony optimization in the 

general case. Finally, we have proposed a few pointers for future research 

in this domain.  The compilation and comparison of various approaches to 

robot motion planning in highly dynamic environments, and the simulation 

of a few models for some typical scenarios, have been the contributions of 

this paper. 
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i.e., a complete planner that reports a solution if one exists, or exits otherwise, takes exponential time 

in the worst case [1]. Dynamic motion planning for a point in the plane with bounded velocity and 

many arbitrary obstacles is itself an intractable NP-hard problem [2]. The main approaches to the RMP 

problem are velocity-based, probability-based, and artificial intelligence-based [3, 4]. 

Motion planning in dynamic environments was originally addressed by adding the time 

dimension to the robot’s configuration space. Obstacles were assumed to have bounded velocities and 

known trajectories. A solution to the planar problem for a polygonal robot among many moving 

polygonal obstacles is provided by searching a visibility graph in the configuration space. The 

configuration-time space is discretized, resulting in a sequence of configuration space slices at 

successive time intervals. The static planning problem is solved at every slice, and the adjacent 

solutions are joined to take the robot to the given goal. A configuration is the environment of a robot 

at a given time. The configuration-time space is discretized into “cells,” such that a cell is empty if 

there is no obstacle for the robot. A method of cell decomposition joins empty cells to get a collision-

free path from start to goal [5]. 

Another approach to dynamic motion planning is to decompose the problem into smaller 

problems: namely, path planning and velocity planning. This method first computes a feasible path 

among the static obstacles and represents it as a parametric curve in the arc length, i.e., a path with arc 

length as its parameter. The intersections of the moving obstacles with the path are represented as 

forbidden-regions in an arc length-time plane. The velocity of the robot should be planned so as to 

avoid the forbidden regions. The complete problem of motion planning can be divided into two 

separate problems: kinematic and dynamic [6]. The kinematic problem consists of finding a trajectory 

that takes into account the position and velocity of the obstacles as well as an approximation of the 

dynamic constraints of the robot. The dynamic problem consists of computing an optimal trajectory 

that satisfies the full set of kinematic and dynamic constraints and is in a close neighborhood to the 

solution to the kinematic problem. The trajectories of robots moving in a time-varying environment 

are computed by using the concept of velocity obstacles (VO) [7]. The colored part of Fig. 1(a) denotes 

the robot’s velocities that would cause a collision with obstacles at some near-future time. An 

avoidance maneuver is computed by choosing velocities that are outside of the velocity obstacles. 

DWA is for robots that follow a circular path with translational and rotational velocities. If “look 

ahead time” is the time taken by the robot to stop and no collisions occur during the interval, then the 

velocity of the robot at that time is considered to be an admissible velocity 𝑉𝑎 [8] (see Fig. 1(b). In 

other words, a velocity is admissible if it allows the system to stop before hitting an obstacle. DWA 

is a velocity space-based local avoidance scheme where the search for admissible control is carried 

out in the space of velocities (VS). Time-varying dynamic window (TVDW), as given in Fig. 1(c), is 

a variant of DWA that computes a set of immediate future obstacles trajectories in order to check for 

collisions in the near future. Velocities causing a collision after a given time horizon are considered 

acceptable. VO was extended by NLVO to consider a known velocity outline for the moving object. 

NLVO consists of all velocities of the robot that would result in a collision with an obstacle at any 

time to ≤ 𝑡 ≤ 𝑡𝐻. NLVO(t) is a scaled B(t), bounded by the cone formed between the robot and 

obstacle at time 𝑡. NLVO is a warped cone, as in Fig. 1(d) [8-19]. 

Motion planning methods for robot navigation in dynamic and uncertain environments by using 

probabilistic approaches involve two problems: (i) safety assessment of roadmaps in uncertain 

environments by computing the smallest expected collision probability, and (ii) safety assessment 

beyond the planning horizon of trajectories, since RMPDE approaches generally create partial 

trajectories towards the goal because motion prediction is not reliable over a long time period. The 

problem of reliable and efficient navigation in an uncertain and crowded environment is discussed, 

such that the robot and the surrounding objects reciprocally avoid each other [20-22]. 

The classical RMPDE approaches are less accurate in address spaces that have local minima; 

they are costly as well. Heuristic approaches produce an acceptable solution faster. Meta-heuristic 

algorithms such as (i) ant colony optimization and (ii) firefly, from swarm intelligence, have been 

successfully employed to solve these types of optimization problems [23-25].  
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(a) VO (b) DWA 

 

 

 

(c) TVDW (d) NLVO 

Fig. 1. Velocity based Motion planning [8] 

We found that the probability road map and hidden Markov model prove better in a dense and 

unpredictable environment [26]. Models of motion planning for crowded uncertain environments are 

studied. Three different scenarios in a cafeteria have been simulated. A variant of the growing hidden 

Markov model has been proposed in this work. The parameters of the path finding in cafeterias are 

the number of active serving tables and their co-ordinates and the starting coordinates of the robot. 

The RMPDE has been studied in the context of a specialized domain of agriculture. A system for 

automation of harvesting in a random agricultural field has been proposed. In particular, the 

probabilistic road map is recommended for navigation, and an inverse kinematic-based model has 

been suggested for the plucking of the ripened mushrooms. In contrast to the random field, we studied 

the performance of ant colony optimization (ACO) and the firefly algorithm (FA) for implementation 

in a grid-type dynamic environment. A real-life scenario of latex (liquid rubber) collection has been 

simulated for changing farm sizes, the number of agents, obstacle densities, and hill-locked 

plantations. Under the assumption of a plain field, our observation is that FF outperforms ACO. Path-

length and time are directly proportional to the farm size, which is obvious. What is not obvious is 

that the number of agents, when increased beyond a certain number, does not add to its performance. 

For example, in our simulation for a 20×20 farm (i.e., 400 rubber trees), the performance keeps rising 

till the number of agents is increased to 50. There is no much change in the performance if the agents 

are increased to 75 or above. The reason is that obstacle density increases, and therefore path length 

and time increase correspondingly [27]. 
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2. Evaluation of RMPDE 

In the paper survey [8], we discussed 31 methods of RMPDE and broadly categorized them into 

7 groups on the basis of the prominent parameters used in them. In the literature, several methods have 

been discussed with their relative pros and cons. However, no evaluation metric seems to have been 

proposed. In the conclusion of this survey, we attempt a 10-feature characterization of RMPDE and 

propose a regression-based model for the evaluation of an RMPDE. 

The 10 parameters in terms of which we describe an RMPDE are smooth path, safety, path length, 

run time, accuracy, stability, computational cost, control, efficiency, and future uncertainties. Each of 

them is given a value on the Likert scale (0-not satisfactory, 1 poor, 2 good, 3-very good, 4-excellent). 

In the regression analysis, it is observed that three parameters, namely run time, efficiency, and 

control, do not contribute significantly to the quality metric of the methods. Removing these three, we 

get a regression model with 7 parameters as 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 1.08 × 𝑠𝑚𝑜𝑜𝑡ℎ𝑃𝑎𝑡ℎ + 0.78 × 𝑠𝑎𝑓𝑒𝑡𝑦 + 0.73 × 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
+ 0.51 × 𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ + 0.5 × 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡
+ 0.47 × 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝐼𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 0.72 × 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 4.6 

(1) 

The coefficients of the right-hand side of (1) are obtained from the multivariate regression analysis 

of the attribute matrix in Appendix 1. The 𝑅2 value is 0.82, indicating that the model sufficiently 

explains the characteristics of the data [8]. 

3. Probabilistic Approaches of Motion Planning in Dynamic Environments 

Four major approaches to probabilistic robot motion planning in dynamic environments 

(PRMPDE) have been briefly discussed: Probabilistic Robot (PR), Probabilistic Collision State (PCS), 

Partially Closed Loop Receding Horizon Control (PCLRHC) of Stochastic Dynamic Programming 

(SDP), and Gross Hidden Markov Model (GHMM) [8, 21, 22, 28-50]. We attempt to provide a bird’s 

eye view of this literature and produce a benchmarking model for their evaluation.  In the PR model, 

the processing (i.e., mapping, localization, perception, and control of motion planning) is done by 

calculating the probability density function. PCS is the probabilistic extension of Inevitable Collision 

State (ICS). Both of them work in crowded environments. The original algorithm generates a binary 

Boolean-valued output for the question of whether any path is collision-free, while the extension 

generates optimum paths with the probability of them being collision-free. Two types of obstacles are 

considered, (i) passive and (ii) active. Stochastic Dynamic Programming (SDP) is an optimization 

methodology; in the present context, SDP is used for motion planning in cluttered, dynamic, and 

uncertain environments; open loop and closed loop refer to the absence or presence of feedback during 

optimization. We discuss Open Loop (OL) and Partially Closed Loop (PCL) Receding Horizon 

Control (RHC). The OLRHC is a suboptimal control scheme in which a sequence of control actions 

is obtained over a finite horizon, and the motion planning problem is resolved at each stage. The 

measurements beyond the current stage are ignored. Consequently, the expectation in the cost terms 

can be omitted. This infirmity is overcome in the PCLRHC by generating corresponding cost values 

for future measurements. 

The above three models work for short-term predictions. The behavior of humans, animals, and 

vehicles varies according to their perception, internal state, intention, etc. In principle, a machine could 

be trained to predict their behavior by providing the history of these types of objects. The Gross 

Hidden Markov Model (GHMM), an extension of the Hidden Markov Model (HMM), involves two 

stages: (i) the learning stage wherein the patterns from the historical data are identified, and a model 

of the behavior of the object under consideration is built, and (ii) the prediction stage that uses the 

learned motion patterns in order to predict the future motion of the moving objects. As uncertainty is 

inherent in prediction, in GHMM, we use a probabilistic framework to model motion patterns as 

stochastic processes. 

A comparison of the four models of RMPDE is given in Table 1. The methods are a probabilistic 

robot (PR), probabilistic collision state (PCS), partially closed loop receding horizon control 
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(PCLRHC), and gross hidden Markov model (GHMM). For evaluating the models, some 

characteristics are ranked between 1 and 5, based on 1-poor, 2-moderate, 3-good, 4-very good, and 5-

excellent, whereas others have a binary “Yes” or “No” ranking. The ranks are given based on [21-78]. 

Table 1.  Comparison of probability-based RMPDE models [76] 

Sr. 

No 
Methods 

Crowded 

environment (1-5) 

Learning 

approach 

long-term 

prediction 

Complexity 

(1-5) 

Safety (1-

5) 

Waits till obstacle 

goes away 

1 PR 2 No No 3 3 No 

2 PCS 3 No Yes 3 5 Yes 

3 PCLRHC 5 No No 4 3 Yes 

4 GHMM 4 Yes Yes 3 5 Yes 

4. RMPDE Applications in Automation of Cafeteria 

A survey of the literature has led us to conclude that GHMM applications include automation of 

agriculture, manufacturing, and household activities. One emerging domain is the hospitality industry. 

Restaurant automation aimed at serving an increasing number of customers with a greater variety of 

choices has the commercial potential [79]. Automation includes placing an order electronically, 

helping the customer in selecting a suitable menu, assisting the chef in the preparation of dishes and 

making it to order, serving the orders automatically on a conveyer belt, and informing the customers 

of the table number where they would be served [80]. A step ahead is a waiter robot. The objective is 

to serve fast at peak times. Also, it is a technological attraction and therefore fetching business. The 

waiter robot, a humanoid, has been made for walking through the pathways through the rows of tables 

and chairs and serving the customers; it also helps remove the used dishes. This robot follows a 

magnetic tape placed on the floor and serves according to the orders noted in its memory; sensors are 

employed to know when an obstacle comes across [81, 82]. A simple strategy has been employed: 

wait till the obstacle gets removed. 

A realistic scenario in any cafeteria comprises of the following elements: limited space, well-

placed furniture and decors, very few service tables to be served, and a few moving objects, generally 

humans and sometimes trolleys or the like. Small modifications in the arrangements of the static 

objects are acceptable. A serving robot has to start a tour and visit all the tables. The task may be 

taking or serving an order from a customer by coordinating with the kitchen and receipt managing 

tables. 

Given this, it becomes a problem for robotic motion planning in a dynamic environment, a small-

spaced, highly interactive environment with limited objects in particular. Given the safety requirement 

in order to avoid spoilage, one may go for PCS or GHMM as a solution. Both could be employed for 

long-term predictions and could be deployed in a crowded environment such as a cafeteria. However, 

we rank GHMM the best for its relatively lower complexity and continuously evolving approach due 

to the learn-and-predict strategy that is its basis. 

4.1. Simulation 

Basically, a state in GHMM is a cluster of static and moving objects on a known trajectory. The 

complete state space has been visualized as a collection of clusters that are continuously evolved due 

to the motions of the dynamic objects. The clusters form Voronoi regions. Transition is possible only 

in an adjacent Voronoi region. The elements in a cluster are identified with their centroid; the 

Mahalanobis distance that is an indication of the distribution of element in a cluster is indicative of 

the path length traversed when a robot selects the next state (i.e., move towards a new cluster) in the 

direction of its goal (i.e., a table that is to be served very next), i.e., by using the probabilities of 

HMM. 

We have considered three different arrangements with 8 static obstacles in each. See Fig. 2(a), 

Fig. 2(b), Fig. 2(c), Fig. 2(d). In the simulation results presented, we have considered a serving robot 

in a cafeteria that has static obstacles like walls, furniture, and fixtures with convex or concave 
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shapes. At any given point in time, there is a minimum of 1 and a maximum of 8 tables that a robot 

is expected to serve. There are 8 static and 6 moving obstacles that the robot will have to avoid. 

Small variations in the locations of the tables are expected. The tables have been moved from 

their original places twice, and the static obstacles are quite different each time, giving rise to three 

different arrangements or scenarios for the tables. The task is to find a path to serve all the active tables 

by avoiding the 8 static and 6 moving obstacles in a given scenario. An instance of completing a 

Hamiltonian tour in each of the three scenarios has been shown in Fig. 2. The average time of 

execution per scenario and its corresponding path length for a varying number of tables is listed in 

Table 2. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2. (a) Partially traversed path by a robot in a cafeteria that has all convex obstacles (Scenario I); (b) 

Completely traversed path by a robot in Scenario; (c) Completely traversed path by a robot in a cafeteria 

with all concave obstacles (Scenario II); (d) Traversing in a cafeteria with convex obstacles in its interior 

and concave in the boundaries (Scenario II1); [76] 

Table 2.  Average Execution Time and Path Length for GHMM in a cafeteria [76] 

Number of tables to be 

served 

Scenario 1  Scenario 2  Scenario 3  

Time in 

milliseconds 

Path length in # 

cells 

Time in 

milliseconds 

Path length in # 

cells 

Time in 

milliseconds 

Path length in # 

cells 

2 105 113 80 68 95 89 

4 127 123 136 126 140 135 
6 130 119 191 179 144 133 

8 137 113 230 225 156 139 

8 135 128 216 206 156 146 

 

In Fig. 2, the various objects are marked in different colors, as follows: (1) Static obstacles are 

marked with thick black lines, with convex or concave shapes as the case may be.  (2) The present 

position of the robot is marked with a thick red dot. (3) The green and blue dots are the tables where 

customers could be seated; green dots are tables where the customers have been served, and red dots 
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are where they are yet to be served. (4) The robot’s path is marked as a sequence of thin black dots, 

starting from the middle of the serving area and ending in its present position (thick red dot). 

In Fig. 2(a), the robot has served some tables in Scenario 1, but not all. The tables that have been 

served are marked with a green, but the remaining are blue. In Fig. 2(b), all tables have been served, 

so they are marked green. In other words, the robot has traversed a Hamiltonian path. 

Note that there are two rows corresponding to readings when the number of tables to be served is 

8.  While the first reading is due to the testing with an increasing number of tables, the second one is 

due to a separate peak load test. The details of the tables’ positions and the time required for 

completing a Hamiltonian tour, along with the length of the path that the robot traversed in the latter 

case, are listed in Appendix 2. The two independent runs have resulted in comparable values; 

therefore, the reliability of the system has been demonstrated. The standard deviation in each case was 

around 9. 

From the observations, it is clear that the time taken for completion of the Hamiltonian tour 

increases with the number of tables to be served. The average time and path length are the least in 

scenario 1 in all but the case where the number of tables is 2. Similarly, amongst Scenarios 2 and 3, 

the values of 2 are higher, except in the case where the number of tables is 4. However, there the 

figures of scenario 3 are comparable. In light of these observations, one may conclude that Scenario 

2 is the most complicated and scenario 1 is the least complicated among the three. From Fig. 2, it 

could be concluded that the scenario with more concave surfaces is relatively difficult. 

The GHMM has been employed to create a collision-free path for pedestrians. An obvious 

difference between our scenarios is that all but the robots in our scenario are expected to employ 

their own brains to reach their goals. We do not require to keep track of their progress per se though 

their movements are important for defining a path for the service robots (SR). There could be more 

robots serving the goal by working in coordination. Given this, we propose to employ means-end 

analysis to converge with an arguably more efficient variant of GHMM for the cafeteria scenario. 

The basic principle is that given a current state, a goal state, and a set of possible transitions, an action 

is chosen that reduces the difference between the two states.  

Imagine an SR with the objective of collecting a dish from a kitchen window for a customer 

sitting at a table. The solution consists of two parts: one, construct a path from the table to the kitchen 

window and then back to the table. Let all the bots be broadcasting their status periodically. Call it 

who-n-whereami protocol. If a bot-i finds bot-j is equipped with the material that is required by bot-

i, then the following heuristic is employed:  

If the distance (bot-i, Kitchen-window) < Threshold OR  

distance (bot-i, bot-j) >distance(bot-i, Kitchen-window) 

     then findpathto (Kitchen-window)  

     else findpathto (bot-j); update (bot-i), update (bot-j) 

Effectively, this heuristic should help generate a network of short-distance service providers. 

Those in the relay will help overcome the optimizing the path-finding over a longer distance. It is 

expected that over the period, the short-distance service providers shall develop expertise in finding 

the paths in their territory and hence enhance the overall performance of the system.  

4.2.  The Novelty and Uniqueness of Cafeteria Research 

A ranking model has been developed for the four probability-based motion planning 

approaches and concluded that the gross hidden Markov model (GHMM) is the best-suited 

method for environments with limited space and highly dynamic due to human interactions, such 

as the cafeteria. 

Using GHMM, we simulated a real-life cafeteria with eight tables to be served by a robot by 

considering three different arrangements with concave and convex obstacles. For these, we obtained 

the path length and time of the Hamiltonian path. We found that the concavity of the obstacles makes 
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the scenario more complex for path planning. This is the first time that the variant of the hidden 

Markov Model algorithm has been proposed for simulating a cafeteria. The SR can be extended to 

any other service-providing applications. 

5. RMPDE Application in Agriculture 

5.1. RMPDE in Mushroom Harvesting 

Robotic mushroom harvesting in a random field is proposed by employing a probability road 

map (PRM) for navigation on the farm. (PRM is a sampling-based 2-step method that includes 

roadmap construction and querying.) Inverse kinematics is employed for plucking the ripened 

mushrooms. 

Extending the earlier work stated in the survey, we discuss PRM for the planning of a robotic 

motion within the mushroom maze or random plantation with static obstacles. The method is extended 

to find the roadmap in environments with dynamic obstacles. It checks whether or not a robot is in an 

obstacle-free configuration and proceeds accordingly. The method is capable of dealing with robots 

with many degrees of freedom and having diverse constraints, and it has been shown to be 

probabilistically complete, i.e., the probability of failure for a planner to find a solution trajectory, if 

one exists, converges rapidly to zero as the number of collision-free samplings of the workspace 

increases [8].  The core of our mushroom harvesting robot is an algorithm for encountering static 

obstacles by a path finder robot [47]. The PRM computes a collision-free path between two ripened 

mushrooms with a local planner. 

The basic idea is to check if the roadmap constructed to avoid static obstacles also works with 

dynamic obstacles, i.e., obstacles moving at a given instant. If it works, then the path is built. Else the 

edges that meet the moving obstacles are marked as blocked, and construction of alternative paths is 

attempted. A five-step procedure for the PRM in the such environment has been listed [83-85]. 

The design of a dexterous robot hand is driven by the task of plucking the targeted mushroom 

assigned to it.  We propose a two-step process: first, an assembly of two fingers that is analogous to a 

thumb and a pointing finger of a human hand to get a grip on the stem of the mushroom bud that is to 

be plucked; in the next step, the stem is uprooted. The joint angles of fingers are calculated by 

employing Inverse kinematics. 

A mushroom harvesting robot (MHR) consists of three units: (i) a recognition system that 

identifies mature mushrooms and confirms their locations, (ii) a moving system with wheels that 

moves through the paths to reach the mature mushrooms, and (iii) picking system that grasps and 

plucks the mushrooms at the given location [86-91, 146]. Assuming inputs from a recognition system, 

this paper presents and develops a novel robotic model to perform the moving and picking activities 

efficiently. 

5.1.1. Probabilistic Road Map for Motion Planning of a Robot within a Random Field 

First, we discuss the probabilistic road map (PRM) method for the planning of robotic motion 

with static obstacles. Then the logic is extended to find a roadmap with dynamic obstacles. PRM is a 

sampling-based 2-step iterative method that includes roadmap construction and querying (see 

algorithm and Fig. 3 and Fig. 4). It checks if a robot is in an obstacle-free configuration space 𝑄𝑓𝑟𝑒𝑒, 

(for details see Fig. 3 and Fig. 4). The following algorithm for navigation of a robot through a 

mushroom farm is an implementation of [92-109]. 

5.1.2. Algorithm for Static Obstacles 

A roadmap is an undirected graph 𝐺 = (𝑉, 𝐸), where the nodes in V represent a set of ripened 

mushrooms, and each edge in E is a collision-free path between two nodes computed by a local 

planner, see Fig. 2. Nodes 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙 are user-provided inputs. They are, respectively, the initial 

and final nodes in a path to be discovered by the algorithm. 
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Querying: Let ConnectQinit be a list of neighboring nodes in the roadmap in the order of their 

distances from 𝑞𝑖𝑛𝑖𝑡 and similarly, let ConnectQgoal be a list of neighboring nodes in the same 

roadmap in the order of their distances from 𝑞𝑔𝑜𝑎𝑙. Try connecting 𝑞𝑖𝑛𝑖𝑡 to each of its neighboring 

nodes, and 𝑞𝑔𝑜𝑎𝑙 to its neighboring nodes; call the nodes a׳ and a׳׳, respectively. Search the graph G 

for a sequence of edges in E connecting a׳ to a .׳׳  Convert this sequence into a feasible path for the 

robot by computing the corresponding local paths and concatenating them. The local paths can be 

stored in the roadmap. The whole sequence, 𝑞𝑖𝑛𝑖𝑡– 𝑎׳– … – 𝑎׳׳– 𝑞𝑔𝑜𝑎𝑙 is a feasible path for a robot.  

Among the feasible paths, find the shortest path on the roadmap between 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙 by 

employing an appropriate algorithm—one of the A*, D, and D*Lite algorithms [110-112]. 

Algorithm for static obstacles 

Repeat steps S1 and S2 until all mushrooms in the node-set G are covered. 

S1 (construction). For a given workspace, construct a roadmap in a probabilistic manner, i.e., 

randomly select a configuration of nodes (provided by image processing) using some sampling 

distribution. 

S2 (querying). Given an initial configuration 𝑞𝑖𝑛𝑖𝑡 and goal configuration 𝑞𝑔𝑜𝑎𝑙, find the shortest path 

connecting 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙. 

Remark: The robot is supposed to move and pluck all the mushrooms along this path and remove 

them from the graph. Then the two steps of the algorithm are to be repeated. 

Fig. 3 and Fig. 4 illustrate the two phases of the iterative path-finding algorithm. In Fig. 4, the 

shortest path from 𝑞𝑖𝑛𝑖𝑡 to 𝑞𝑔𝑜𝑎𝑙 is marked with thick lines.  

 

Fig. 3. Example of a roadmap for a point robot in two-dimensional Euclidean space.  Shaded areas are 

obstacles. The small circles are nodes of a graph, and the edges represent obstacle-free paths between 

adjacent nodes. 

5.1.3. Algorithm for Dynamic Obstacles 

The basic idea is to check if the roadmap constructed to avoid static obstacles also works despite 

dynamically moving obstacles at a given instant. If it works, then the path is built. Otherwise, the 

edges that meet the moving obstacles are marked as blocked, and the construction of an alternative 

path is attempted. The two ends of the blocked edges are connected locally by employing a rapidly-

exploring random tree (RRT) algorithm [110-112]. In a dynamic environment, the initial and goal 

configurations are also moving entities, and therefore the new path has to be constructed by 
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considering their new positions. A five-step procedure for the PRM in dynamic environments is 

described as (i) Roadmap labeling and solution path search, (ii) Query node connections, (iii) Local 

reconnections, (iv) Node insertion and cycle creation, and (v) Edge labeling [113-117].  

 

Fig. 4. Example of a query with the roadmap. Nodes 𝑞𝑖𝑛𝑖𝑡  and 𝑞𝑔𝑜𝑎𝑙  are first connected to the existing 

roadmap through nodes a' and a''. The search algorithm returns the shortest path, denoted by a thick dark line 

[146]. 

5.1.4. Kinematics for Robotic Hand Motion 

Getting a roadmap ready is a task that enables a robot to reach the ripened mushrooms at the 

nearest possible place from its current location. The next task is to model the motion of the robot hand 

(the end effector) to reach a ripened mushroom. The design of a dexterous robot hand is driven by the 

task assigned to it. Diverse models have been discussed [118, 119]. We discuss an assembly of two 

fingers (analogous to a thumb and a pointing finger of a human hand) that gets a grip on the stem of 

the mushroom bud to be plucked, and next, the process of uprooting the stem. (Arguably, a five-finger 

hand like that of a human will be a too-heavy and complicated assembly for the present purpose, as it 

would take more space and may harm the neighboring buds.) A diagram of this proposed mushroom 

plucking robot hand is shown in Fig. 5. The first finger-link in the structure is known as the base, and 

the end link is known as the end effector.    

 
Fig. 5. Model of a two-finger robot hand. 

The required angular displacements in the finger-links through the motions at the finger-joints 

are computed by employing kinematics, i.e., the study of the motion of bodies without consideration 

of the forces that cause the motion. The inverse kinematics computations for the finger simulating 

the pointing finger are shown below. The coordinates of a mushroom to be plucked are the driving 

parameter. The computation of the thumb follows the same logic. The difference is that the thumb 

has one less joint. The links have an ordered structure in which each link has its own coordinate 
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system and is positioned relative to the coordinate system of the previous link. The position of the 

link 𝑖 in the coordinate system of its ancestor is obtained by computing the joint angle [120].  

Denavit-Hartenberg (DH) Frame for Joints 

The transformation matrix between two adjacent connecting joints is calculated using the D-H 

parameters in Formula (1) and Table 3, where 𝑠𝑖 indicates sin 𝜃𝑖, 𝑐𝑖 indicates cos 𝜃𝑖 (𝑖 = 1, 2, 3), 

𝛼𝑖−1 is the twist angle, 𝑎𝑖−1 is the length of linkages, and 𝑑𝑖 is the offset of the linkages. The 

transformation matrix of the manipulator's finger is obtained by multiplying the transformation 

matrix of each connecting link 𝑇𝑖
𝑖−1  (𝑖 = 1, 2, 3, 4), which is a function with the three joint variables 

(𝜃1, 𝜃2, 𝜃3, 𝜃4) where 𝜃4 = 0.  

Step 1: Holding a mushroom stem: 

(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) represents an axial frame of reference. For 𝑖 = 0, it represents the coordinates of the base; 

the value of 𝑖 increases by 1 to denote the coordinates of the next joint. The link after the last joint is 

the tip, i.e., the end-effector. Hence (𝑋3, 𝑌3, 𝑍3) is the frame of reference for the end-effector of a 

pointing finger (Fig. 7), while for the thumb, it is (𝑋2, 𝑌2, 𝑍2). 

Step 1.1: Compute the D-H parameters of the pointing finger. 

Table 3.  D-H parameters of pointing finger (From [121]) 

# Joint 𝒊 𝒅𝒊 (Joint distance) 𝒂𝒊−𝟏 (Link length) 𝜶𝒊−𝟏 (Link twist) 𝜽𝒊 (Joint angle) 

1 0 0 0 𝜃1 

2 0 𝑙1 0 𝜃2 

3 0 𝑙2 0 𝜃3 

4 0 𝑙3 0 0 

 

Explanation: The transformation matrix between two adjacent connecting joints can be calculated 

by the D-H parameters in Formula (1) and Table 1, where si indicates sin 𝜃, 𝑐i indicates cos 𝜃𝑖 (𝑖 = 1, 

2, 3, 𝛼𝑖-1 is the twist angle, 𝑎𝑖−1 is the length of linkages, and 𝑑𝑖 is the offset of linkages. The 

transformation matrix of the manipulator's finger can be obtained by multiplying the transformation 

matrix of each connecting link continuously 𝑇𝑖
𝑖−1  (i = 1, 2, 3, 4), which is a function with the three 

joint variables (𝜃1, 𝜃2, 𝜃3, 𝜃4). where 𝜃4=0. Note that 𝑖 −  1 is the base of the link, and 𝑖 is the 

successor link. 

 𝑇𝑖
𝑖−1 = [

𝐶𝜃𝑖

𝑆𝜃𝑖𝐶𝛼𝑖−1 
𝐶𝜃𝑖𝑆𝛼𝑖−1

0

−𝑆𝜃𝑖

  𝐶𝜃𝑖𝐶𝛼𝑖−1

𝐶𝜃𝑖𝑆𝛼𝑖−1

0

   0
   −𝑆𝛼𝑖−1

𝐶𝛼𝐼−1

0

𝑎𝑖−1

  −𝑆𝛼𝐼−1  
𝑑𝑖

 𝐶𝛼𝑖−1 𝑑𝑖

1

] (2) 

where S and C represent the sine and cosine functions, by using (2), we can compute the joint angles, 

𝜃1, 𝜃2, 𝜃3 [122-126, 146]. 

Hence the joint angles are  

 𝜃1 = 𝑎𝑡𝑎𝑛(𝑝𝑦, 𝑝𝑥) − 𝑎𝑡𝑎𝑛 (𝑘2, 𝑘1) (3) 

 𝜃2 = 𝑎𝑡𝑎𝑛 ( 𝑆𝜃2, 𝐶𝜃2) (4) 

 𝜃3 = 𝑎𝑡𝑎𝑛(𝑆𝜔, 𝐶𝜔)  −  (𝜃1 + 𝜃2) (5) 

where 𝑝𝑥 = 𝑘1𝐶𝜃1 + 𝑘2𝑆𝜃1, 𝜔 = (𝜃1 + 𝜃2 + 𝜃3, 𝑝𝑦 = 𝑘1𝑆𝜃1 +  𝑘2𝐶𝜃1 with 𝑘1 =  𝑙1 + 𝑙2𝐶𝜃2 and   

𝑘2 = 𝑙2𝑆𝜃2.  

5.1.5. The Novelty and Uniqueness of Mushroom Harvesting Research 

This is the first time that PRM algorithms are being proposed for navigation inside mushroom 

farms. Unlike previous research in mushroom harvesting, mushrooms are not planted in a grid or some 

pattern but are randomly distributed. No human intervention is required at any stage of harvesting by 
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Mushroom Harvesting Robot (M HR). Robotic automation reduces crop wastage due to the 

unavailability of labor and the untimely harvesting of mushrooms. Harvesting and other expenses are 

reduced compared to those with human labor. A kinematic model of a two-finger dexterous hand with 

3 degrees of freedom for plucking mushrooms was developed using the Denavit-Hartenberg method. 

Inverse kinematics techniques for reaching the ripened mushroom give more precision to plucking. 

There will be no limitation or restriction on large-scale cultivation and harvesting, and this will provide 

economies of scale. 

5.2. RMPDE in Rubber Harvesting 

We considered a case again from costal India of rubber plantations, a crop of commercial value 

and available for harvesting in multiple cycles a year. The systematic plantation of rubber trees on a 

rectangular grid motivated us to explore the application of grid-search algorithms. We compared the 

ant colony optimization (ACO) and firefly (FF) algorithms in various scenarios by changing 

simulation parameters like the density of the environment, land size, and the number of robots 

simultaneously available [27, 127-131]. We also discussed the effect of land type on the performance 

of a path-finding system. Our findings may form guidelines for applying ACO and FF for harvesting 

land cultivated on an imagined grid. We name these robots rubber harvesting robots (RHR) A-RHR 

follows ACO, and F-RHR follows FF for path finding in a grid environment. The objective of this 

research is to introduce the concept of employing soft computing to reduce the cost of agri-robotics 

by taking advantage of a regular topology of cultivation. This topic could be explored in greater detail 

by considering plausible topologies for the cultivations of other crops. The dexterous hand of the 

mushroom harvesting robot (MHR) could be tuned to work as a latex collector in RHR in our case or 

according to the requirement of the situation. 

Rubber plants are cultivated in the open field in the arrangement of rows and columns forming a 

matrix. The shortage of skilled rubber tappers and the high labor cost that prevailed in rubber farming 

has been the major problem faced by rubber cultivating farmers that automation could help overcome. 

The rubber is harvested by rubber tappers by making a long curving incision on the outer bark of the 

trunk of the rubber tree. The white-colored liquid rubber or latex from within the tree seeps to the 

surface of the cut and down the cut into a container that is tied to the stem of the tree.  After two to 

three hours of incision, the tapper collects the deposited latex at each and every plant in sequence and 

submits the same to the specific collection center for further processing of rubber [132, 133].  

Sensors and cameras are mounted on robots to identify the proper place to tap within the rubber 

stem. The robot has to navigate by using ant colony optimization (ACO) or firefly algorithm (FF), 

where cells of the roadmap correspond to the matured rubber plant to be tapped. The robot stops at 

every matured plant and cuts the outer skin of the plant in a specified way with a sharp-edge knife, 

using a dexterous robotic arm that employs inverse kinematics techniques. In the literature and to the 

best of our understanding, obstacle avoidance while navigation is done through human intervention, 

but in our proposed method, it has been done automatically within the algorithm itself [134-141]. 

5.2.1. Simulation of a Hamiltonian Tour of a Latex Collector Robot in the Rubber Plantations 

of Various Farm Sizes 

Starting at the upper left corner, a robot reaches one of the 8 nearest neighbors. The reached node 

becomes the new start, and the new goal is one amongst its non- served nears neighbors. The procedure 

is called recursively till the robot serves the last non-served plant on a given farm.  

Progress of path finding in an instance of ACO has been shown in Fig. 6(a), Fig. 6(b), and Fig. 

6(c) with blue color and that of FF in Fig. 6(d), Fig. 6(e) and Fig. 6(f) has been shown in red. A farm 

of 10×10 = 100 plants has been simulated. Initially, all plants are blue; as soon as a robot reaches a 

plant, it turns green. Obstacles are shown in black. 
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(a) ACO path in 1st instant of 

time at100 sec 

 

(b) ACO path in 2nd instant of 

time at 450sec 

 

(c) ACO path in 3rd instant of 

time at 677 sec 

 

(d) FF path in 1st
 
instant of 

time at 90 sec 

 

(e) FF path in 2nd
 
instant of 

time at 500 sec 

 

(f) FF path in 3rd
 
instant of time 

at 542 sec 

Fig. 6. Hamiltonian tour of ACO and FF in plain rubber field [27] 

The average time taken to complete a tour over 5 observations is 678 seconds in the case of 

ACO; it is 544 seconds in the case of FF. The path lengths are 416 and 380 cells, respectively. 

Therefore, FF optimization outperformed the ACO by 19.8% in terms of time and 8.7% in terms 

of path length. The simulation was executed for five different grid sizes: 20×20, 40×40, 60×60, 

80×80, and 100×100; for each grid starting with 25, the number of agents increased to 50, 75, 

100, and 200. Random dynamic environments were created with obstacle densities of 10%, 30%, 

50%, 70%, and 90%. The starting point is the left uppermost corner, and the goal is the right 

lowermost corner of the respective grids. The average of the best’s path-length and the 

corresponding time over 5 runs have been compiled. 

5.2.2. Simulation of Rubber Matrix Grids in Sloped Terrain with Different Height Maps 

In the simulation, two different sizes of a grid network of rubber plants are considered, i.e., 10×10 

and 20×20, with each grid size with a number of ants and fireflies 25, 50, and 75. Random dynamic 

environments are created with obstacle densities of 10%, 30%, 50%, and 70%. The simulation is done 

with three heights within the grids. The normal sea level is h1, the next level is h2, and the final level 

is h3. The robot transition path is from h1 to h2 and h2 to h3 and vice versa, as shown in Fig. 7(a). 

There is no direct transition from h1 to h3 or h3 to h1, and these types of nodes will be treated as 

obstacles. In the grid, three different colors are shown for the height variation within the grids, white 

for h1, blue for h2, and red for h3, as shown in Fig. 7(b) and Fig. 7(c). 

The starting point is the left uppermost corner rubber plant, and the goal point for the robot for 

simulation is the last rubber plant to be served in the respective grids. The aim of the simulation is to 

compare the path length and time of execution for obtaining the optimum path for servicing all the 

plants by using ACO and FF. 
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(a) 

 

(b) 

 

 

(c) 

Fig. 7. Height map of sloped terrain opened up in plain sheets [27] 

Fig. 8(a), Fig. 8(b), and Fig. 8(c) show the path position at the end of three-time instances for 

ACO in 10×10 rubber plantation fields with sloped terrain. The same grid size, Fig. 8(d), Fig. 8(e), 

and Fig. 8(f), show the path-finding activity at the end of three different time instances for FF.ACO 

completed the path by 878 and FF by 815 seconds, and their path length were 446 and 435 units of 

cells, respectively. In this case, the FF optimization outperformed the ACO by 7.2% in terms of time 

and 2.5% in terms of path length. The simulation results of plain rubber grids, sloped rubber terrain, 

and detailed regression analysis of various parameters contributing to the path planning are given in 

the paper [27]. 

5.2.3. The Novelty and Uniqueness of Rubber Harvesting Research  

The number of agents above 50 has not shown a substantial contribution to the optimization 

of path length and time of execution in general. The path length and time increase proportionally 

with the increase in the grid sizes. In all but the case of terrain, with varying grid sizes, the FF 

algorithm outperforms ACO in terms of path length and time of execution for the optimum 

path. Both path length and time are more in the sloped rubber terrain as compared with the normal 

plain rubber field. In the simulation results and detailed regression analysis, we found the effect 
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of various parameters in motion planning in different dynamic scenarios.  The shortest path on 

plain land is the relatively simplest scenario, while the Hamiltonian on a concave surface is 

supposedly the most difficult. Our proposal for Rubber Harvesting Robot (RHR) carries novelties 

in the agricultural domain and gives innovation in the area of automation for the latex collections 

in rubber plantations [27]. We look forward to the real-life implementation of the RHR proposed 

here. Research and simulation experiments could be carried out with the continuous sloped 

rubber terrain fields. 

   
(a) ACO path in sloped terrain 

(200sec) 

(b) ACO path in sloped terrain 

(500 sec) 

 (c) ACO path in sloped terrain 

(878 sec) 

   

(d) FF path in sloped terrain 

(200sec) 

 (e) FF path in sloped terrain (400 

sec) 

 (f) FF path in sloped terrain 

(814sec) 

Fig. 8. Hamiltonian tour of ACO and FF in sloped rubber terrain [27] 

6. Summary and Conclusions 

Development of regression-based evaluation models to select the right approach for employing a 

path-finder robot in a given situation. We simulated the behavior of GHMM in a cafeteria with static 

and dynamic obstacles (static obstacles were both convex and concave) and with three different 

arrangements of the tables and obstacles, and the results show that the environments with concave 

obstacles make the motion planning more complex. Robots have been employed in mushroom 

harvesting. A novel proposition discussed in this paper is probabilistic road map planning for a robot 

that finds an optimum path for reaching the ripened mushrooms in a randomly planted mushroom 

farm and a dexterous hand to pluck the selected mushrooms by employing inverse kinematics. Further, 

two biologically inspired meta-heuristic algorithms, ant colony optimization, and firefly has been 
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studied for their application to latex collection. The simulation results with this environment show that 

the firefly algorithm outperforms ant colony optimization in the general case. 

7.  Future Research Possibilities in RMPDE 

 The inevitable collision state (ICS) and probabilistic collision state (PCS) concepts guarantee the 

safety of the robotic system with respect to the model of the future (i.e., how to move from one safe 

state to another). One research possibility is to employ massively parallel architectures, e.g., the cloud, 

to implement these models of the future so as to obtain solutions in a reasonable amount of time.  

- Multi-robot systems have received much research attention because of their potential to 

accomplish a variety of complex tasks through cooperation. One viable research topic is a high-

level task planner that will increase the autonomy of dynamic robot networks.  

- Implementation of the PRM and GHMM in geographically constrained fields, e.g., narrow 

corridors or wide plots, is itself a research problem.  

- Exploring the variants of these models for their robotics applications in other domains (e.g., 

GHMM has already been employed for gesture recognition [26, 48]) will be a new variety of 

research extension of this paper.  

- Describing the world model in a concise but useful form is necessary to allow for information 

sharing between robots in the same network. However, the ability to model the world for any 

general environment is not available. Required for world model fusion is the combining of 

environment object state estimates acquired through relative sensing. A key issue to address is 

the “correspondence problem,” the difficulty in resolving whether measurements from two 

sensors or from two different robots are of the same object [142].  

- The splitting up of networks into subdivisions in which robots from different subdivisions are 

explicitly not coordinated raises a research problem: to find a method of determining where the 

divisions should be made. In the general case, this appears to be a difficult research problem with 

no obvious solution [143, 144]. 

- A new field of research has opened up called Cloud Networked Robotics [145]. It deals with the 

issues of supporting daily activities, e.g., for the elderly and the disabled, throughout various 

locations in a continuous and seamless manner by abstracting robotic devices and providing a 

means for utilizing them as a cloud of robots. 

In summary, this paper, by proposing a line of robotic solutions to agricultural domains, has 

contributed to interdisciplinary computational research for social good.  

Appendix 1. Evaluation Matrix of RMPDE 

METHODS 
Smooth 

Path 
Safety 

Path 

Length 
Accuracy Stability 

Comp. 

Cost 

Future   

Uncertainty 
RunTime Control Efficiency 

Weight 

(out of 

10) (y) 

ICS & ICS-

AVOID 
4 4 4 4 3 4 4 2 3 3 9 

PVO 4 4 4 4 3 4 3 2 2 3 9 

PCS 4 4 4 4 4 3 4 3 3 3 9 

PRM, RRT 4 4 4 4 4 3 4 4 4 3 9 
ND & GND 4 4 4 4 4 3 4 3 4 3 9 

DVS 4 4 3 4 3 3 3 3 3 4 8 
MDP & POMDP 3 3 3 4 2 3 4 4 4 4 8 

DDN 4 4 3 3 3 3 3 3 2 4 6 

PR 3 4 3 4 3 2 4 4 3 3 6 
PTMP 3 4 3 4 3 3 3 3 2 3 6 

STI 4 3 3 4 4 3 4 3 3 3 7 

RCA 3 3 3 4 2 2 4 3 3 3 7 
RAMP 3 4 3 4 4 4 4 3 2 2 6 

STA, LP 3 4 3 4 3 3 3 3 3 3 7 

TSR 3 3 3 4 3 3 4 3 3 3 6 
DC 3 4 3 4 4 4 3 4 3 3 7 

VO 3 4 3 3 3 3 3 3 3 3 7 
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METHODS 
Smooth 

Path 
Safety 

Path 

Length 
Accuracy Stability 

Comp. 

Cost 

Future   

Uncertainty 
RunTime Control Efficiency 

Weight 

(out of 

10) (y) 

ANN 3 3 4 4 4 3 4 3 4 4 6 

PSO 3 3 4 4 3 3 2 4 4 4 6 
DWA 3 3 3 4 3 3 3 3 4 3 7 

RGT 3 4 3 4 4 3 3 4 4 3 7 

AODE 3 4 3 4 3 2 3 3 4 4 6 
APF 3 4 2 3 1 3 1 4 4 4 6 

GA 3 3 4 4 3 3 2 3 3 3 6 

GPU 3 3 3 4 3 2 3 3 3 3 5 
PMP 3 4 3 4 4 3 3 3 3 3 6 

CS, STS 3 3 4 3 3 2 3 3 2 2 5 

Diff Constraints. 3 3 3 3 2 2 3 3 2 3 6 
GBWFP 3 3 4 3 3 3 2 4 3 4 5 

VMP 3 3 3 3 3 3 3 3 4 4 5 

AG. 3 2 3 2 1 2 2 2 2 2 5 
 

APPENDIX 2. Simulation Results of GHMM [76] 

Sr Node X Y Time Time (ms) Path Length Scenario 

1 - - - 156 3120 146 1 

2 - - - 216 4320 206 2 

3 - - - 135 2700 128 3 

4 1 130 100 186 3720 174 1 

5 1 130 100 243 4860 230 2 

6 1 130 100 147  2940 139 3 

7 1 100 130 162 3240 149 1 

8 1 100 130 236 4720 223 2 

9 1 100 130 146 2920 138 3 

10 1 130 130 183 3660 170 1 

11 1 130 130 235 4700 223 2 

12 1 130 130 156 3120 147 3 

13 2 280 100 177 3540 165 1 

14 2 280 100 233 4660 222 2 

15 2 280 100 156 3120 148 3 

16 2 250 130 184 3680 172 1 

17 2 250 130 242 4840 230 2 

18 2 250 130 146 2920 136 3 

19 2 280 130 177 3540 164 1 

20 2 280 130 231 4620 220 2 

21 2 280 130 157 3140 148 3 

22 3 370 100 175 3500 163 1 

23 3 370 100 231 4620 218 2 

24 3 370 100 163 3260 155 3 

25 3 400 130 167 3340 155 1 

26 3 400 130 223 4460 212 2 

27 3 400 130 136 2720 126 3 

28 3 370 130 181 3620 169 1 

29 3 370 130 220 4400 209 2 

30 3 370 130 136 2720 128 3 

31 4 130 250 180 3600 169 1 

32 4 130 250 241 4820 229 2 

33 4 130 250 159 3180 150 3 

34 4 100 280 185 3700 173 1 

35 4 100 280 222 4440 210 2 

36 4 100 280 160 3200 151 3 

37 4 130 280 166 3320 153 1 

38 4 130 280 225 4500 214 2 

39 4 130 280 150 3000 142 3 

40 5 370 250 159 3180 148 1 

41 5 370 250 234 4680 221 2 

42 5 370 250 164 3280 155 3 

43 5 400 280 157 3140 146 1 

44 5 400 280 219 4380 207 2 

45 5 400 280 142 2840 134 3 

46 5 370 280 185 3700 173 1 
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Sr Node X Y Time Time (ms) Path Length Scenario 

47 5 370 280 241 4820 229 2 

48 5 370 280 136 2720 126 3 

49 6 130 400 174 3480 163 1 

50 6 130 400 221 4420 210 2 

51 6 130 400 156 3120 148 3 

52 6 100 370 185 3700 174 1 

53 6 100 370 228 4560 217 2 

54 6 100 370 153 3060 144 3 

55 6 130 370 184 3680 171 1 

56 6 130 370 246 4920 233 2 

57 6 130 370 160 3200 151 3 

58 7 280 400 171 3420 158 1 

59 7 280 400 244 4880 233 2 

60 7 280 400 164 3280 155 3 

61 7 250 370 179 3580 166 1 

62 7 250 370 242 4840 231 2 

63 7 250 370 159 3180 149 3 

64 7 280 370 176 3520 165 1 

65 7 280 370 219 4380 208 2 

66 7 280 370 156 3120 148 3 

67 8 370 400 164 3280 153 1 

68 8 370 400 222 4440 211 2 

69 8 370 400 153 3060 143 3 

70 8 400 370 171 3420 158 1 

71 8 400 370 221 4420 210 2 

72 8 400 370 137 2740 129 3 

73 8 370 370 177 3540 165 1 

74 8 370 370 240 4800 227 2 

75 8 370 370 156 3120 147 3 
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