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ABSTRACT

Flight control design of unmanned aerial vehicles UAVs is becoming
increasingly important due to advances in computational power of computers
with lower cost. The control algorithms are mainly employed for the attitude
and position control of the UAVs. In the past decades, quadrotors have
become the most popular UAVs, their adaptability and small size. They
are employed to carry out tasks such as delivery, exploration, fumigation,
mapping, surveillance, rescue mission, traffic monitoring, and so on. While
carrying out these tasks, quadrotor UAVs face various challenges, such as
environmental disturbances, obstacles, and parametric and non-parametric
perturbations. Therefore, they require robust and effective control to stabilize
them and enhance their performance. This paper provides a survey of recent
developments in control algorithms applied to attitude and position loops
of quadrotor UAVs. In addition, the limitations of the previous control
approaches are presented. In order to overcome the relative drawbacks of the
previous control techniques and enhance the performance of the quadrotor,
researchers are combining various control approaches to obtain the hybrid
control architecture. In this study, a review of the recent hybrid control
schemes is presented.

This is an open-access article under the CC-BY-SA license.

1. Introduction

In the past decades, aircraft technology has been evolving since the time Orville and Wilbur
Wright concluded their experiments of plants with motors [1]. Several aircraft with conventional
and innovative configurations have been built to perform various tasks. The innovation gives rise to
unmanned aerial vehicles (UAV). The UAV is an aircraft that can fly without a human pilot aboard.
Among them, the most novel and commonly used unmanned aerial vehicle (UAV) is the quadrotor
[2]. UAVs have grown tremendously in popularity in recent years. In addition, there has been an in-
crease in new UAV applications for more than a decade now. Initially, the motive behind the UAV was
military reconnaissance, surveillance, intelligence gathering, and target acquisition [3]. Nevertheless,
advances in Global Positioning System (GPS), electronics, motors, and microcontrollers encouraged
manufacturers to build lighter and cheap drones [4]. The quadrotors are widely used for many non-
military applications such as crop assessments, climate, and environmental studies, education, first
aid, tourism, traffic monitoring, weather, and so on.

Many researchers have built UAVs that work autonomously. Developments in autonomous flight
gave rise to breakthroughs in control theory, and have contributed immensely to the literature. Over
the years, quadrotors have become important platforms for UAV research and development [5]. More-
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over, the flight control system is the fundamental aspect of the quadrotor [6]. To achieve autonomous
flight, the quadrotor requires the control system to have excellent control performance for the at-
titude loop (internal loop) and the horizontal position and altitude loop (outer loop). Furthermore,
the problems that must be considered in investigating the control design of a quadrotor are the com-
plex nonlinear dynamic equations of motion, multi-input-multi-output characteristics of the dynamic
equations, coupled subsystems, dynamic uncertainties, wind disturbances, and so on. However, the
classical control techniques cannot meet the requirements. Thus, numerous control techniques have
been proposed to improve the performance of the quadrotors. This survey article summarises the
recent control strategies applied to quadrotors.

2. Modelling of the quadrotor

The schematic diagram of the quadrotor is shown in Fig. 1. The fixed body frame B(0b, xb, yb, zb)
and the earth fixed frame E(0e, xe, ye, ze) of the quadrotor are described in Fig. 1. The position of
the quadrotor in the E-frame is represented by the vector β = [x, y, z]T and the attitude is denoted
by A = [ϕ, θ, ψ]T , with ϕ, θ and ψ stand for the roll, the pitch, and the yaw angles, respectively.

Fig. 1. Schematic for the quadrotor system

The quadrotor dynamic model is written as [7]:

{
β̇ = RV

Ȧ = S−1Π
(1)

where R and T are the rotation matrices defined by

R =

CϕCθ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ
CθSθ SϕSθSψ + CϕSψ CϕSθCψ − SϕCψ
−Sϕ SϕCθ CϕCθ

 (2)

S =

1 0 −Sθ
0 Cθ CθSϕ
0 −Sϕ CϕCθ

 (3)
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Note that S. and C. stand for sin(.) and cos(.) respectively. Let N(Π) be a skew-symmstric
matrix given by

N(Π) =

 0 −r q
r 0 −p
−q p 0

 (4)

then, the relation Ṙ = RN(Π) is valid. Differentiating (1) with respect to time and ignoring S at low
speed, one has

{
β̈ = R(V̇ +Π× V )

Ä = Π̇
(5)

Applying Newton’s laws in B-frame, we get

{∑
Fex =MV̇ + (Π×MV )∑
Tex = IΠ̇ + (Π× IV )

(6)

where M = diag(m,m,m) denotes the mass of the quadrotor, I = diag(Ix, Iy, Iz) represents the
inertial matrix,

∑
Fex and

∑
Tex stand for the external forces and the torques, respectively such that

{∑
Fex = F + Fgf∑
Tex = T + Tgy

(7)

where F and T are given by

F =

 0
0

η
∑4

i=1 ω
2
i

 , T =

 ηl(ω2
2 − ω2

4)
ηl(ω2

3 − ω2
1)

κl
∑4

i=1(−1)i+1ω2
i

 (8)

Fg and Tgyr stand for the gravitational forces and gyroscopic effects due to propeller rotation, respec-
tively written as

{
Fgf =MRTG

Tgy =
∑4

i=1Π× Jr(−1)i+1ω2
i

(9)

where η, κ, Jr and ωi represent the thrust factor, drag factor, rotor inertia and ith propeller angular
speed, respectively, G = [0, 0, g]T with g being the acceleration due to gravity. From (5) and (6),
we have

{
β̈ =M−1R

∑
Fex

Ä = I−1 [
∑
Tex − (Π× IΠ)]

(10)
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Therefore, the mathematical model of the quadrotor with external disturbances is thus:

ẍ =
1

m
(cosϕ sinθ cosψ + sinϕ sinψ)u1 (11)

ÿ =
1

m
(cosϕ sinθ sinψ + sinϕ cosψ)u1 (12)

z̈ = −g + 1

m
(cosϕ cosθ)u1 (13)

ϕ̈ =
1

Ix
[(Iy − Iz)ψ̇θ̇ − JrΩrθ̇] +

l

Ix
u2 (14)

θ̈ =
1

Iy
[(Iz − Ix)ψ̇ϕ̇+ JrΩrθ̇] +

l

Ix
u3 (15)

ψ̈ =
1

Ix
[(Ix − Iy)ϕ̇θ̇] +

l

Iz
u4 (16)


u1
u2
u3
u4

 =


Kp Kp Kp Kp

−Kp 0 −Kp 0
0 −Kp 0 −Kp

Cd Cd Cd Cd



ω2
1

ω2
2

ω2
3

ω2
4

 (17)

where Ix, Iy, Iz are the inertia values with respect to x, y, z axis, respectively, g is the acceleration due
to gravity, Jr is the rotor inertia, ωi (i = 1, 2, 3, 4) is the angular speed of the rotor, Kp is associated
with the lift force and u1 is the control signal of the position subsystem, u2, u3, and u4 are the control
signals for ϕ, θ, and ψ, respectively.

The entire quadrotor model can be written in the form:

χ̇ = F (χ, u) (18)

F (χ, u) =



ẋ
(cosϕ sinθ cosψ + sinϕ sinψ)u1m

ẏ
(cosϕ sinθ sinψ + sinϕ cosψ)u1m

ż
−g + 1

m(cosϕ cosθ)u1m
ϕ̇

c1ψ̇θ̇ + c2ωθ̇ + b1u2
θ̇

c3ψ̇ϕ̇+ c4ωθ̇ + b2u3
ψ̇

c5ϕ̇θ̇ + b3u4



(19)

where χ = [x, ẋ, z, ż, y, ẏ, z, ż, ϕ, ϕ̇, θ, θ̇, ψ, ψ̇]T is the state vector,

c1 =
Iy − Iz
Ix

, c2 =
Jr
Ix
, c3 =

Iz − Ix
Iy

, c4 = −Jr
Ix

c5 =
Ix − Iy
Iz

, b1 =
l

Ix
, b2 =

l

Iy
, b3 =

l

Iz
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The linearized model of (18) near χ∗ can be written as:

χ̇ = Aχ+Bu (20)

y = Cχ

where Aχ+Bu = ∂F (χ,u)
∂χ |χ = χ∗.

3. Control Techniques

While carrying out certain tasks, quadrotor UAVs face various challenges such as environmental
disturbances, obstacles, parametric and non-parametric perturbations, etc. As a result, they require
robust and effective control to stabilize them and enhance their performances. In an ideal situation,
different control methods give acceptable results, but their effectiveness and performances differ.
For control of quadrotor UAVs, the control methods that attracted interest from researchers are lin-
ear quadratic regulators (LQR), proportional integral derivative (PID), H∞ control, gain-scheduling,
feedback linearization, sliding mode controllers (SMC), backstepping, and adaptive control. Since
these control approaches are commonly utilized for attitude stabilization and position control of the
quadrotor, this survey paper will provide an overview of the characteristics and the results achieved
with the controllers.

3.1. Proportional-Integral-Derivative Controller (PID)

PID controller is a classical control scheme used for several electrical and mechanical systems. It
is the most widely used control technique in the industry due to its simplicity, ease of implementation,
and acceptable performance with relatively small control efforts. Nowadays, many researchers are
employing the PID controller for commercial quadrotor systems.

Cárdenas et al. [8] designed a PID controller to stabilise a quadrotor UAV. In [9], a robust PID
controller was applied to a quadrotor vehicle for trajectory tracking tasks and minimizing power
consumption. In [10], a PID controller is implemented to address the dynamic uncertainties of a
quadrotor and stabilize its attitude and position. Their simulation results show that the controller
can attain a stable and acceptable performance even when disturbed by the wind. Nevertheless, the
responses of the quadrotor states exhibit some overshoots. Üstünkök, et al. [11] compared the P, PID,
and PD for the flight control of a quadrotor. The simulation results demonstrated that PID is superior
to both P and PD. Castillo-Zamora, et al. [12] compared the PID, PD, and Sliding Mode Controller
(SMC) for position control of a V-tail quadrotor. They observed that the SMC gives a quick settling
time, but the pitch and roll angles exceed 200, which makes it unfavorable in real-world conditions.
Both PID and SMC can get rid of the steady-state errors whereas the PD controller cannot as time
increases. In [13], the authors presented a hierarchical P-PID controller to stabilize the orientation
angles of a quadrotor. The overshoot of the system is less than 25% in roll, pitch, and yaw motion,
respectively. Nonetheless, PID control may not give satisfactory performance when applied to a
quadrotor system which is a nonlinear underactuated system.

3.2. Linear Quadratic Regulator (LQR)

LQR is a type of optimal feedback control method. In this method, the system output is feedback
through a controller gain designed for closed-loop stabilization. A trade-off between the control effort
and the transient response needs to be considered [14].

Okyere, et al. [15] designed an LQR for the linearized model of the quadrotor UAV. The control
system has a cascade structure, and the LQR is able to stabilize the system with an acceptable over-
shoot and small steady-state error. In [16], an LQR with integral error action is implemented for the
linear longitudinal model of the quadrotor. The simulation results indicate that the controller is able to
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eliminate the steady-state error. In [17], the authors presented an optimal control of a quadrotor UAV
using the discrete-time, finite-horizon, LQR. The quadrotor is linearized by utilizing a left-invariant
error about a reference trajectory, giving rise to an optimal gain sequence that can be computed offline.

3.3. Model Predictive Control (MPC)

MPC is among the most widely used controllers for industrial applications due to its advantage
of handling constraints and disturbances, state prediction, easier tuning, and execution with multi-
variables concurrently. It is regarded as a nonlinear control scheme that predicts the future states of a
system [18]. MPC is an optimal control where the objective function is minimized using the present
control variable and future time horizon by working with constraints of inputs and states.

The authors in [18] presented an MPC to track the desired state taking into account disturbances
to achieve a robust performance of the quadrotor. In [19], a reinforcement learning-based MPC
was proposed for hovering control of a quadrotor. This control technique utilizes DC motor input
signals, onboard sensors, and no initial conditions. In [20], the authors presented a cascaded linear
MPC (LMPC) for the position and attitude control of the quadrotor. The advantage of the cascaded
technique is that the desired attitude angle and thrust can directly be limited within an acceptable
range. The Cascaded linear MPC gives a satisfactory performance and can follow the desired position
and maintain the attitude angle close to the operating point without violating motor speeds.

3.4. H∞ Controller

H∞ controller is one of the commonly used robust control techniques. Robust control takes into
account the nominal model of a system as well as the effects of uncertainties and disturbances on the
system. The controller has the capability to mitigate the impacts of uncertainties and achieve the per-
formance requirement. In addition, H∞ controller can tackle modeling errors, but its computational
complexity is expensive. The controller is designed in the frequency domain, and therefore its gains
are difficult to adjust. The H∞ control problem is formulated as mathematical optimization problem
that minimizes the H∞ norm of the closed-loop transfer function [21].

H∞ controllers have been applied to the quadrotor systems for linear control around some operat-
ing conditions. In [22], a robust H∞ control is utilized for hovering control of a quadrotor subjected
to external disturbances. The simulation shows that the controller successfully mitigates the effects
of the disturbances. The authors in [23] presented a robust H∞ controller for quasi hover condi-
tions using the Glover-McFarlane loop shaping method. The controller can handle high bandwidth
input changes without any problems and produces an aggressive pitch response when subjected to
longitudinal movement.

3.5. Feedback linearization Control

Feedback linearization is one of the common nonlinear control techniques. In this approach, the
nonlinear dynamic system is transformed into a linear dynamic system by model inversion. Then,
a stabilizing controller can be designed for the linearized system to keep it stable using the linear
systems. Many successful applications of this method are reported in the literature [24].

The authors in [25] developed an optimal tracking control of a quadrotor based on feedback
linearization. Then, an LQR was designed to stabilize the linearized quadrotor model and a particle
swarm optimization (PSO) algorithm was employed to optimize the gains of the LQR. In [26], the
authors presented a study of the FL to achieve attitude control and stabilize the quadrotor system.
An Integrator was added to the Feedback linearization control system to reduce the tracking error.
In [27], the authors investigated the robust control of a small quadrotor. Feedback linearization is
adopted to handle the complex nonlinear dynamics. The simulation results demonstrated promising
hovering control performance.
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3.6. Sliding Mode Control (SMC)

Sliding mode control is a robust nonlinear control strategy that compensates for system uncertain-
ties and perturbations [28]. The control signal is discontinuous and switches from one state to another
to ensure convergence of the states to the reference state. During the flight operation, the quadrotors
encountered environmental disturbances and parametric perturbations. They require a very agile and
robust control system [29].

In [30], a double loop integral SMC was developed for robust trajectory tracking control of a
quadrotor. The simulation results indicated that the proposed controller outperformed the conven-
tional PID controller. In [31], a terminal sliding mode control (TSMC) approach was developed for
an uncertain quadrotor. The limitation of the TSMC is that it does not take into account the nonsin-
gularities that may arise in the system. In order to avoid this issue, a nonsingular fast terminal sliding
mode control (NTSMC) was proposed for fault-tolerant control of a quadrotor [32]. In [33], a global
fractional-order SMC was developed for a quadrotor with actuator faults. The main drawback of SMC
is chattering effects which cause energy wastage, wear and tear in mechanical systems. To tackle this
problem, the authors in [34] developed a robust chattering-free SMC for the hovering operation of the
quadrotor.

3.7. Backstepping Control

Backstepping is a recursive strategy for controlling nonlinear dynamics systems. This strategy
partitioned the control design into several steps that ensure the asymptotic stability of the system at
each step. Notably, backstepping requires the exact system dynamics and uncertainties to provide
excellent performance.

In [35], the authors have investigated backstepping integrated with PID to stabilize the orienta-
tion of the Quadrotor. The performance of the backstepping controller is compared with that of a
traditional PID controller. The proposed control scheme greatly enhanced the transient response and
robustness of the system. In [36], an integral backstepping-based SMC has been proposed for attitude
and position tracking of a quadrotor. A fractional-order backstepping SMC was implemented for a
quadrotor in [37]. In [38], the quadrotor system is decoupled into three subsystems, the propeller
subsystem, the fully actuated subsystem, and the underactuated subsystem. Then, a backstepping
technique is applied to stabilize the quadrotor system.

3.8. Fractional-order Control

The fractional calculus theory which extends the derivatives and integrals of integer-order to non-
integer orders become one of the most interesting topics in control theory. It can describe some
non-classical phenomena in natural sciences and engineering applications with higher accuracy than
the conventional integer-order approach [39]. Recently, various fractional-order control techniques
have been applied to a quadrotor UAV.

In [40], a fractional-order PID controller has been implemented for attitude and position control
of a quadrotor. Simulation results show that the controller greatly enhanced the robustness and per-
formance of the quadrotor. In [41], a fractional-order super twisting sliding mode control has been
implemented for path following control of a quadrotor. The efficient performance of the controller is
studied under different scenarios. In [42], a fractional-order backstepping control of a quadrotor has
been proposed to achieve robust attitude performance in the presence of uncertainties and external
disturbances. In [43], an adaptive fractional-order sliding mode control of a quadrotor with slung has
been presented to tackle the uncertainties in the quadrotor mass.
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3.9. Gain Scheduling

Gain scheduling is a technique for controlling nonlinear systems with many operating points.
The nonlinear system is linearized at each operating point and a corresponding linear controller is
designed for each of the operating points. There are several studies in the literature that investigates
gain scheduling control of a quadrotor [44], [45], [46].

3.10. Adaptive Control

Adaptive control is a fruitful and robust control technique for dynamic systems with unknown
dynamics and parametric uncertainties [47]. This control algorithm automatically compensates for
parameter changes in system dynamics by adjusting the controller characteristics so that the overall
system performance remains the same, or rather maintained at an optimum [48].

In [49], the authors designed a Lyapunov-based composite adaptive control for a quadrotor UAV.
This controller achieved an excellent tracking performance in the presence of uncertainties and time
delays. In [50], a continuous time-varying adaptive controller is implemented in the condition of
unknown parameters. The simulation results of the proposed approach have good performance for
the quadrotor flight controller. In literature [51], the authors developed an adaptive backstepping
control for trajectory tracking operation of an underactuated quadrotor UAV. In [52], a robust adaptive
multilevel control of a quadrotor has been presented. The dynamic model of the quadrotor was divided
into three subsystems and the different control methods were designed for the systems.

3.11. Active Disturbance Rejection Control (ADRC)

Active disturbance rejection control (ADRC) is a kind of nonlinear robust control technique that
is based on extending the state of a system with a fictitious state variable denoting the disturbance in
the system. The disturbance is estimated in real-time with a state observer. The estimate is included
in the control input in order to compensate the disturbance in the system. The important attribute of
this technique is that it does not require full information about the system.

In [53], an approach integrating robust SMC with linear active disturbance rejection control
(LADRC) is proposed for the quadrotor with a varying mass. In [54], attitude control is presented for
a quadrotor in the presence of external disturbances based on a double closed-loop control technique.
This technique integrates the advantages of ADRC and ISMC. A nonlinear extended state observer
is adopted in the inner loop to estimate internal uncertain dynamics and external wind disturbances
timely for the quadrotor. In [55], an ADRC strategy is developed to tackle the effects of external
disturbances in the quadrotor system. Then, an extended state observer is employed to measure and
mitigate the lumped disturbances online which can enhance the disturbance suppression and robust-
ness of the system.

3.12. Intelligent control

Intelligent control is a control method that uses artificial intelligence computing approaches such
as Neural networks, Fuzzy Logic, GA, etc. In dealing with a complex system, some traditional
controllers are still unable to give a satisfactory performance to ensure the robustness of the system
against parameter uncertainties and external disturbance [56]. The capability of intelligent control
methods in controlling such a system is why it is used because basic control methods face difficulty
in controlling a complex system. Some of the most widely used intelligent controllers in quadrotor
applications, namely Fuzzy Logic, and Neural Network, are discussed.

Due to the global properties of neural networks and fuzzy logic systems, they are widely used
to approximate continuous and smooth nonlinear functions [48], [57]. In [58], a distributed adaptive
neural network formation control of quadrotors has been investigated. An adaptive fuzzy FTSMC
was proposed in [59]. A neuro-adaptive backstepping trajectory tracking control of a quadrotor has
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been presented in [60]. A FLS control scheme was designed for a quadrotor in [61].

3.13. Hybrid Control Techniques

Recently, researchers are combining different control approaches for the attitude and the position
subsystems of the quadrotor in order to obtain enhanced robust performances. In [36], an integral
backstepping-based SMC and an adaptive PID have been proposed for attitude and position tracking
of a quadrotor, respectively. In [62], a feedback linearization controller and a linear parameter varying
controller were implemented for the attitude and position of the quadrotor, respectively. In [63], an
adaptive backstepping controller and a backstepping FTSMC have been utilized to control the position
and the attitude subsystems of a quadrotor, respectively. In [64], a backstepping SMC and an active
disturbance rejection control (ADRC) have been developed for the position and the attitude tracking
control of a quadrotor, respectively. In [65], an integral SMC and a backstepping SMC were designed
for attitude and position tracking of a quadrotor, respectively.

4. Conclusions

Recently, the applications of quadrotor UAVs in military and nonmilitary sectors is increasing
tremendously because of their flexibility and versatility. Nevertheless, several challenges are deemed
to arise during the flight or while executing certain tasks and must be addressed and resolved. The
challenges include dynamic uncertainties, environmental disturbances, underactuation, and a strongly
coupled nonlinear dynamic model. As a result, developing effective and reliable control mechanisms
for the quadrotor dynamical system is critical. This paper discusses a survey of various control ap-
proaches applied on a quadrotor UAV. The control methods possess their own unique advantages,
limitations, and algorithms. Therefore, the choice of a suitable controller depends on the performance
requirement and the intended application of the quadrotor. As the number of applications expands,
the demand for hybrid control techniques that build on old control strategies will definitely increase.
Interestingly, some articles utilized multiple control algorithms to guarantee the fruitful performance
of the controllers. This article presents the recent studies that employed the hybrid control techniques
to ensure the promising operation of the quadrotor. Future studies will cover cloud control, guidance,
and navigation of quadrotors.
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