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1. Introduction  

According to the World Health Organization, over 15 million individuals are attacked by stroke 

each year, with approximately six million becoming incapacitated. The impairments range from 

completely paralyzed limbs to weakening [1]. Robot arm power aid is stretching therapists' limits 

these days [2]. They help people with arm impairment and injuries caused by accident-related spinal 

injuries, cerebrovascular illnesses, muscular dystrophy, and limb paralysis. The employment of 

robotic arms as a substitute for human caregivers is a viable option [3]. Rehabilitation is the process 
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 This article attempts to review papers on power assist rehabilitation robots, 

human motion intention, control laws, and estimation of power assist 

rehabilitation robots based on human motion intention in recent years. This 

paper presents the various ways in which human motion intention in 

rehabilitation can be estimated. This paper also elaborates on the control 

laws for the estimation of motion intention of the power assist rehabilitation 

robot. From the review, it has been found that the motion intention 

estimation method includes: Artificial Intelligence-based motion intention 

and Model-based motion intention estimation. The controllers include 

hybrid force/position control, EMG control, and adaptive control. 

Furthermore, Artificial Intelligence based motion intention estimation can 

be subdivided into Electromyography (EMG), Surface Electromyography 

(SEMG), Extreme Learning Machine (ELM), and Electromyography-based 

Admittance Control (EAC). Also, Model-based motion intention estimation 

can be subdivided into Impedance and Admittance control interaction. 

Having reviewed several papers, EAC and ELM are proposed for efficient 

motion intention estimation under artificial-based motion intention. In 

future works, Impedance and Admittance control methods are suggested 

under model-based motion intention for efficient estimation of motion 

intention of power assist rehabilitation robot.  In addition, hybrid 

force/position control and adaptive control are suggested for the selection of 

control laws. The findings of this review paper can be used for developing 

an efficient power assist rehabilitation robot with motion intention to aid 

people with lower or upper limb impairment. 
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of dealing with the effects of a stroke [4][5]. Stroke patients, accident sufferers, the elderly, athletes, 

and employees in physically demanding occupations are all at risk of losing their upper limb capacity 

to do daily tasks [6]. 

There are different classes of robotic systems [7] that can be used in various applications such as 

manufacturing process [8], artistic painting and drawing, welding [9] as well as rehabilitation, as 

shown in Fig. 1. Robotic devices used for rehabilitation are known as rehabilitation robots. End-

effector and exoskeleton rehabilitation robots are the two types of upper extremity rehabilitation 

robots [10], as shown in Fig. 2. These robots can do rehabilitation training tasks to assist patients in 

completing certain rehabilitation exercises [11][12] and perform varieties of movements [13][14]. At 

the same time, it provides a repeated and rigorous physical treatment that relieves the physical 

therapists of a significant amount of work [15]. End-effector systems, which use footplates or handles 

to create limb motion in space without needing alignment between the patient and robot joints, do so 

with footplates or handles [16][17].  

 

Fig. 1. Rehabilitation Arm [3] 

 

Fig. 2. End-effector (left) and exoskeleton (right) rehabilitation robot device [6] 

Each joint in the exoskeleton system is steered along a preprogrammed course by a one-to-one 

interface between robots and human joints [18]. Based on the number of joints manipulated, 

exoskeletons are divided into unilateral and bilateral robots [19]. The exoskeleton controller and the 

human brain, which consists of the spinal cord and cerebrum, are the two types of controllers that 

function in conjunction with power assist robots. The most prevalent aspect of exoskeleton robot 

control methods, particularly in power assist exoskeleton robots, is that they strive to replicate human 

motion intention. However, a thorough investigation of human mechanics is currently being 

conducted [20]. As a result, determining the appropriate control mechanism is challenging, and 
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optimizing such a control system is much more complex. In previous investigations, several control 

systems for controlling the upper-limb exoskeleton robot were developed. Based on the input signal 

to the motion controller, the human motion intention of upper-limb exoskeleton robots may be 

categorized into three types [21]: 

1) Control techniques based on bioelectrical signal measurements 

2) Control methods based on biomechanical measures 

3) Platform independent approaches.  

 

Control strategies based on bioelectrical signal measurements entail properly running the system 

under a variety of externally produced disruptions. In the case of power assist robots, the typical 

control concept's goal has been extended to include human motion intention. In this group of 

procedures, control techniques based on bioelectrical signal measurements, electroencephalography 

(EEG) [22], electrooculography (EOG), electromyography (EMG) [23], and other bioelectrical 

signals can be used [24]. Among these, the EMG signal is the most often used bioelectrical signal 

measurement [25]. EMG data are related to muscular activity levels and represent the firing rate of 

motor neurons. As a result, EMG signals directly represent the human's motion intention. EMG signals 

are measured in two ways: using surface EMG electrodes or with intramuscular EMG electrodes. Due 

to the variable circumstances of the skin and body size, EMG-related metrics are subject-dependent 

and might alter from day to day [26]. 

Power assist robots that use various strategies to extract the human motion intention are among 

the control methods based on biomechanical metrics. In the current state of the art, human motion 

intention is determined using alternative sensing instruments such as force/torque sensors or a 

dynamic model of the human limb. EMG signals are not employed in these procedures. Control 

techniques that operate either a human bioelectrical signal or a biomechanical signal are included 

platform-independent approach. With numerous exoskeleton improvements, several control 

techniques are given and utilized to improve the characteristics of the power assist robot's control 

system [27]. 

The rehabilitation robotics system is mainly divided into active and passive types. A passive type 

rehabilitation robotic system fully assists the patient in the rehabilitation exercise [28]. However, the 

power assist robot is an example of a passive type rehabilitation system that assists the patients instead 

of the therapists and has been developed for fully automatic robotic rehabilitation therapy. 

 Physically challenged persons can use power assist devices to help them with self-rehabilitation 

and everyday chores. Even though the main study purpose for power-assist exoskeleton robots was 

largely for industrial usage, several studies on upper-limb mobility, lower-limb motion, and/or other 

motions of physically weak persons have been done [29]. The application of fully robotic 

rehabilitation therapy may induce a higher risk of patient injury and may be uncomfortable for the 

patients since there is no direct therapist invention in training. There may also be errors in the robot 

actuation while conducting the therapy [30]. 

To fulfill the requirement for repeated therapy in stroke rehabilitation, power assist rehabilitation 

is an important field of study [6]. Technological advancements and the rising need for mobility aid 

are propelling society toward a future where this desire may be supplied by power assist devices. 

During the last several decades, the potential for assistive upper-limb devices to improve human 

quality of life has expanded the number of research activities in this field [31]. As a result of the high 

number of devices that have joined the scientific community, many assessments have been produced 

[32]. Human motion intention, lifting things, and other factors can all be used to segment power aid 

systems.  

Brahimi et al. [33] presented a gadget that can construct the intended trajectory based on the 

designer's estimate of the human's motion intention. Motion Intention was proposed as a solution since 

it takes a lot of energy for a human to move the exoskeleton arm. This is especially true if the distance 
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between the robot's real position and the human's motion intention is significant. This study only 

looked at the positions of the human hand; attitude adjustment isn't taken into account.  

For active power-assist lower limb exoskeleton robots, Li et al. [34] investigated a new method 

for analyzing human body motion intention. The inverse dynamics method (IDA) was utilized to 

calculate the human joint torque online using a dynamic model of the human body and a sensor system 

included within an exoskeleton robot that was built to monitor the human body's motion data and foot 

contact force. Kiguchi et al. [35] presented research on estimating interaction motion intention for 

perception-assist using a wearable power-assist robot. This procedure entails that the user of the 

power-assist wearable robot engage in utilizing visual information obtained from the worn came to 

determine the other person's motion intention. To curb these difficulties, wearable power-assist robots 

have been proposed to assist the motion of physically weak persons [36], such as elderly persons or 

disabled persons, in their daily life [37]. Chathuramali et al. [38] tackle the difficulty of detecting the 

user's motion intentions while engaging in desired interactions with others while wearing an upper-

limb power-assist wearable robot.  

The research contribution is the review papers on power assist rehabilitation robots, control laws, 

and estimation of power assist upper limb rehabilitation based on human motion intention in recent 

years and the suggestion of efficient estimation methods and control laws for power assist 

rehabilitation robots based on motion intention. 

The rest of this paper is organized as follows: Section 2 presents a power assist system that is 

developed for the application of power assist robot and power assist rehabilitation robot. Human 

motion intention and modes of estimation of motion intention are explained in section 3. Control laws 

used with motion intention estimation in power assist rehabilitation are described in section 4. Section 

5 summarized all the discussions and reviews made in this paper. Finally, the conclusion is drawn in 

section 6. 

2. Power Assist System 

A power assist system is a human-robot cooperation technology that increases a person's task-

doing ability. Currently, power assist devices are mostly used in the rehabilitation and healthcare of 

the sick, crippled, and elderly [39]. Other applications for power assist devices include; lifting baby 

carriages [40], supporting agricultural work, hydraulic power-assist for automobiles, skill-assist in 

manufacturing, power-assisted slide doors for automobiles, power-assisted control for bicycles, and 

power assistance for sports, and power assistance for horse training [41]. Power assist systems are 

developed for the following applications: Power assist robot, Power assist rehabilitation robot. 

2.1. Power Assist Robot 

A power assist robot is a human-robot collaboration that enhances a person's ability and expertise 

in executing tasks. Power-assist robots are valuable not just for physically disabled people but also for 

people who work in physically demanding jobs like care or farming [42]. Power assist robots are 

presently being developed primarily for rehabilitation assistance, lifting objects, and skill-assist for 

manufacturing, among others, according to the literature [43]. Handling huge objects, which is 

frequent and important in businesses, might be another area where power assist robots could be useful. 

It is vital to move massive items in industries like manufacturing and assembly, logistics and 

transportation, building, mining, disaster and rescue operations, forestry, and agriculture. Handling 

large objects requires a lot of effort and might lead to work-related diseases and disorders including 

issues of increasing concern. However, in many circumstances, autonomous devices may not provide 

the essential flexibility in object handling and positioning [44]. As a result, in the aforementioned 

industries, the use of appropriate power assist systems is appropriate for handling huge objects. 

In the industrial world, manipulating heavy objects is a fairly common and familiar operation. 

Manual manipulation, on the other hand, is inconvenient [45]. In many real applications, autonomous 

devices may not give the requisite amount of freedom in object handling [46]. As a result, adequate 

power-assist devices are regarded to be useful for this function. On the other hand, such gadgets are 
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uncommon in practice. The human operator cannot accurately assess the gravity of the object before 

handling it with the assist system, resulting in incorrect interactions between the system and the user, 

such as rapid acceleration, user dread, lack of maneuverability and stability, deadly accident, and so 

on. Although a few power assist robots have been developed for transporting things [47], they are not 

as safe, natural, or human-friendly for lifting heavy objects in industries.  

With conventional power assist robotics, the operator applies excessive load force (LF- vertical 

lifting force) because the operator cannot precisely judge the weight of the object before elevating it 

with the robot. Excessive lifting force, among other things, produces a quick increase in acceleration, 

operator fear, a lack of agility and stability, and an accident. On the other hand, conventional power 

assist systems for object handling do not consider this. Other drawbacks of conventional power assist 

systems for object manipulation include the lack of human characteristics in control, the system's 

weight, the quantity of power aid being unclear, and the system's safety, mobility, and efficiency not 

being properly analyzed, among others. Conventional power assist devices, on the other hand, do not 

take a holistic approach to tackle these problems/issues to make systems more human-friendly [48]. 

Given these issues, Rahman et al. [49] suggested using a ball screw system to lift goods. When 

an object is lifted using the power assist robot, a psychophysical link is created between the real 

weights (weight of an object felt by a person if the object is lifted manually) and the power-assisted 

weights of an object perceived by a human (operator). The surplus in lifting force is calculated so that 

the subjects can use the robot system to lift objects. Workers in industrial settings choose whether to 

move goods with one or two hands based on physical characteristics such as form, size, and mass. As 

a result, psychophysical correlations are developed, and excess lifting force is computed separately 

for three protocols: unimanual lift, bimanual lift, and cooperative lift. A unique control technique 

based on weight perception and lifting force characteristics are used to modify the control. The 

updated control minimized the excessive lifting power in each lifting protocol, considerably 

improving the robot system's mobility, operability, naturalness, ease of use, stability, and safety. As a 

result of the aforesaid method, human-friendly power assists robots in lifting heavy things in industries 

that can be developed. 

2.2. Power Assist Rehabilitation robot  

Power assist rehabilitation robots are designed and developed to assist physically disabled people 

with self-rehabilitation and daily activities. Power assist rehabilitation robots are divided into two 

categories. The first is an assistive robot that takes over for missing limb movement. A wheelchair-

mounted robotic arm controlled by a chin switch or other input device is the Manus ARM (assistive 

robotic manipulator). Telemanipulation is a technique that operates similarly to an astronaut 

controlling a spacecraft's robot arm from the cockpit. Powered wheelchairs are another type of 

teleoperated helpful robot. The second form of rehabilitation robot is a therapy robot, sometimes 

known as a rehabilitator. According to neuroscientific study, the brain and spinal cord retain a 

remarkable ability to adapt, even after damage, by using rehearsed motions. Therapy robots are 

devices or equipment that rehabilitation therapists use to assist patients in practicing motions with the 

assistance of the robot. MIT-Manus, the first robot employed in this fashion, assisted stroke patients 

in reaching across a tabletop if they were unable to do it on their own. Patients who got additional 

therapy from the robot had a faster return of arm mobility [50].  

Power assist rehabilitation of upper and lower limb technologies grows quickly due to the increase 

of the aged population. In the upper limb rehabilitation system, power assist robot training seems to 

improve arm function for daily life activities. Upper limb rehabilitation robots perform the specified 

motion to the human upper limbs, which include the shoulder, elbow, arm, and hand. However, lower 

limb rehabilitation robots help to improve functions of the human lower limbs which include the hip, 

knee, leg, ankle, and toe. Recently, many researchers in the field of power assist rehabilitation have 

been in search of the appropriate design that helps humans perform their desired motions. 
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Hayashi and Kiguchi [51] proposed a perception-assist for a lower-limb power assist 

rehabilitation robot to help the elderly or physically challenged walk. The proposed perception assist 

involves the power assist robot observing the surroundings in front of the user and modifying the 

user's mobility as needed to avoid the user from falling, all while doing the standard power assist. 

Furthermore, the suggested technique conducts perception-assist while keeping steady walking by 

taking into consideration Zero Moment Point (ZMP). 

Mansour [52] suggested a concept design for an upper limb power assist rehabilitation robot based 

on electromyogram (EMG) for patients who have problems moving their arms but whose muscle 

signals are still intact. The recommended design was created and designed using a CAD model. The 

device has one degree of freedom (DOF) and two basic dimensions: flexion and extension, and it is 

controlled using electromyogram (EMG) signals acquired from human muscles. The proposed 

approach may be applied anywhere with only one person's assistance. 

Kiguchi et al. [53] presented a task-oriented perception-assist with an upper-limb power-assist 

rehabilitation robot to aid physically weak people with daily tasks. A method of perception-assist was 

presented to aid not only the user's mobility but also the interaction with an environment by applying 

the modification force to the user's motion if necessary. The gripping tool was utilized to evaluate the 

performing task utilizing contour and color histograms in the perception-assist approach. 

Kadota et al. [54] published a report on the development of a power assist rehabilitation robot arm 

that uses pneumatic artificial rubber muscles (PARMs) and a balloon sensor to help upper-limb and 

back movements. A single PARM moves the elbow and wrist joints, and the arm components' activity 

is similar to that of bi-articular muscles. Three PARMs are attached to a waist belt on the costume's 

back. To provide precise power-assist motion and regulate pressure, PI control (Proportional Integral 

control) is used, which is based on pressure data collected from a newly designed balloon sensor. One 

robot arm uses a single PARM to assist the user's wrist and elbow joints. This robot arm is connected 

to a waist belt by three PARMs that form a suspender-like structure. The output voltage of the servo 

valves is determined by the control system, and the generated power assist is matched to the pressure 

in the PARM. 

According to the literature reviews, not only the user's motion should be considered for an efficient 

power assist rehabilitation robot. A method perception-assist was proposed to assist not only the user's 

motion but also the user's interaction with an environment by applying the modification force to the 

user's motion if necessary. Furthermore, the most effective technique to assess the effectiveness of a 

power assist rehabilitation robot is to use an electromyogram (EMG)-based control signal.  

3. Human Motion Intention 

The predicted acceleration, velocity, and location of a person are defined as human intention [2]. 

In a human limb model, human intention is represented by the intended velocity, which is estimated 

in real-time using interaction force and contact point movement parameters such as the robot's current 

location and velocity [55]. The military, space technology, industry, medical treatment, healing, aiding 

the elderly and disabled, and entertainment are all examples of human-robot partnership [33]. 

Synchronization, high contact force, and inadequate motion compliance are among the disadvantages 

of human-robot collaboration. Impedance control, which allows the robot to follow a preset path, is a 

potential option for interaction control. The techniques of altering the assistance lever of the 

impedance parameters are often utilized in many applications of human-robot shared control systems 

[56]. From visual image acquisition to human behavior forecasting, there are various approaches based 

on behavioral features, such as facial recognition and outline recognition. These approaches, on the 

other hand, do not apply to physical human-robot interactions in which just the interaction force 

information is supplied [57].  

To address the aforementioned issues, a machine learning technique (radial-based function neural 

network model) for identifying collaborators' intentions is required to assess the cooperation intention 

in touch human-robot collaboration. To begin, sample data is collected using the adaptive impedance 
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control technique to provide training and test data for a neural network. A rudimentary neural network 

model is generated after mapping sample data. Finally, the collaborator's purpose is determined via 

online prediction [58]. To confirm that the RBFNN technique is valid, the robot's contact point speed 

and interaction forces are measured and compared to the suitable experimental parameter values from 

the adaptive impedance control algorithm. In a contact human-robot interaction, the RBFNN approach 

can precisely determine the collaborator's purpose, which not only improves motion synchronization 

but also efficiently reduces the interaction force. 

The human-robot collaboration whole architecture is primarily made up of three parts: data 

collection, offline learning, and online real-time estimate. Human motion intention can be estimated 

in various ways, which include: Artificial intelligence-based motion intention estimation and Model-

based motion intention estimation. 

3.1. Artificial Intelligence Based Motion Intention Estimation 

Surface electromyography (SEMG) based control, EMG based control, EMG-based admittance 

control (EAC), and Extreme Learning Machine (ELM) based methods have all been proposed in the 

literature for predicting, detecting, and assessing motion intention. Recognition of the wearer's 

movement intention is critical in the examination of power-assist robots [59]. Accurate and real-time 

recognition of human motion intention is necessary for flawless human-machine synchronization and 

wearing comfort [60]. Surface electromyography (SEMG) is a bioelectrical signal produced when a 

neuron transmits human motion intention information directly to connected muscles [61]. As a 

consequence, the motion intention may be fully inferred without any information delay or loss [62]. 

A better human-machine interface might be created using SEMG-based motion intention recognition. 

Human motion intention recognition based on SEMG is going to become widespread because of its 

abundant information, sophisticated acquisition technology, and noninvasiveness [63]. 

The two techniques of SEMG-based motion intention recognition are SEMG-driven 

musculoskeletal (MS) model-based motion and machine learning (ML) based motion. A 

biomechanics model of muscles for the SEMG-driven musculoskeletal (MS) model can be used to 

build a relationship between SEMG and joint moment, angular velocity, or angular acceleration. This 

technique has the advantage of detailing the motion generation process. Machine learning uses the 

SEMG feature or processed SEMG as an input. To achieve discrete-motion classification or 

continuous-motion estimation, a mapping between input and human motion intention is used. Support 

vector machines (SVMs), linear discriminant analysis (LDAs), back-propagation neural networks 

(BPNNs), and deep learning (DL) are some of the most often utilized machine learning techniques for 

motion intention identification [64]. The ML model has reduced computing complexity, shorter 

operation time, and real-time performance than the SEMG-driven musculoskeletal model. Deep 

learning (DL) is increasingly being utilized for human motion intention identification as deep learning 

research has progressed in recent years. DL outperforms the competition in terms of model 

nonlinearity, capacity to solve complicated problems, and recognition accuracy [65]. Three DL 

models are often used for motion intention recognition: deep belief network (DBN), convolutional 

neural network (CNN), and stacked auto-encoder (SAE) [66]. SEMG is an excellent alternative for 

estimating motion intention [67]. EMG-driven MS model and ML model are two techniques to 

implement the SEMG-based human-machine interaction method. The identification of human motion 

intentions is the most crucial part of the entire operation [68]. 

The capacity to foresee future motion is required for motion interaction. Motion prediction is a 

branch of study with applications in many different fields, ranging from video surveillance to robot 

navigation. Motion intention prediction is used to determine the human-robot collaboration goals. A 

power-assist rehabilitation robot, which is directly attached to the user's body and supports movement 

in line with the user's goal [69], is one of the most effective assistance robots for physically weak 

persons. Although EMG signals from the user's muscles directly reflect the user's motion intention, 

EMG-based control (control based on the user's skin surface EMG signals) is one of the most effective 

control methods for many types of assisting robotic systems, particularly power-assist exoskeleton 

robots. However, even with the same person, EMG-based control is challenging to implement since 
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obtaining the same EMG signals for the same movement is difficult. Furthermore, because a joint 

motion involves numerous muscles, real-time motion prediction is difficult because each muscle's 

activity level and how each muscle is used for a specific motion varies from person to person. The 

participation of each muscle in a certain motion changes depending on joint angles [70], and the 

activity level of some muscles, such as biarticular muscles, is influenced by the motion of the other 

joint. 

Kiguchi [71] suggested a Neuro-fuzzy approach for accurately estimating the motion intention of 

the user of the power-assist rehabilitation robot, which could be utilized to compensate for the effect 

of the posture difference. The neuro-fuzzy controller is a cross between a fuzzy controller that can 

handle ambiguous input and employ human expertise and an artificial neural network controller that 

can adapt and learn. Combining several neuro-fuzzy controllers can alleviate the above-mentioned 

issues with EMG-based control. The mapping ability of an artificial neural network may also be 

employed to tackle the problems. Changing the weight values (i.e., the consequence component of the 

fuzzy IF-THEN control rules) as functions of EMG data of the linked muscles can also solve the 

problems. If the degree of freedom of the assist motion is limited, another method based on EMG 

signals to assess the user's motion intention might be used. Although those neuro-fuzzy controllers are 

excellent at controlling the power-support robot using EMG data, the controller becomes more 

difficult as the degree of freedom of the power help rehabilitation robot increases. 

The suggested neuro-fuzzy modifier has a topology similar to a neural network, and the signal 

flow method is akin to fuzzy reasoning. The five steps of a neuro-fuzzy modifier's architecture are the 

input layer, fuzzifier layer, rule layer, defuzzifier layer, and output layer. The neuro-fuzzy modifier 

takes into account the shoulder flexion/extension angle, shoulder adduction/abduction angle, shoulder 

internal/external rotational angle, elbow flexion/extension angle, and forearm pronation/supination 

angle. Each joint angle is divided into three halves. (FL: flexed region, IM: intermediate region, and 

EX: extended region for shoulder flexion/extension and adduction/abduction angles, and IN: internal 

region, CE: center region, and EX: external region for shoulder internal/external rotational angle and 

forearm pronation/supination angle). The output of the neuro-fuzzy modifier is the coefficient for each 

weight [71]. 

The detection of motion intention is difficult, especially when it comes to upper-limb motions, 

which are predominantly used for dexterous manipulation activities. Myoelectric signals can provide 

useful information about a person's movement’s purpose and the amount of effort they put in. As a 

result, electromyography (EMG) data may be used to construct natural human-machine interfaces for 

prosthetics, orthotics, telemanipulation, and functional electrical stimulation. Although the EMG 

control showed promise in improving the quality of life of patients with limb impairments, its clinical 

and commercial uses are still limited. Given the challenges of providing reliable control just by EMG, 

it appears that many sensor modalities are necessary for sophisticated device control [72]. An EMG-

based admittance controller (EAC) was created to overcome the concerns. However, deciphering 

human intent for effective use and efficient functioning of a multifunctional device involves several 

challenges. The fundamental explanation is that the EMG signals are time-varying and noisy [73]. 

Furthermore, there is a complicated non-linear connection between the various muscles and the output 

forces they provide.  

Antuvan [74] proposed a novel method called Extreme Learning Machine (ELM) to overcome 

these challenges. ELM is a new learning paradigm that combines single and multi-hidden layer neural 

networks, radial basis function networks, and kernel learning to provide an efficient unified method 

for generalizing feed-forward neural networks. ELM is a Single-hidden Layer Feed-forward Neural 

Network (SLFNN) [75], which is a relatively recent supervised learning technique. ELM has many 

advantages, including quick learning, simplicity of deployment, and little human interaction [76]. 

Thus holds a lot of promise as a feasible alternative approach for large-scale computing in a variety 

of applications, such as image [77], text [78], voice [79], multimodal processing [80], cognitive 

learning [81], and reasoning [82]. 

Huang et al. [83] also suggested ELM as a new algorithm to solve the above issues. Hidden layer 

(biased) weights are determined at random in the ELM method. After selecting a random weight, the 
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network's output weights (which connect the hidden and output layers) are calculated analytically 

using a simple generalized inverse operation on the hidden layer output matrices. The learning pace 

of this technique is hundreds of times quicker than that of typical feedforward networks that employ 

the back-propagation algorithm. The ELM method is straightforward to implement and free of the 

over-fitting concerns that afflict RBFNN-based algorithms. Feedforward neural networks, such as 

RBFNN, have long been used in a variety of fields due to features like a direct approximation of 

complex nonlinear functions using input and output samples and the provision of models for a wide 

range of natural phenomena that are difficult to model using traditional parametric methods. 

These methods, however, are inadequate for applications such as determining human purpose 

since they are slow when approximating a large class of natural events. It's hardly unexpected that 

training such neural networks can take many hours. The main cause of this delayed learning is that all 

of the network's parameters must be fine-tuned. Based on inputs from force sensors, current joint 

location, and current moving speed, ELM may smoothly assess intended intentions, learn human 

motion patterns, and anticipate future movement [84]. In rehabilitation and assistive robotics, this 

desired motion can be used to increase performance and robot compliance. 

 Using filtering technology, a quantitative model may be utilized to infer human motion intention. 

The user's inferred intent can be utilized as a control input for robot mobility. The human-robot 

interface has a basic design and is easy to put on and take off. An exoskeleton-type rehabilitation or 

assistive robot might be better handled by employing the recommended interface, intention estimation, 

and intention-based control algorithms to make the user feel natural and comfortable [21]. The power-

assisted rehabilitation robot must be able to increase power in proportion to the required mobility. To 

do so, the robot has to figure out which components of the encounter are dependent on human intent 

[85]. 

3.2. Model-Based Motion Intention Estimation 

Impedance and admittance control interaction is presented for estimating the Motion intention 

equation. The synchronization of output torque is crucial during human-robot interaction. When a 

torque sensor is used to detect motion intention, a delay between the human's voluntary torque and 

the robot's supportive torque might obstruct human-robot synchronization. When compared to earlier 

equations such as a torque sensing-based equation, an admittance and impedance interaction equation 

is devised to improve human-robot synchronization. 

When the exoskeleton's endpoint is too far away from the blue ball on the prescript trajectory, 

Xing et al. [86] developed an interaction control strategy derived from impedance control to allow the 

individual to actively execute the training activity while being driven by the power assist robot. The 

relationship between the interaction torque 𝜏ℎof each joint, and the motion state of the endpoint is 

known as the impedance interaction.  

 𝜏ℎ +  𝐽𝑇 𝐹𝑔 =  𝐽𝑇 [𝐾1 (𝑋0 − 𝑋) + 𝐾2 �̇�]        (1) 

where 𝐽 is the Jacobian matrix of the exoskeleton robot, 𝐽𝑇 is the transposed form, 𝐹𝑔 is the extra 

gravity compensated force. 𝑋 and 𝑋0  represent the position of the endpoint from the exoskeleton and 

the nearest position of the endpoint on the prescript trajectory, respectively. 𝐾1  and 𝐾2  are the stiffness 

and damping coefficient, respectively. 𝐹𝑔 is equivalent to that there is a virtual handholding of pulling 

the endpoint of the exoskeleton. 

The Jacobian matrix may be used to translate it into compensated torques for each joint, which 

can then interact with the observed interaction torques. �̇� = 𝐽�̇� is the velocity of the endpoint. The 

admittance control may be used to define the connection between the desired speed and the interaction 

torque of each joint (1). 
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 𝑞 ̇ =  
𝜏ℎ +  𝐽𝑇 𝐹𝑔 =  𝐽𝑇 [𝐾1 (𝑋0 − 𝑋) + 𝐾2 �̇�]

𝐾9 𝐽
𝑇 𝐽

 (2) 

As demonstrated by the equation, the intended velocity of each joint will change as the interaction 

torques from the associated joint vary throughout active training sessions (2). The current speed 

changes are influenced by contact torques, deviation from the end point's reference trajectory, and the 

damping impedance coefficient 𝐾2. When the position of the endpoint deviates from the prescript 

trajectory, implying that 𝑋0 ≠  𝑋, t the desired velocity of each joint changes to bring the subject back 

to the reference trajectory. The stiffness and damping impedance coefficients 𝐾1 and 𝐾2 determine the 

adjustment range. To conduct speed tracking of the robot and accomplish control of the active 

interaction training sessions, the Model-Free Adaptive Sliding Mode Controller (MFASMC) will 

employ the target velocity of each joint q, which is output by the interaction controller. 

Zhuang et al. [87] employed a lower-limb neuro musculoskeletal model to calculate human joint 

torque using EMG data and then applied an admittance control approach to achieve the desired 

position. An EMG-based admittance controller (EAC) was used to generate a synchronized and stable 

Human-Robot Interaction (HRI). To create a synchronized and reliable Human-Robot Interaction, an 

EMG-based admittance controller (EAC) was employed (HRI). The power assist exoskeleton robot 

was controlled by an admission controller to aid patients in completing the movement. The subject's 

planned movement position in the admittance controller was decided by the admittance model, into 

which the subject's voluntary torque was entered. The PD controller was then used to control the 

power assist robot, which monitored the subject's intended posture.  

Li et al. [88] used a human upper-limb model to characterize human motion intention as the 

intended trajectory, then used neural networks to identify model parameters online before 

incorporating the desired trajectory into an upper-limb humanoid robot's impedance control. When 

the human motion intention is uncertain, and the robot dynamics are unknown, adaptive impedance 

control is employed for a robot working with a human partner. The planned trajectory in the human 

partner's limb model is characterized as human motion intention, which is extremely difficult to fulfill 

because of the limb model's nonlinear and time-varying features. Neural networks are employed to 

tackle this challenge, and an online estimation technique is built around them. The robot follows a 

specified target impedance model thanks to the created adaptive impedance control, which integrates 

the anticipated motion intention. Using the described technique, the robot might actively cooperate 

with its human counterpart.  

Impedance and admittance control interaction were proposed for human motion intention 

estimation. The admittance control strategy is used to attain the required position so as assist the 

patient in completing its movement. The power assist rehabilitation robot follows a target using an 

adaptive impedance control method. To enable the robot to actively engage with its human partner, 

the estimated motion intention is included in the developed adaptive impedance control.   

4. Control Laws Used With Motion Intention Estimation in Power Assist 

Rehabilitation Robot 

The primary component driving upper limb power assists robot development is human motion 

intention. Human motion intention can be obtained if the estimation is right. Estimating the wearer's 

motion intention is a critical difficulty in rehabilitation or assistive robot since any helpful robot should 

move in accordance with the wearer's intention. The development of an accurate identification 

mechanism for determining the wearer's motion intention is especially crucial in wearable power assist 

systems [89]. A quantitative model describes human intention, which may be determined using 

filtering technology. The expected intent of the wearer might be used as a control input to guide the 

robot's movements, making the user feel at peace. Through the analysis of the conduction path and 

the different stage manifestations of motion intention in the human body, it was confirmed that the 

joint torque of the human body meets the basic requirements of motion intention estimation for the 

active power-assist, and it was suggested that: it reflects the direction and intensity of the wearer's 
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efforts, it precedes human limb motion, and it generates real-time and continuous output. As a result, 

a correct model, assessment of human purpose, and technique of calculating human joint torque are 

necessary [20]. 

Conventional control systems based on force/torque sensors have difficulties recognizing human 

intentions and are prone to misinterpreting or distorting such intentions as a consequence of external 

contact force disturbances, such as those experienced in everyday activities. As a result, the genuine 

human force cannot be properly dissected by a power-assist robot controller. The total of the applied 

force, including unknown external elements and human intention, is detected by force/torque sensors  

[90]. The power assist robot can also employ motion sensors on the user to assist with the anticipated 

motion [91].   

Tang et al. [92] used the proportional myoelectric control approach to run an upper-limb power-

assist exoskeleton controlled by pneumatic muscles in real-time according to the user's motion 

intention. An electromyogram (EMG)-angle model was created for pattern detection using the feature 

extraction approach and classification (back-propagation neural network). The elbow angle was 

assessed using EMG data, and a back-propagation neural network (BPN) was utilized to construct the 

EMG-angle model to make the exoskeleton configurable to each participant. The network prediction 

performance was used to measure the control strategy's dependability throughout varied motion 

durations, with the four-second interval having the best prediction performance. Furthermore, the 

power-assist performance was evaluated in a variety of circumstances, and a positive effect was 

proven. The findings revealed that the exoskeleton could be controlled in real-time by the user's 

motion intention and that it was useful for improving arm performance with neurological signal 

control, which might be useful for elbow rehabilitation after neurological damage. Zeng et al. [93] 

utilized the contact force and the EMG data to apply a state-space model to predict the knee joint angle 

in real-world applications, and the Gaussian process was used to enhance the adaptive method.  

A hybrid active control approach with human intention detection was proposed by Yang et al. 

[94]. To continually analyze the goal location and velocity of the human intention, the human upper-

limb model and the minimal jerk model were utilized. The human upper-limb model and the Minimum 

Jerk model (MJM) were used to compute the proper location and velocity. Also, because the end-

effector had such a low mass, the observed cable force was interpreted as the robot-human contact 

force. The motion intention was then supplied to an upper-limb cable-driven rehabilitation robot's 

hybrid force and position controller (CDRR). A three-dimensional reaching task with no 

predetermined trajectory was utilized to assess the efficacy of the suggested control mechanism.  

Wang et al. [95] proposed a motion intention-based bionic control system for a power assist 

exoskeleton robot arm. Filtering is used to pre-process the motion signal that has been captured. The 

motion intention and motion mode of the processed signal are then classified using a hierarchical 

multi-classification support vector machine. The required parameters are then transmitted, and the 

oscillator network is reconstructed to produce periodic motion control for rehabilitation training, 

depending on the user's aim. 

For an upper-limb power-assist robot, Huang et al. [96] designed an intention-guided control 

approach. The wearer's upper-limb motion intention is evaluated in real-time by force-sensing 

resistors (FSRs), and the Intentional Reaching Direction (IRD) is used to quantify this intention. The 

motions of three DC motors mounted at the relevant joints of the robotic arm are controlled by the 

inferred IRD using an admittance control approach. 

Yang et al. [97] suggested an upgraded robot skill learning system that took into account motion 

creation as well as trajectory tracking. Dynamic movement primitives (DMPs) were utilized to 

simulate robotic motion during robot learning demonstrations. Each DMP is made up of a group of 

dynamic systems that work together to improve the stability of the produced motion toward the 

objective. To increase the DMP's learning performance, a Gaussian mixture model and Gaussian 

mixture regression were combined, allowing more aspects of the skill to be retrieved from repeated 

demonstrations. In both space and time, the motion created by the learned model was scaled. To 
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monitor the trajectories provided by the motion model, the robot was given a neural network-based 

controller. A radial basis function neural network is utilized in this controller to adjust for the influence 

of changing surroundings.  

Ravandi et al. [98] suggested an adaptive fuzzy controller that combines hybrid force/position 

control of robotic manipulators working in unpredictable settings with conventional sliding mode 

control (SMC). After decomposing the manipulator dynamics into position, force, and redundant joint 

subspaces, the universal approximation capacity of fuzzy systems is utilized to approximate the 

corresponding part of the control input produced using the SMC approach. An adaptive PI controller 

estimates the robust component of the controller to correct variations caused by model uncertainty and 

disturbances. 

Liu et al. [99] developed a hybrid force/position control system for robotic arms based on the 

stiffness estimation of an unknown environment, resulting in precise control and a stable system. To 

increase the robot's applicability and dependability in welding, polishing, and assembling, a 

frequency-division control method is devised.  

Predicting human intent necessitates human-robot interaction. As a result, synthesizing a precise 

model-dependent controller is challenging, and control rules based on a simplified version of the 

dynamics may fail in real-world applications. Hybrid force/position control has been known as a kind 

of control method for the contact work of the manipulators [100]. Hybrid force/torque control was 

designed to avoid force control challenges in which the position, force, and redundant joint subspaces 

are orthogonal to one other. Hybrid control is also useful when tracking precision and a sufficient 

range of interface force are required.  

The planned trajectory in the human partner's limb model is characterized as human motion 

intention, which is extremely difficult to fulfill due to the limb model's nonlinear and time-varying 

features. To solve this problem, neural networks are used, and an online estimating approach is 

constructed based on them. The created adaptive impedance control incorporates the predicted motion 

intention, causing the robot to follow a set target impedance model. The power assist robot's intention-

guided control can be employed as a useful and pleasant power support device. Furthermore, the usual 

trajectory control method's flaws are avoided. 

5. Results and Discussion 

Power assist system, power assist robot, power assist rehabilitation robot, and human motion 

intention estimation is reviewed in this article. Power assist devices are systems that help a person’s 

capacity to perform a task. Power assist systems can be used for various applications such as; liftings 

objects, manufacturing processes, healthcare, and rehabilitation exercises. Power assist rehabilitation 

robots are robots used to help the old, ill, and physically disabled people with self-rehabilitation and 

daily activities. Power assist rehabilitation can be upper limb rehabilitation or lower limb 

rehabilitation. For an efficient power assist rehabilitation robot, not only the user’s motion should also 

be considered, but a method perception-assist is proposed to assist not only the user’s motion but also 

the user’s interaction with an environment. Human motion intention is the prediction of the velocity, 

acceleration, and position of a person.  

Rahman et al. [49] developed One Degree of Freedom (1DOF) power assist robot that took into 

account human weight perception in unimanual, bimanual, and cooperative modes. Also, a power 

assist robot arm using pneumatic rubber muscles with a balloon Sensor was developed by Kadota et 

al. [54]. Hence, motion intention was not considered in both projects. Zhuang et al. [87] published a 

paper on admittance control based on an EMG-driven musculoskeletal model that enhances human-

robot synchronization. This paper explained how EAC was used to generate a synchronized and 

stable Human-Robot Interaction (HRI) but did not mention this application on power assist 

rehabilitation robots using motion intention. This review paper was able to explain the methods, 

control laws, and motion intention estimation that can be used for power assist rehabilitation robots 

using motion intention. 
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Papers on human motion intention and types of motion intention estimation are reviewed based 

on artificial intelligence-based motion intention estimation and model-based motion intention 

estimation. The method of estimating motion intention based on artificial intelligence includes; 

Electromyography (EMG) based control method, Neuro-fuzzy control method, EMG-based 

admittance control (EAC) method, and Extreme Learning Machine (ELM) method. For Artificial 

intelligence-based motion intention, EMG-based control signal is one of the most effective control 

methods for many types of power assist robotic systems, especially for power assist rehabilitation 

robots. Hence, EMG-based control is difficult to execute, time-varying, and noisy. To solve these 

issues, the neuro-fuzzy technique is proposed to properly estimate the motion intention of the user of 

the power-assist rehabilitation robot. However, neuro-fuzzy controllers are great at directing the 

power-assist robot, but as the degree of freedom of the robot increases, the controller becomes more 

complicated. 

In light of these problems, an EMG-based Admittance Controller (EAC) was developed to 

successfully interpret the human motion intention of the robots with more degree of freedom. 

However, EAC is a complicated non-linear connection between the various muscles and the output 

forces they provide. Functional usage and efficient operation of a multifunctional gadget present a 

number of obstacles. Given these issues, a new algorithm called Extreme Learning Machine (ELM) 

is suggested. The ELM algorithm is simple to construct and effective for multifunctional gadgets. 

Having reviewed various papers, for a power assist rehabilitation robot to actively engage with its 

human partner, an adaptive impedance control method and admittance control method are suggested 

for estimating motion intention. Hybrid force/ position control and adaptive control are proposed for 

control laws to be used for motion intention estimation in power assist rehabilitation robots. To obtain 

an efficient estimation based on artificial intelligence, EAC and ELM are proposed.  

Table 1 summarizes the motion intention estimation technique, input signal, controller, and types 

of rehabilitation robots of the power assist rehabilitation robots. 

Table 1.  Summary of Review Result 

No Authors, Year 

Type of 

Rehabilitation 

Robot 

Motion Intention 

Estimation 

Technique 

Input Signal Controller 

1 

 

K. Kiguchi [71], 

2007 

 

Upper Limb 

Rehabilitation 

(Shoulder, Elbow, 

and Fore Arm) 

Neuro-Fuzzy 

Technique 
EMG Signal 

 

EMG based 

control 

 

2 
C.W. Antuvan [74], 

2019 

Upper Limb 

Rehabilitation 

Extreme 

LearningMachine 

(ELM) 

EMG Signal 

EMG based 

control 

 

3 

L. Xing, X. Wang, 

and J. Wang [86], 

2017 

Upper Limb 

Rehabilitation 

(Shoulder, Elbow, 

and Fore Arm) 

Motion Intention-

Based Virtual Reality 

Training System 

(MIVRTS) 

Motion 

Intention Detector 

(MID) 

Impedance and 

Admittance 

Control 

4 

Y. Zhuang, S. Yao, 

C. Ma, and R. Song 

[87], 2019 

Upper Limb 

Rehabilitation 

EAC and Torque-

sensing-based 

Admittance Control 

(TAC) Method 

EMG signal 
Admittance 

Control 

5 
Y. Li and S. S. Ge 

[88], 2014 

Upper Limb 

Rehabilitation 

Radial Basis Function 

Neural Network 

(RBFNN) Model 

Neural Network 

Signal 

Adaptive 

Impedance 

Control 

6 

Z. Tang, K. Zhang, 

S. Sun, Z. Gao, L. 

Zhang, and Z. Yang 

[92], 2014 

Upper Limb 

Rehabilitation 

 

Back-Propagation 

Neural Network 

(RPNN) Model 

EMG Signal 
EMG based 

Control  

7 

Q. Yang, C. Xie,  

R. Tang, H. Liu, 

and R. Song [94], 

2020 

Upper Limb 

Rehabilitation 

Minimum Jerk model 

(MJM) 
EMG Signal 

Hybrid 

position/force 

control 
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No Authors, Year 

Type of 

Rehabilitation 

Robot 

Motion Intention 

Estimation 

Technique 

Input Signal Controller 

8 

W. Wang, L. Qin, 

X. Yuan, X. Ming, 

T. Sun, and Y. Liu 

[95], 2019 

Upper Limb 

Rehabilitation 

(Shoulder, Elbow, 

and Arm) 

Support Vector 

Machine (SVM) 

Model 

EMG Signal 

Central Pattern 

Generator 

(CPG) Based 

Bionic Control 

9 

J. Huang, W. Huo, 

W. Xu, S. 

Mohammed, and Y. 

Amirat [96], 2015 

Upper Limb 

Rehabilitation 

(Shoulder, Elbow, 

and Arm) 

Intention Guided 

Control technique 
EMG Signal 

Admittance 

Control 

10 

A. Karamali 

Ravandi, E. 

Khanmirza, and K. 

Daneshjou [98], 

2018 

Upper Limb 

Rehabilitation 

(Arm) 

Adaptive Fuzzy 

Sliding Mode Control 

(AFSMC) Method 

Sliding Mode 

Control (SMC) 

Signal 

Hybrid 

Position/Force 

Control 

11 

G. Liu and L. Fang 

[99], 2020 

 

Upper Limb 

Rehabilitation 

(Arm) 

Recursive Least 

Squares Method 

Improved With A 

Variable Memory 

Factor (RLSVF) 

Frequency-Division 

Signal 

Hybrid 

Position/Force 

Control 

6. Conclusion 

Power assist robots are developed to amplify human muscle strength. Patients employ power 

assist robots for rehabilitation exercises with the help of a therapist. In the subject of robot 

rehabilitation, the power assist system is the current research focus.  Power assist rehabilitation robots 

are devices designed to help physically weak persons such as elderly persons, ill, and physically 

challenged persons to live an independent life. This article discusses human motion intention and 

different types of motion intention estimation, with an emphasis on the estimation, prediction, 

detection, and control laws issues. However, other models and controls can be used for other varieties 

of robots, depending on the application. For future research, a power-assist rehabilitation robot can be 

developed based on the motion intention estimation and controller strategies reviewed in this paper. 
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