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ABSTRACT

It is well known that time delay in nonlinear control systems may lead to
the deterioration or even destabilization of the closed-loop systems. There-
fore, specific analysis techniques and design methods are needed to be de-
veloped for nonlinear control systems in the presence of time delay. This
chapter aims to give a broad overview of the stability and control of nonlinear
time-delay systems. Firstly, we present some motivations and a comprehen-
sive survey for the study of time-delay systems. Then, a brief overview of
some control approaches is provided, specifically, the Lyapunov-Krasoviskii
functional method for high-order polynomial uncertainties nonlinear time-
delay systems, and nonlinear time-delay systems with nonlinear input, the
Lyapunov-Razumikhin method for triangular structure nonlinear time-delay
systems, dynamic gain control for full state time-delay systems. Finally, an
application in chemical reactor systems is provided and some related open
problems are discussed.

This is an open access article under the CC-BY-SA license.

1. Introduction

Time delay is an inherent characteristic of physical systems when materials or energy transmit
through a certain route [1]. The phenomenon of time delay exists in various engineering systems
such as chemical process, power systems, rolling systems, long transmission lines in pneumatic sys-
tems, systems controlled by communication networks, etc. The existence of time delay may lead
to deterioration of the closed-loop performance, and even destabilize the systems. Therefore, the
stability analysis and control design of time delay systems are significant for practical engineering
applications [2]-[6].

Linear systems with time delays have got widely studied and the results are relatively mature [2],
[7]-[8]. The early research for time delay systems was mainly based on the classical frequency domain
and the transfer function [2]. Through the characteristic analysis of the transfer function roots, at the
same time with the aid of Nyquist stability criterion and the small gain theorem, the system stability
condition and the basic principles of the controller design are given. In the time domain, based
on state space form, the Lyapunov-Krasoviskii method [9]-[12] and Lyapunov-Razumikhin method
[8], [13] are generally employed, then the results are often obtained in the form of linear matrix
inequalities(LMIs). In general, linear model is an approximation of a real nonlinear system and
modeling errors always exist. Early studies of control theory mainly focused on linear system models
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because the system is relatively simple and high accuracy performance is not required. However, most
of the systems encountered in engineering processes are nonlinear in essence [14], in addition, with
the rapid development of science and technology, the industrial application systems are becoming
much more complex and the accuracy requirement is also increasing. It is not easy to achieve expected
control objectives based on linearized models of industrial processes, for instance, the global stability
can not be achieved as the linearized model is only locally feasible. Therefore, direct research on
practical nonlinear system models should be launched to obtain effective nonlinear controllers. In the
survey on time delay systems [4], [15], the authors pointed out that delay systems are still inviting
further investigation and with full of challenge.

Compared with linear time delay systems, the analysis and synthesis for nonlinear time-delay
systems are more difficult and challenging for the reasons that: (i) It is not easy to select Lyapunov
functional for nonlinear time delay systems on account of the specific system structure. (ii) It is
difficult to compensate for the time delay effect while designing nonlinear controllers, because the
time delay is variable in practical systems and it is impossible to obtain the exact value of time delay.

At present, the study of nonlinear time delay systems is mainly focused on two types: quasi-
nonlinear time delay systems and pure-nonlinear time delay systems. The quasi-nonlinear time delay
system is the one that the nonlinear time delay term in the system generally satisfies the Lipschitz
condition, or its boundary is a first-order linear function. For this kind of systems, the existing meth-
ods are mainly the direct translation of the linear time delay systems, namely, select the quadratic
Lyapunov-Krasoviskii functional to obtain delay-independent result, or select the quadratic Lyapunov
function and then use the Razumikhin lemma to obtain delay-dependent result [16]-[18].

On the other hand, the constraints on nonlinear time-delay terms for pure-nonlinear time delay
system are weak or unrestricted, thus this kind of system is a more general nonlinear system. Most
of the existing literature consider the pure-nonlinear time delay systems with certain structures and
assumptions. For instance, with the nonlinear uncertainties satisfy the high-order polynomial form,
Ref. [19]-[20] investigated the robust adaptive control problems based on Lyapunov-Krasoviskii
functional and Razumikhin lemma. Ref. [21]-[23] investigated the the adaptive control problem for
nonlinear time delay systems with uncertainties that are bounded by smooth nonlinear functions. With
dead-zone nonlinear input, Ref. [24] focused on the tracking control problem for a class of nonlinear
time delay systems. The systems with triangular structures are also popular, which have attracted
a lot of researchers’ attention. For nonlinear time delay systems in upper triangular form, based
on the forwarding and saturation design method, the adaptive state feedback problem was studied
in [25]-[26]. For nonlinear time delay systems in lower triangular form, based on the backstepping
design method, the robust control was investigated in [27]-[31]. Specially, the dynamic gain method
was proposed to stabilize full state time delay nonlinear systems in [30]-[31], in which there were
no growing conditions on smooth nonlinear functions. Ref. [19], [32], [24] are exactly targeted at
addressing the control of nonlinear time-delay systems.

2. Control of Nonlinear Time Delay Systems

2.1. Robust Stabilization Against Nonlinear Uncertainties

Consider a class of dynamic systems described by the following differential-difference equations

ẋ (t) = Ax (t) +Bu (t) +
r∑
j=1

Ej (x (t− hj (t)) , t) (1a)

x (t) = ψ (t) , t ∈ [t0 − τ, t0] (1b)

where t ∈ R is the time, x (t) ∈ Rn is the state, u (t) ∈ Rm is the control input, A and B are the
known constant matrices of appropriate dimensions, Ej (·) : Rn × R → Rn, j ∈ {1, 2, · · · , r} , is
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nonlinear continuous vector function which represent delayed state perturbations for the system. In
addition, the time delay hj (t) , j = 1, 2, · · · , r, are assumed to be time-varying. The initial condition
is given by (2.1.b) whereψ (t) is a continuous function on [t0 − τ, t0], and τ := max {hj (t) , j = 1, 2, · · · r} .

In this section we will propose a class of adaptive robust state feedback controller based on
Lyapunov-Krasoviskii method. The following standard assumption is needed.

Assumption 1: The pair {A,B} given in (1a) is completely controllable.

Assumption 2: There exists the continuous vector function ηj (·) :Rn×R→ Rm, j ∈ {1, 2, · · · , r}
such that for all (x, t) ∈ Rn ×R

Ej (x (t− hj (t)) , t) = Bηj (x (t− hj (t)) , t) (2)

and the following inequalities are satisfied:

‖ηj (x (t− hj (t)) , t)‖ ≤
s∑
i=1

βij ‖x (t− hj (t))‖i (3)

where ‖·‖ denotes the Euclidean norm, βij is an unknown positive constant.

Assumption 3: The derivative of each time varying delay is less than 1, that is ḣj (t) ≤ αj < 1,
where αj is a positive constant.

From assumption 1, there exists any scalar µ and any positive symmetric matrix Q ∈ Rn×n, that
the following Riccati equation

ATP + PA− µPBBTP = −Q (4)

has a solution P ∈ Rn×n which is also a symmetric positive definite matrix.

Define the Lyapunov-Krasovskii functional candidate for system (1a),(1b) as follows:

W
(
x, θ
)

=

s∑
i=1

1

i

(
xTPx

)i
+

s∑
i=1

r∑
j=1

∫ t

t−hj(t)
zij ‖x (z)‖2i dz +

1

2k
θ̃2 (5)

where matrix P is the solution of algebraic Riccati differential equation (4), zij is positive scalar,
θ̃ = θ − θ, θ is defined as

θ =
r∑
j=1

s∑
i=1

β2ij
4 (1− αj)zij

(6)

Propose the following memoryless robust state feedback controller

u (t) = −µ
2
BTPx− θBT ∂V

∂x

T

(7)

and θ is the adaptive parameter with adaptive law

dθ (t)

dt
= k

∥∥∥∥∂V∂x B
∥∥∥∥2 − klθ (8)

Consequently, the time derivative of W (·) along the trajectories of closed-loop system satisfies

dW
(
x, θ
)

dt
< −

s∑
i=1

ξi ‖x (t)‖2i +
1

2
lθ2 (9)
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As we know that θ is a constant and l is an adjustable parameter, it is easy to obtain that the closed
loop system is robust uniformly ultimately bounded stable in light of Lyapunov stability theory.

Theorem 1 [19]: Consider the system (1a),(1b) satisfying Assumption 3, then the state feedback
controller (7) with adaptive law (8) will render the closed-loop system uniformly ultimately bounded
(UUB) stable.

2.2. Robust Control of Triangular Structure Nonlinear Time Delay Systems

Consider the following time delay system
ẋi (t) = xi+1 (t) + Fi (xi (t)) +Hi (xi (t) , xi (t− di (t)) , δi (t)) ,

i = 1, · · · , n− 1
ẋn (t) = u (t) + Fn (xn (t)) +Hn (xn (t) , xn (t− dn (t) , δn (t)))

(10)

where xi ∈ < and u ∈ < are the state and the control input of the system, respectively. di (t) is
the time-varying time delay in xi-subsystem, which satisfies di (t) ≤ τ, where τ is a positive scalar,
δi (t) is the uncertain time varying parameter. xi (t) = [x1 (t) , x2 (t) , · · · , xi (t)]T . Fi (·) are known
smooth nonlinear functions and Hi (·) are unknown uncertain nonlinear functions.

In this part, we will construct a state feedback controller based on Razumikin lemma. For system
(10), we impose the following assumption:

Assumption 4: The uncertain nonlinear functions Hi (xi (t) , xi (t− di (t)) , δi (t)) yield

|Hi (xi (t) , xi (t− di (t)) , δi (t))| (11)

≤ θiη̃i (xi (t)) +
i∑

j=1

ϑij β̃ij (‖xj (t− di (t))‖) + εi,

where εi are known positive scalars, θi and ϑij are unknown positive scalars, η̃i (·) are known positive
and smooth nonlinear functions, β̃ij (·) are class-k∞ functions and η̃i (0) = β̃ij (0) = 0.

For the system (10) we choose the following state transformation{
z1 (t) = x1 (t)
zi (t) = xi (t)− αi−1 (xi−1 (t)) , i = 2, 3 · · ·n (12)

where αi−1 (·) are the smooth virtual control inputs with αi−1 (0) = 0.

Now we revisit the useful Razumikhin lemma [8].

Lemma 1: Suppose f : <×C → <n takes <×(bounded sets of C) into bounded sets of <n and
consider the retarded functional differential equation (RFDE)

·
x (t) = f (t, xt) .

Suppose that u (s) , v (s) andw (s) are continuous nondecreasing functions, u (s)→∞ as s→∞. If
there are a continuous function V : <×<n → <, a continuous nondecreasing function p : <+ → <+,
p (s) > s for s > 0 and a constant σ ≥ 0 such that

(1) u (‖x‖) ≤ V (t, x) ≤ v (‖x‖)

(2)
·
V (t, x (t)) ≤ −w (‖x (t)‖) + σ, if V (t+ θ, x (t+ θ)) < p (V (t, x (t))) ∀θ ∈ [−τ, 0]

then the solutions of the RFDE(f) are uniformly ultimately bounded. In this case, it is said that
the system is UUB stable. If σ = 0, the system is said to be asymptotically stable.

Choose the following quadratic Lyapunov function

V =
n∑
j=1

z2j (t) . (13)
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Obviously, condition (1) of lemma 1 is satisfied. Further we choose p (V (x (t))) = q2V, here q is a
positive scalar satisfying q > 1. So if the following condition holds for 0 ≤ dj (t) ≤ τ

‖zj (t− dj (t))‖ ≤ ‖z (t− dj (t))‖ < q ‖z (t)‖ , (14)

and if we can design a controller such that condition (2) of lemma 1 is satisfied, the closed-loop
system will be UUB stable.

Based on the backstepping method, design the controller as

u (t) = −1

2
kzn (t)− 1

2
hnzn (t)− zn−1 (t)− 1

2
anzn (t)− 1

2
bnz

3
n (t) (15)

+

n−1∑
j=1

∂αn−1
∂xj

(xj+1 + Fj (xj (t)))− 1

2

n−1∑
j=1

j∑
l=1

zn (t)

(
∂αn−1
∂xj

ηjl (zl (t))

)2

− 1

2

n∑
l=1

zn (t) η2nl (zl (t))−
1

2

n∑
j=1

n∑
l=1

n2q2zn (t)β
2
nj (nq |zl (t)|)− Fn (xn (t))

where αn−1 is the corresponding virtual controller, and finally get

·
V ≤ −kV +

n∑
i=1

(
(ci − ai) z2i − biz4i

)
+

n∑
i=1

i∑
j=1

ε2j
hi

(16)

If parameter ai ≥ ci, we have

·
V ≤ −kV +

n∑
i=1

i∑
j=1

ε2j
hi
, (17)

and if parameter ai < ci, one has

·
V ≤ −kV +

n∑
i=1

(ci − ai)2

4bi
+

n∑
i=1

i∑
j=1

ε2j
hi
. (18)

From (17) and (18), the resulting closed-loop system is UUB stable based on Lemma 1.

With the above analysis, we have the following main result:

Theorem 2 [32]: For system (10) satisfying Assumption 4, the state feedback controller (15)
renders the resulting closed-loop system UUB stable.

2.3. Adaptive tracking controller design

Consider the following time delay systems with unknown dead-zone input{
ẋi (t) = xi+1 (t) , i = 1, 2, · · · , n− 1
ẋn (t) = f (t, x1 (t− d1 (t)) , x2 (t− d2 (t)) , · · · , xn (t− dn (t))) + Γ (u (t))

(19)

x (t) = ϕ (t) , t ∈
[
−d 0

]
.

where xi (t) ∈ < and u (t) ∈ < are the state variable and control input of system respectively,
x (t) = [x1 (t) , x2 (t) , · · · , xn (t)]T , f (·) is the uncertain smooth nonlinear function, di (t) are the
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Fig. 1. Dead-zone nonlinearity

delay parameters satisfying di (t) ≤ d∗i and ḋi (t) ≤ di < 1, Γ (u (t)) is a single non-symmetric
dead-zone input nonlinearity defined as:

Γ (u (t)) =


mr (u (t)− br) if u (t) ≥ br
0 if − bl < u (t) < br
ml (u (t) + bl) if u (t) ≤ −bl

. (20)

The non-symmetric dead-zone input is shown in Fig. 1. The parameters mr and ml stand for
the right and the left slope of the dead-zone characteristic. The parameters br and bl represent the
breakpoints of the input nonlinearity.

The following assumptions are imposed on system (19):

Assumption 5: Parameters mr,ml, bl and br are positive and unknown.

Assumption 6: The uncertain function f (·) satisfies the following inequality

‖f (t, x1 (t− d1 (t)) , x2 (t− d2 (t)) , · · · , xn (t− dn (t)))‖ (21)

≤
n∑
i=1

θiαi (|xi (t− di (t))|) + γ,

where θi and γ are unknown positive scalars and functions αi (·) are known smooth class-κ function.

Similarly to [33], the dead-zone input can be expressed in the following form

Γ (u (t)) = m (t)u (t) + d (t) (22)

where

m (t) =

{
ml if u (t) ≤ 0
mr if u (t) > 0

,

d (t) =


−mrbr if u (t) ≥ br
−m (t)u (t) if − bl < u (t) < br
mlbl if u (t) ≤ −bl

.

Then, one knows that there exists a positive scalar η such that η ≤ ml and η ≤ mr.

Problem: For system (19) with Assumption 5 and 6, given signal

xd (t) = (xd1 (t) , xd2 (t) , · · · , xdn (t))T =
(
yd (t) ,

·
yd (t) , · · · , y(n−1)d (t)

)T
,
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where yd (t) is sufficiently smooth and
·
xd (t) ∈ L∞, design a smooth and memoryless state feedback

controller such that the system state x (t) exponentially tracks the signal xd (t) and the resulting
tracking error can be rendered arbitrary small by adjusting design parameters.

We choose the following Lyapunov functional

V = V1 + V2, (23)

with

V1 =

∫ W

0
ρ (ξ) dξ,

V2 =
1

2ηl1
(θ∗ − ηθ (t))2 +

1

2ηl2
(γ∗ − ηγ (t))2

+

n∑
i=1

δeωd
∗
i

1− di

∫ t

t−di(t)
e−ω(t−ξ)α2

i (2 |ei (ξ)|) dξ,

where W = eT (t)Pe (t) , ei (t) = xi (t) − xdi (t) , θ∗ and γ∗ are positive scalars, l1, l2 are design
parameters, ρ (·) is a positive non-decreasing function which yields

δ

(
n∑
i=1

eωd
∗
i

1− di
α2
i (2 ‖ei (t)‖) + ce (t)T e (t)

)
≤ νρ

(
e (t)T Pe (t)

)
e (t)T Pe (t) ,

in which δ is a positive parameter, c, ω and ν are positive scalars satisfying ω ≤ l1σ1, ω ≤ l2σ2 and
ν < $.

Construct the state feedback controller as

u (t) = −1

2
θ (t)BTPe (t) ρ (W )− 1

2
γ (t) tanh

(
BTPe (t) ρ (W )

ε

)
, (24)

in which
·
θ (t) = l1

(
BTPe (t) ρ (W )

)2 − l1σ1θ (t) , θ (0) > 0, (25)

·
γ (t) = l2B

TPe (t) ρ (W ) tanh

(
BTPe (t) ρ (W )

ε

)
− l2σ2γ (t) , γ (0) > 0,

where ε, σ1 and σ2 are positive scalars.

Theorem 3 [24]: For system (19) with Assumption 5 and 6, with the state feedback controller
(24) and the adaptive law (25), the solution of the closed-loop error system exponentially converges
to an adjustable region.

2.4. Output feedback control for stochastic delay systems

Consider the following stochastic nonlinear system

dxj(t) = (xj+1 + fj (x, xd, t)) dt+ gTj (x, xd, t) dw (26)

y = x1; j = 1, ..., n

where x = (x1, x2, ..., xn)T and xn+1 := u are state vector and the input of the system, respectively.
The unknown positive constant d represents time delay andw ∈ Rκ is an independent standard wiener
process defined on a complete probability space. The drift term fj (x, xd, t) : R2n+1 → R, and the
diffusion term gTj (x, xd, t) : R2n+1 → Rκ are Borel measurable and satisfy the Assumption 7.
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The control objective of this paper is to design a delay-independent output feedback controller
for system (26) such that the output y can track a given reference signal yr, and all the signals are
bounded in probability. Specially, if the yr = 0, the state variables converge to equilibrium almost
surely.

Assumption 7: The nonlinear functions fj (x, xd, t), gj (x, xd, t) are locally Lipschitz in (x, xd)
and fj (0, 0, t), gj (0, 0, t) are uniformly bounded in t, satisfying

|fj (x, xd, t)| ≤ ϕ̃j (|x1d|)
j∑

k=1

|xkd| (27)

|gj (x, xd, t)| ≤ φ̃j (|x1d|)
j∑

k=1

|xkd| (28)

where the functions ϕ̃j (s) ≥ 0 and φ̃j (s) ≥ 0 are known smooth non-decreasing functions for
∀s ≥ 0. Further, there exists a constant m ≥ 0 and positive real numbers pf , pg satisfying

ϕ̃j (s) ≤ pf + sm; φ̃j (s) ≤ pg + sm; ∀s ≥ 0. (29)

Assumption 8: Both the reference signal yr (t) and its derivative ẏr (t) are bounded.

Lemma 2: For any strictly positive real number σ4, there exist real numbers σ1 and σ2, symmetric
matrices P1 and P2, and column vectors a = (a1, a2, ..., an)T and k = (k1, k2, ..., kn)T satisfying
the following set of inequalities:

σ1 > 0, σ2 > 0, P1 > 0, P2 > 0,

P1

(
A− acT

)
+
(
A− acT

)T
P1 ≤ −σ1I,

P2

(
A− bkT

)
+
(
A− bkT

)T
P2 ≤ −σ1I,

−σ4P1 ≤ P1D +DP1 ≤ σ2P1

−σ4P2 ≤ P2D +DP2 ≤ σ2P2

where cT = (1, 0, ..., 0)1×n, bT = (0, ..., 0, 1)1×n, D = diag {0, 1, ..., n− 1} and

A =

 0
... In−1
0 0 . . . 0


in which In−1 is the (n− 1)-dimensional identity matrix.

In this section, the dynamic gain observer is constructed first. Further, the controller is designed
by the non-recursive method. Design the observer as

˙̂xj = x̂j+1 + ljaj (y − x̂1) ; j = 1, 2, ..., n (30)

where x̂n+1 := u, aj satisfies Lemma 2 and the dynamic gain l is constructed as

l̇ (t) = max {0;
l

σ4σ3λεmin (P1)
(−αl + ρ1 (ξ1, x1)) ; (31)

l

σ4λεmin (P2)
(−αl + ρ2 (ξ1, x1))

}
; l (0) = 1
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where α and σ3 are positive constants. ε > 1 is a constant. σ4 satisfies 1 − 2εmσ4 > 0. ρ1 (ξ1, x1),
ρ2 (ξ1, x1) are appropriately positive smooth functions.

Select the Lyapunov functional as

V = Ve + Vζ + Ṽ (32)

where Ve = 1
εσ3

(
ẽTP1ẽ

)ε
, Vζ = 1

ε

(
ζTP2ζ

)ε
,

Ṽ =

∫ t

t−d
e
− t−s−d

d
0

{
‖ζd‖2ε (ϕ̄ (ξ1 (s) , x1 (s))

+φ̄ (ξ1 (s) , x1 (s)) + µ (ξ1 (s)) + µ̄ (ξ1 (s))
)

+ ‖ẽd‖2ε
(
ϕ̄ (ξ1 (s) , x1 (s)) + φ̄ (ξ1 (s) , x1 (s))

)}
ds,

e = x− x̂, L1 = diag
{

1, l, ..., ln−1
}
, ẽ = L−12 e, L2 = lσ4L1, ξ1 = y − yr, ξj = x̂j , ζ = L−12 ξ.

Construct the controller as

u = −lnk1ξ1 − ln−1k2ξ2 − ...− lknξn (33)

where kj satisfies Lemma 2.

Theorem 4: For the stochastic time delay system (26) satisfying Assumption7–8, we design the
observer (30), the dynamic gain (31) and the output feedback controller (33). For the closed-loop
system (26), we have following main results: (I) there exists a unique solution on [−d,∞) for any
initial data; (II) the expectation of ξ2ε1 and the state variables are bounded in probability on [−d,∞);
(III) If the reference signal yr = 0, the state variables converge to equilibrium almost surely.

Remark 1: In this section, we mainly study the full state time delay problem for (26), so we
only consider the case that there exist time delay terms in the right-hand of (27)-(28). Of course,
Assumption 7 can be easily extended to following form

|fj (x, xd, t)| ≤ ϕ̃j (|x1d|)
j∑

k=1

|xkd|+ ϕ̄j (|x1|)
j∑

k=1

|xk|

|gj (x, xd, t)| ≤ φ̃j (|x1d|)
j∑

k=1

|xkd|+ φ̄j (|x1|)
j∑

k=1

|xk|

where for ∀s ≥ 0, ϕ̃j (s) ≥ 0, ϕ̄j (s) ≥ 0, φ̃j (s) ≥ 0 and φ̄j (s) ≥ 0 are known smooth non-
decreasing functions and have the same properties with ϕ̃j (s) and φ̃j (s) in (29).

3. Application to Chemical Reactor Systems

In chemical industry, the chemical reactor recycle system is very popular. It is well known that
a reactor recycle not only increases the overall conversion but also reduces the reaction cost. For the
recycling, the input to be recycled must be separated from the yields, then do the separation operation
and finally travel through pipes. This set of operations introduce delays in the recycle system. The
controller design problem for chemical system has received considerable attentions [29]-[30], [34].

Let us consider a cascade chemical system with two reactors A and B shown in Fig. 2. The
compositions CA, CB of produce streams from the reactors are the system state, which are to be
controlled. A and B are time delay systems themselves, and there exists the time delay on recycling
some compositions of A to B. The input of system A comes from the system B and the external
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Reactor B

Reactor A

Delayed Recycle 

Disturbances

Disturbances

Fig. 2. A cascade chemical reactor system

disturbances, while the input of system B is the delayed system state of A, control input and external
disturbances. The whole plant is described by the following model

ĊA = −kACA − 1
θA
HA (CA, CA (t− dA))

+1−RB
VA

CB + δA (t, CA (t− dA))

ĊB = −kBCB − 1
θB
HB (CB, CB (t− dB))

+RA
VB
CA (t− dA) + RB

VB
CB (t− dB)

+ F
VB
u (t) + δB (t, CB (t− dB))

(34)

where Ri are the recycle flow rates, θi are the reactor residence times, ki are the reaction constants,
F is the feed rate, Vi are reactor volumes, Hi are nonlinear functions representing the complex be-
havior of the systems, δi are nonlinear functions for describing the system uncertainties and external
disturbances .

With δA = 0 and δB = 0, we can compute the equilibrium point of the system. Assuming
HA = CA + CA (t− dA) and HB = C2

B (t) , one knows the equilibrium point C∗A and C∗B satisfy(
2

θA
+ kA

)
C∗A =

1−RB
VA

C∗B

kBC
∗
B +

1

θB
C∗2B =

RA
VB

C∗A +
RB
VB

C∗B.

Further letting x1 = CA (t)− C∗A and x2 = CB (t)− C∗B gives
ẋ1 = −kAx1 − 1

θA
x1 − 1

θA
x1 (t− dA)

+1−RB
VA

x2 + δA (t, CA (t− dA))

ẋ2 = −kBx2 − 1
θB
x22 (t) + RA

VB
x1 (t− dA)− 2C∗

B
θB

x2 (t)

+RB
VB
x2 (t− dB) + F

VB
u (t) + δB (t, CB (t− dA))

, (35)

Obviously, we can see that (35) is a typical nonlinear time delay system.

For system (35), we choose the following parameters

θi = 2, ki = 0.5, Ri = 0.5, Vi = 0.5, F = 0.5.

The equilibrium point is C∗A = 14/9, C∗B = 7/3. Further one has
ẋ1 = −0.5x1 − 0.5x1 − 0.5x1 (t− dA)

+x2 + δA (t, x1 (t− dA))
ẋ2 = −0.5x2 − 0.5x22 (t) + x1 (t− dA)− 7

3x2 (t)

+x2 (t− dB) + u (t) + δB (t, x2 (t− dB))

(36)
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Fig. 3. Response of system state without control

where δA (t, x1 (t− dA)) = δA (t, CA (t− dA)) and δB (t, x2 (t− dB)) = δB (t, CB (t− dB)) .

The uncertainties are as the following functions: δA (t, x1 (t− dA)) = 0.5ϑ1 (t)x1 (t− dA) and
δB (t, x2 (t− dB)) = 0.5ϑ2 (t)x22 (t− dB) e0.01x2(t−d), where |ϑi (t)| ≤ 1.

First, we employ the linear method [34] to design the linear controller. By linearizing the system
(2.36) on the zero equilibrium point, The system is expressed as

ẋ (t) =

[
0.5 (∆1 − 1) 0

1 1

] [
x1 (t− dA)
x2 (t− dB)

]
(37)

+

[
−1 1
0 −1.3571

]
x (t) +

[
0

u (t)

]
where ∆1 and ∆2 represent the uncertainties with |∆1| ≤ 1 and |∆2| ≤ 1.

Based on the linear method, we design u (t) = Kx (t) and choose the Lyapunov functional
V = xTPx +

∫ t
t−dA x

T (ξ)Q1x (ξ) dξ +
∫ t
t−dB x

T (ξ)Q2x (ξ) dξ where P,Q1 and Q2 are positive
matrices, then by solving the LMI, we have K =

[
−0.8886 −1.3740

]
.

Now we illustrate the proposed nonlinear control design procedure [29]. The virtual control input
α1 (x1) is designed as

α1 (x1 (t)) = 1.9165z1 (t) (38)

and the controller is designed as

u (t) = −0.5594x2 + 1.9165x1 + 0.5x22 (t)− 88.5z2 (t) (39)

− 0.0817z32 (t) e0.02z
2
2(t) − 1.1872z32e

0.073z22(t)

We choose the initial values are chosen as x1 (ξ) = 1 and x2 (ξ) = −1 for ξ ∈ [−0.25, 0] at
first. The state response is shown in Fig. 3 without control, from which we can see that the system
is emanative. With the controller, the simulation results are shown in Fig. 4 (linear controller) and
Fig. 5 (nonlinear controller). We can see that the both controllers can render the resulting closed-
loop system asymptotically stable. Then we choose the initial values x1 (ξ) = 8 and x2 (ξ) = −8
for ξ ∈ [−0.25, 0] . The responses are shown in Fig. 6 (linear controller) and Fig. 7 (nonlinear
controller), from which we can see that the nonlinear controller is efficient for the large initial values,
while the linear controller is not feasible because of its local stability. The above simulation results
further show the effectiveness of the proposed controller design methods.

4. Conclusions

As is well known that nonlinear systems exist in a wide range of real world applications, time
delays are also inherent and unavoidable in practice, thus it is important to investigate the stability
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Fig. 5. Response of system state under nonlinear control with small initial values

Fig. 6. Response of system state under linear control with large initial values
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analysis and control of uncertain nonlinear systems with time delay. This paper has presented a brief
overview on the control of nonlinear time delay systems, including especially our initiative work
and its application in chemical reactor systems. The problem of robust adaptive feedback control
for a class of dynamic systems with multiple delayed state perturbations and high-order polynomial
nonlinear uncertainties has been considered by Lyapunov-Krasoviskii functional method. Then, the
state feedback control problem for triangular structure nonlinear time delay systems with Razumikhin
lemma has been presented. With dead-zone nonlinear input, the tracking control problem for a class of
nonlinear time delay systems has been also provided. Finally, combine with dynamic gain technique,
output feedback control for full state time delay stochastic nonlinear systems has been investigated
without growing conditions.

Although there are many literatures and methods on the control for nonlinear time delay systems
at present, there are still some open problems need to be studied. For instance, in the study of nonlin-
ear time delay systems, the time delay is often as a “bad” term to be process, however sometimes it
plays the role of a “good” effect. So it is necessary to treatment them separately and give the less con-
servative results. In addition, with the development of computer technology, the research of discrete
systems has attracted more and more attention. Also research should be focus on discrete nonlinear
time delay system and this is a meaningful subject. Besides, considering the actual controlled object,
such as network control systems, it needs to be further analyzed the specific system mathematical
model and applied the theory research results of nonlinear time delay systems to real systems.
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