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ABSTRACT

The Inverted Pendulum is a highly nonlinear, unstable, and fast dynamic sys-
tem. These characteristics makes it a popular benchmark for building and
testing novel controllers. Therefore, in this study, sliding mode controller
is proposed and tested on the inverted pendulum system. According to the
results of the simulation experiments with a sine signal as a reference, the
proposed controller can stabilize the system well and has so fast response.
Moreover, we have tuned the parameters of the proposed sliding mode con-
troller in order to eliminate the chattering effect, the overshoot, and the steady
state error.

This is an open access article under the CC-BY-SA license.

1. Introduction

The Inverted Pendulum is a highly nonlinear [1], unstable [2], fast dynamic [3], under-actuated
system [4], [5], and multivariable system [6]. This system belongs to the under-actuated mechanical
system, which its control inputs are more than its degrees of freedom [7], [6], [8], [9], [10].
This characteristic encouraged many researchers to use it as a traditional benchmark for the creation,
testing, assessing, and comparing of different classical and contemporary control techniques [6].

Fig. 1 shows the free body diagram of the inverted pendulum. The pendulum swings in time with
the cart’s movement. Even if the cart isn’t moving, the pendulum stick could easily fall [7], [11].
This makes the balancing of the stick requires a fast and great force. Else, the stick may fall on the
cart right away. As a result of this, the inverted pendulum controller should be designed in a way that
satisfies the high response requirement. The control system’s purpose is to balance the stick vertically
on the cart by applying a control signal (force) on the cart [12], [13].

In literature, the inverted pendulum system is an essential element in many applications such as
the balancing of robots and rocket systems when the rocket takes off [14], [15]. Consequently,
researchers have suggested different linear and nonlinear controllers for balancing the inverted pen-
dulum system. Proportional Integral Derivative Control (PID) was employed by some researchers
[16], [17], [18], while Linear Quadratic Regulator (LQR) and State Feedback Control with pole

placement controllers have been utilized by others [19], [20], [21], [22].

The nonlinear inverted pendulum system can be linearized using any linearization method then it
can be controlled using linear controllers such as PID and state feedback. Nonetheless, the linearized
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Fig. 1. Free Body Diagram

model is only a close approximation to the equilibrium with narrow angles; it cannot fully capture the
system’s dynamics. As a result, a linear controller can not satisfy the required response behaviour.
Taking this into consideration, a nonlinear robust controller is a better choice for the inverted pendu-
lum system.

With the recent advancement of Artificial Intelligence fields such as Fuzzy Logic Models, Ar-
tificial Neural Networks, and Evolutionary Computational Algorithms, researchers have proposed
different intelligence controllers for the inverted pendulum system [23], [24]. Although the outper-
formance of these models upon the linear controllers, they are computationally expensive [6]. This
fact motivates us to propose in this research a nonlinear robust controller which is computationally
inexpensive.

Sliding mode controller (SMC) is one of the common robust controllers which has been widely
utilized in the literature due to its robustness [25], [26], [27]. The basic goal of SMC is to drive the
error state variables of the controlled system toward zero by utilizing a discontinuous control signal.
When big control gains are utilized, the chattering effect may be activated [28]. Furthermore, the
vibrations that occur can be destructive to the system [29]. Consequently, chattering effect should be
taken into consideration when we design SMC [30].

The contribution of this study is to develop a suitable SMC for a nonlinear inverted pendulum
system. The proposed SMC is robust to parameter uncertainty and has no chattering effect.

This article consists of four sections as follows. The first section is an introduction, which includes
information about the research’s background. The second section discusses both the modeling of the
system and the designing of the proposed controller. The results and discussions section is the third
section. The final portion contains conclusions and recommendations for future work.

2. Method

2.1. Modeling

The free body diagram of the inverted pendulum is shown in Fig. 1. The system equations of
this nonlinear dynamic system can be derived as follows [7]. It is assumed here that the pendulum
rod is mass-less, and the hinge is frictionless. The cart mass and the ball point mass at the upper end
of the inverted pendulum are denoted as M and m, respectively. There is an externally x-directed
force on the cart, u(t) , and a gravity force acts on the point mass at all times. The coordinate
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system considered is shown in Fig. 1, where x(t) represents the cart position and θ(t) is the tilt angle
referenced to the vertically upward direction.

The torque on the mass due to the acceleration force is balanced by the torque on the mass due to
the gravity force. The resultant torque balance can be written as follows.

Fxlcosθ − Fylsinθ = mglsinθ (1)

where the force components in x-axis and y-axis, Fx and Fy are determined as follows.

Fx = m(ẍ− lsinθθ̇2 + lcosθθ̈) (2)

Fy = −m(lθ̇2cosθ + lθ̈sinθ) (3)

Substituting (2) and (3) into (1) we get

ẍcosθ + θ̈ = gsinθ (4)

A force balance in the x-direction gives that the mass times acceleration of the cart plus the mass
times the x-directed acceleration of the point mass must equal the external force on the system. This
can be written as follows.

(M +m)ẍ−mlθ̇2sinθ +mlcosθθ̈ = u (5)

By manipulating (4) and substituting into (5) we get

(M +m)(gsinθ − θ̈)−mlθ̇2cosθsinθ +mlθ̈cos2θ = ucosθ (6)

which could be rewritten as follows

(mlcos2θ − (M +m))θ̈ = ucosθ − (M +m)gsinθ +mlθ̇2cosθsinθ (7)

Finally, dividing by the lead coefficients of (7) we get

θ̈ =
−(m+M)g sin θ +mlω cos θ sin θ + u cos θ

ml cos2 θ − (M +m)
(8)

State variables of the system are the angular position of the oscillation and the angular velocity
as represented in x1 = θ and x2 = θ̇. The input variable of the system is the applied force u, and
the output of the system is the angular position as y = x1. The system’s disturbance and the function
of parameter uncertainty term d(x, t) is added as well. The full nonlinear dynamics model of the
Inverted Pendulum can be written as follows.

ẋ1 = θ̇ = x2 (9)

ẋ2 =
−(m+M)g sinx1 +mlx2 cosx1 sinx1 + u cosx1

ml cos2 x1 − (M +m)
+ d(x, t) (10)
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2.2. Sliding-Mode Controller

Assume r1 is the desired pendulum angle. In order to design a sliding mode controller for the
Inverted Pendulum System we will follow the following procedure.

First, given that e1 = r1 − x1, the following sliding variable is selected.

s1 = ė1 + c1e1 (11)

By taking the derivative of (11) with respect to time we get.

ṡ1 = ë1 + c1ė1 (12)

By substituting the first and second derivative of the error e1 with respect to time we can get.

ṡ1 = r̈1 − ẍ1 + c1ṙ1 − c1ẋ1 (13)

By substituting (10) into (13) we get.

ṡ1 = r̈1 − c1x2 + c1ṙ1 +
(m+M)g sinx1

ml cos2 x1 − (M +m)
− mlx2 cosx1 sinx1 + u cosx1

ml cos2 x1 − (M +m)
− d(x, t) (14)

Now, we can write the sliding mode control signal as follows.

u = (m+M)g tanx1 −mlx2 sinx1 +
(−ṡ1 + r̈1 − c1x2 + c1ṙ1)(ml cos

2 x1 − (M +m))

cosx1
(15)

Then we can write the proposed signal control as follows.

u = (m+M)g tanx1 −mlx2 sinx1 +
(k1signs1 + r̈1 − c1x2 + c1ṙ1)(ml cos

2 x1 − (M +m))

cosx1
(16)

where sign(s1) is the sign function of the sliding variable; k1 and c1 are any positive constants.

Now we can check the stability of the proposed controller system using Lyapunov equation. We
can start defining Lyapunov equation as follows.

V1 =
s21
2

(17)

The derivative of Lyapunov equation (17) is shown in (18).

V̇1 = ṡ1s1 (18)

From (14) and (18) we get.

V̇1 = s1(r̈1 − c1x2 + c1ṙ1 − d(x, t) +
(m+M)g sinx1

ml cos2 x1 − (M +m)
− mlx2 cosx1 sinx1 + u cosx1

ml cos2 x1 − (M +m)
)

(19)
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By substituting the sliding mode control signal we get.

V̇1 = −s1k1sign(s1)− s1d(x, t) (20)

This equation can be rewritten as follows.

V̇1 = −k1|s1| − s1d(x, t) (21)

It is noticed from (21) that V̇1 < 0. Which means the suggested sliding mode control signal
derives the system to follow the desired angular position.

3. Results and Discussion

Parameters of the inverted pendulum system are as follows. The mass of the pendulum stick is
0.1kg, the mass of the cart is 1kg, the length of the pendulum is 0.5m, and the gravity acceleration is
9.8m/s2. The test was made using Matlab script software. The chosen reference signal is sin(2∗pi∗t)
where t = 0 : 0.01 : 10.

The control parameters (c1, k1) for sliding mode control have been tuned using try and error. The
search range of c1 and k1 is from 1 to 700. It is noticed from the experiments that when we increase
the value of k1 the chattering decreases. While the increase of c1 leads to more stability. However, if
c1 is not within the range [100− 103], the system follows unstable behaviour.

Fig. 2 shows the simulation response of the experiment when k1 = 500 and c1 = 100. While Fig.
3 shows the state variables for the same parameters. Fig. 4 and Fig. 5 show the simulation response
and state variables when k1 = 700 and c1 = 102. Comparing the setting of parameters in the two
experiments shows that the best obtained values within the search range were when k1 = 700 and
c1 = 102. Moreover, it is noticed from Fig. 4 that the settling time equals to 0.15sec and the steady
state error and the maximum overshoot equal to zero.

Fig. 6 shows the simulation response of the experiment when the system is affected with distur-
bance equals 0.5sin(2πt), k1 = 700 and c1 = 102. While Fig. 7 shows the state variables for the
same disturbance and parameters. Furthermore, it is noticed from Fig. 6 that the settling time equals
to 0.15sec and the steady state error and the maximum overshoot equal to zero. Therefore, the exist
of disturbance has no effect on the system which proves the robustness of the proposed controller
against disturbances.

4. Conclusion

The Inverted Pendulum has been used as a popular benchmark for building and testing novel
controllers in many studies. This is due to its dynamic behaviour. Therefore, in this study, sliding
mode controller is proposed and tested on the inverted pendulum system. First, we have derived its
mathematical dynamic model. Then we have designed a sliding mode controller to derive the angular
position of the stick into the required angle. According to the results of the simulation experiments
with a sine signal as a reference, the proposed controller can stabilize the system well and has so fast
response. Moreover, we have tuned the parameters of the proposed sliding mode controller in order
to eliminate the chattering effect, the overshoot, and the steady state error. As a future study, it is sug-
gested to use a standard optimization method to tune the controller parameters within the suggested
ranges.
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Fig. 2. System Response for Sliding Mode Control with sin(2πt) as a Reference, t = 0 : 0.01 : 10,
k1 = 500 and c1 = 100
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Fig. 3. State Variables for Sliding Mode Control with sin(2πt) as a Reference, t = 0 : 0.01 : 10,
k1 = 500 and c1 = 100
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Fig. 4. System Response for Sliding Mode Control with sin(2πt) as a Reference, t = 0 : 0.01 : 5,
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Fig. 5. State Variables for Sliding Mode Control with sin(2πt) as a Reference, t = 0 : 0.01 : 5,
k1 = 700 and c1 = 102
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Fig. 6. State Variables for Sliding Mode Control with sin(2πt) as a Reference, 0.5sin(2πt) as a
disturbance, t = 0 : 0.01 : 5, k1 = 700 and c1 = 102
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