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ABSTRACT

This paper presents an invariant sets approach for chaos synchronization in a
class of master-slave chaotic systems affected by bounded perturbations. The
method provides the optimal state-feedback gain in terms of the minimal ellip-
soid that guarantees minimum synchronization error bound. The problem of
finding the optimal invariant ellipsoid is formulated in terms of a semi-definite
programming problem that can be easily solved using various simulation and
calculus tools. The effectiveness of the proposed criterion is illustrated by
numerical simulations on the synchronization of Chua’s systems.

This is an open access article under the CC-BY-SA license.

1. Introduction

Chaotic dynamical systems exhibit sensitive dependence on the initial conditions and parameters
value, i.e. small differences in initial conditions, such as those due to rounding errors in numerical
computation, yield widely diverging outcomes for chaotic systems, making long-term prediction a
difficult task.

Therefore, chaos synchronization between chaotic systems has attracted increasing interest in
several fields of mathematics, physics and engineering systems due to its useful applications in chem-
ical reactions [1], [2], [3], power converters [4], [5], biological systems [5], [6], [7], information
processing [8, 9], secure communication [10], [11], [12], just to name few.

Since the pioneering works of Pecora and Carroll [13], [14] it has become known that it is possible
to force two chaotic systems to synchronize using a drive-response configuration. In fact, the chaos
synchronization problem can be formulated in terms of two systems which oscillate in a synchronized
manner. Given a chaotic system, which is considered as the master system, and another identical
system, which is considered as the slave system, the chaos synchronization problem is to force the
dynamical behaviors of these two systems to be identical after a transient time.

Over the last decades many different techniques for chaos control and synchronization have been
developed. Adaptive control techniques are often used since in many applications the parameters of
the controlled plant are unknown and/or the model of the system is not complete. In [15], for example,
a simple, smooth and adaptive controller for resolving the control and synchronization problems of
the modified Chua’s circuit systems in case of unknown parameters is discussed.

A quadratic optimal regulator is used in [16] for synchronizing two complex chaotic systems in
series form. Optimal control techniques allow to achieve least error with less control energy. In this
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case, the optimization on both energy and error can be easily realized. The synchronization of an
uncertain slave system following the dynamic of an equivalent master system is developed in [17] by
using a Lyapunov-based approach.

Linear state feedback by linear matrix inequalities (LMI) techniques have been proposed in [18],
[19] where the synchronization criterion is transformed into LMI form which can be efficiently veri-
fied and solved. Most of the schemes to achieve chaos synchronization were originally designed for
identical chaotic systems in which it is assumed that systems parameters are completely known in
advance. Do to this unnatural assumption several approaches have been recently proposed to deal
with this issue [20], [21], [22].

This paper proposes a static state-feedback control for master-slave synchronization designed
by invariant ellipsoids techniques. The idea initially established in [23, 24, 25] and then further
investigated over the last decades (see [26], [27] and the references therein) is based on the analysis
of reachable and feasible sets for uncertain dynamic models or on the search for their approximations
by simple convex domains like boxes, polyhedra or ellipsoids [28].

A set in the state space is said to be positively invariant for a given dynamical system if every tra-
jectory initiated in this set remains inside it at all future time instants. In the presence of disturbances,
if the invariance is preserved, the term of robust invariance is used.

The basic idea of the ellipsoidal control is to attract the state trajectory, for any initial state vector
outside the ellipsoid, to a small ellipsoid region including the origin. When the trajectory of the
system reaches the ellipsoid, it will remain within it for every future time instant. In this framework,
the aim is therefore to synthesize a feedback gain that guarantees the synchronisation error belonging
to the minimum invariant ellipsoid.

The main advantage of invariant ellipsoids lies in its simple characterization as a solution of LMI
in terms of all the varying parameters, which is very convenient to be used in practice [29]. In fact,
the control problem is reduced to semidefinite program, i.e., to the optimization of a linear function
under LMI constraints.

Although the concept of invariant ellipsoid combined with LMI technique is widely used for anal-
ysis and design of control systems, however it found fewer applications in synchronization problems.
For this reason, this paper exploits the theoretical framework of invariant ellipsoid control to address
the synchronization between two chaotic systems.

The paper is organized as follows. Preliminaries definitions and results together with problem
definition are presented in Sec. 2. Sec. 3 contains the main results consisting in finding a minimal
invariant ellipsoid and the corresponding state-feedback control. A numerical simulation is reported
in Sec. 4 to highlight the characteristics of the method. Finally some concluding remarks are included
in the last section.

2. Preliminaries

Consider the master chaotic system described by

ẋ = Ax+ g(x) +Dw, (1)

where x ∈ Rn is the state vector, A ∈ Rn×n is a constant matrix, w ∈ Rn is the exogenous distur-
bance which doesn’t depend on the state vector x and is bounded at each time instant as

||w(t)|| ≤ 1, ∀t ≥ 0. (2)

The quantity Dw takes into account both uncertainties on linear and nonlinear part of the chaotic
system. The continuous nonlinear function g(x) satisfies Lipschitz condition, namely

||g(x)− g(x̂)|| ≤ ρ||x− x̂||, (3)
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where ρ is the Lipschitz constant. Similar assumptions have been largely adopted in the devoted
control literature. In general, as remarked in [20], [30], [31], the last assumption is not restrictive
since the trajectories of chaotic systems are always bounded.

The slave chaotic system has the same structure of the master one with different initial conditions
and with no information about the disturbance w(t):

˙̂x = Ax̂+ g(x̂) + u (4)

where the control input u(t) ∈ Rn is required to synchronize x̂(t) with the state of the master system
x(t). Based on the linear-state-feedback approach, the control input u(t) is chosen as

u = K(x− x̂) (5)

with K ∈ Rn×n. By defining the error e(t) = x(t) − x̂(t) which characterizes the synchronization
accuracy, then

ė = (A−K)e+Dw + g(x)− g(x̂). (6)

The goal is to choose a suitable K, such that chaos synchronization is achieved, i.e. the error
signal e becomes as small as possible. With this aim we use the framework of invariant ellipsoids
including the large deviation case as described in [32].

Remark 1 Note that the term Dw can be regarded both as uncertainty on the master and/or slave
system. It is then the difference between the actual state of the system and the state modelled from the
nominal model (4). Therefore what the method tries to do is to bring the synchronization closer to the
actual state.

Definition 1 The ellipsoid

E =
{
e ∈ Rn : eTP−1e ≤

}
, P > 0, (7)

is invariant for system (6), if two conditions hold:

1. (Small deviation case). e(0) ∈ E implies e(t) ∈ E for all t ≥ 0.

2. (Large deviation case). e(0) /∈ E implies e(t)→ E for t→∞ (in particular it can be e(t) ∈ E
for t ≥ T with some T > 0).

An ellipsoid E is minimal if it has the minimal sum of squares of its halfaxes, i.e. if tr(P ) is
minimal.

2.1. Linear matrix inequalities

A linear matrix inequality or LMI is a matrix inequality of the form

F (x) = F0 +
∑

xiFi > 0,

where x1, x2, ..., xn are the variables, Fi = F T
i ∈ Rn×n are given, and F (x) > 0 means that F (x) is

positive-definite.

Lemma 1 Schur complements. For a given symmetric matrix

M =

[
Q(x) S(x)
S(x)T R(x)

]
,
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where Q(x) = Q(x)T , R(x) = R(x)T and S(x) depends affinely on x, Schur complements states
that the LMI M > 0 is equivalent to the matrix inequalities

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0

or, equivalently,
Q(x) > 0, R(x)− S(x)TQ(x)−1S(x) > 0.

Lemma 2 S-Lemma. LetA,B be symmetric n×nmatrices, and assume that the quadratic inequality
xTAx ≥ 0 is strictly feasible (there exists x̄ such that x̄TAx̄ > 0). Then the quadratic inequality
xTBx ≥ 0 is a consequence of it, i.e.

xTAx ≥ 0→ xTBx ≥ 0

if and only if there exists a non-negative τ such that

B ≥ τA.

Lemma 3 Matrix square root. Let F be a positive definite Hermitian matrix. Then F has a diago-
nalization

F = P ∗diag{λ1, ..., λn}P

where P is a unitary matrix and λ1, ..., λn are the eigenvalues of F , which are all positive. The square
root of F is defined as the matrix

F 1/2 = P ∗diag{
√
λ1, ...,

√
λn}P.

3. Invariant ellipsoid design

In order to reduce the synchronization error, the dynamic of which is defined in (6), the optimal
state-feedback gain K is computed in this section. This controller gain K, obtained in the following
theorem, gives the minimum invariant ellipsoid, expressed as the minimum of the trace of P , for the
error between master and slave trajectories. The error is reduced both in the case when initial error
started within the smallest invariant ellipsoid and in the large deviation case, i.e. when the initial error
is outside the optimal invariant set.

Theorem 1 Let M = MT ∈ Rn×n be the matrix such that

MMT = τI +DDT (8)

where τ ≥ 0, i.e. M is the square root of the positive definite matrix on the r.h.s. The solution Q̂ and
Ŷ of the minimization problem

min tr(H) (9)

subject to (
ATQ+QA− Y − Y T + ρ2I + τQ QM

MTQ −τI

)
≤ 0, (10)(

H I
I Q

)
≥ 0, (11)

on matrix variables Q = QT , H = HT , Y ∈ Rn×n defines the matrix P̂ = Q̂−1 of the minimal
invariant ellipsoid and corresponding filter gain

K̂ = Q̂−1Ŷ . (12)
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Proof. To satisfy both properties of invariant ellipsoid (7) it is sufficient to suppose that there
exists a quadratic Lyapunov function

V (e) = eTQe, Q = QT ∈ Rn×n, Q > 0 (13)

with Q = P−1, such that

V̇ (e) ≤ 0, ∀(e, w) : V (e) ≥ 1, wTw ≤ 1. (14)

Differentiating V along the error dynamical trajectory (6) and using (3) yields

V̇ (e) = eT
[
AT

KQ+QAK

]
e+ 2eTQDw + 2eTQ (g(x)− g(x̂)) ≤

≤ eT
[
AT

KQ+QAK

]
e+ 2eTQDw + 2ρ||Qe||||e|| (15)

where AK = A−K.

Since 2ρ||Qe||||e|| ≤ ||Qe||2 + ρ2||e||2 then it follows that

eT
[
AT

KQ+QAK +QQ+ ρ2I
]
e+ 2eTQDw ≤ 0,

∀(e, w) : eTQe ≥ 1, wTw ≤ 1. (16)

Due to Schur complements the first inequality in (16) can be rewritten as(
e
w

)T (
AT

KQ+QAK +QQ+ ρ2I QD
DTQ 0

)(
e
w

)
≤ 0. (17)

Also eTQe ≥ 1 and wTw ≤ 1 can be formulated as(
e
w

)T (
Q 0
0 I

)(
e
w

)
≥ 0. (18)

From S-Lemma it follows that (18) implies (17) if exists τ ≥ 0 such that

−
(
AT

KQ+QAK +QQ+ ρ2I QD
DTQ 0

)
≥ τ

(
Q 0
0 I

)
. (19)

Hence (
AT

KQ+QAK +QQ+ ρ2I + τQ QD
DTQ −τI

)
≤ 0. (20)

By Schur complements Eq. (20) is equivalent to

AT
KQ+QAK + ρ2I + τQ+

1

τ
Q
(
τI +DDT

)
Q ≤ 0 (21)

from which (10) follows when Y = QK.

To reduce minimization of tr(Q−1) to a linear problem introduce a matrix H = HT such that
Q−1 ≤ H . Due to Schur complements this inequality is equivalent to LMI (11). Therefore the
problem is reduce to the minimization of tr(H) subject to (10) and (11) and the proof follows.

Remark 2 The introduction of the new variable τ , due to the S-procedure, makes (10) a bilinear ma-
trix inequality (BMI). Because τ is a scalar, its optimal value can be found by executing a simple loop
or by using a BMI solver. For τ fixed, the problem defined by (9)-(11) is a semidefinite programming
problem (SDP).
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Fig. 1. The Chua system.

4. Numerical example

In this section the Chua circuit is simulated to illustrate the above control method for chaos syn-
chronization. The simulation is performed within the Matlab 2021a environment while the underlying
optimisations are carried out using the Yalmip toolbox [33]. Chua’s circuit in Fig. 1 is the simplest
and most widely studied real nonlinear dynamical systems [34]. It consists of three energy-store ele-
ments (an inductor and two capacitors), a linear resistor and a single nonlinear resistor, called Chua’s
diode. Using the Kirchhoff’s circuit laws the circuit is described by equations:

C1
dvC1

dt
=

1

R
(vC2 − vC1)− φ(vC1),

C2
dvC2

dt
=

1

R
(vC1 − vC2) + iL, (22)

L
diL
dt

= −vC2

whereR is a linear resistance, vC1 and vC2 are the voltages across capacitors C1 and C2, respectively,
iL is the current through the inductor L and φ(vC1) is the current through the nonlinear resistor
as a function of the voltage across capacitor C1. This nonlinear function is described by the odd-
symmetric piecewise-linear function

φ(vC1) = GbvC1 +
Ga −Gb

2
(|vC1 +Bp| − |vC1 −Bp|) ,

where Ga, Gb and Bp are three fixed constants of the diode. In particular Ga is the slope of the
nonlinear function in the inner region and Gb the slope in the two outer regions.

The system (22) can be rewritten in dimensionless form as

dx1
dτ

= kα (−x1 + x2 − f(x1)) ,

dx2
dτ

= k(x1 − x2 + x3), (23)

dx3
dτ

= −kλx2,

with

f(x) = b̄x+
ā− b̄

2
(|x+ 1| − |x− 1|)

where
x1 = vC1

Bp
, x2 = vC2

Bp
, x3 = RiL

Bp
,

α = C1
C1
, λ = C2R2

L ,

ā = RGa, b̄ = RGb, τ = t
|RC2|
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Fig. 2. Chua’s system (α = 15.6, λ = 28, m0 = −1.143, m1 = −0.714): the case of double-scroll
attractor.

and
k = 1 if RC2 > 0,
k = −1 if RC2 < 0.

Throughout the rest of the section, we will use the dimensionless form with k = 1 rewritten in
matrix form as

ẋ = Ax+ φ(x), (24)

where

A =

 −α α 0
1 −1 1
0 −λ 0

 , φ(x) =

 −α (m1x1 + m0−m1
2 (|x1 + 1| − |x1 − 1|)

)
0
0

 . (25)

If α = 15.6, λ = 28, m0 = −1.143 and m1 = −0.714 then the Chua system exhibits a double
scroll attractor (Fig. 2).

The Lipschitz constant ρ = 20 satisfies (3). The uncertainty on the master system is expressed
in terms of the product Dw with D = diag[1, 2, 3] and the unit norm vector w with each component
uniformly distributed in [−1, 1]. The initial condition of the slave is assumed to be x̂ = (3,−2, 5)T .
The optimal value of τ = 93.697 in the interval [0.1, 200] is found by simple loop of the main SDP
problem solver with a fixed value of τ . For this τ the minimum ellipsoid is characterized by the
matrix P

P =

 2.97× 10−5 4.38× 10−9 −1.16× 10−12

4.38× 10−9 3.01× 10−5 −6.99× 10−9

−1.16× 10−12 −6.99× 10−9 3.06× 10−5

 (26)
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having trace equal to 9.04 × 10−5. In this case the optimal control law has the following feedback
gain matrix

K =

 1.70× 104 5.82 0
5.84 1.73× 104 −9.30

0 −9.36 1.78× 104

 . (27)

To Trajectories of master and slave systems are depicted in Fig. 3.
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Fig. 3. Master and slave outputs.

5. Conclusions

A robust state-feedback controller has been proposed for chaos synchronization in a class of
chaotic systems. It makes use of the method of invariant ellipsoids which yields the optimal solution
in terms of minimal ellipsoid containing the synchronization error. Robustness refers to the ability to
maintain the invariance even in the presence of disturbances on the master system. The effectiveness
of the proposed approach has been tested in the case of Chua master-slave systems synchronization.
Two interesting perspectives are the extension of this method to the case of systems with interval
uncertainties and its application to the synchronisation of systems of different types and dimensions.
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