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ABSTRACT

In this study, we propose a decision-making strategy for pinning-based dis-
tributed multi-agent (PDMA) automatic generation control (AGC) in islanded
microgrids against stochastic communication disruptions. The target micro-
grid is construed as a cyber-physical system, wherein the physical microgrid
is modeled as an inverter-interfaced autonomous grid with detailed system
dynamic formulation, and the communication network topology is regarded
as a cyber-system independent of its physical connection. The primal goal
of the proposed method is to decide the minimum number of generators to
be pinned and their identities amongst all distributed generators (DGs). The
pinning-decisions are made based on complex network theories using the ge-
netic algorithm (GA), for the purpose of synchronizing and regulating the fre-
quencies and voltages of all generator bus-bars in a PDMA control structure,
i.e., without resorting to a central AGC agent. Thereafter, the mapping of
cyber-system topology and the pinning decision is constructed using deep-
learning (DL) technique, so that the pinning-decision can be made nearly
instantly upon detecting a new cyber-system topology after stochastic com-
munication disruptions. The proposed decision-making approach is verified
using a 10-generator, 38-bus microgrid through time-domain simulation for
transient stability analysis. Simulations show that the proposed pinning de-
cision making method can achieve robust frequency control with minimum
number of active communication channels.

This is an open access article under the CC-BY-SA license.

1. Introduction

With the electric power systems transforming into a more sustainable state, an increasing uptake
of renewable energy is being integrated into the electric grid. This leads to a burgeoning number
of distributed generators that are boosting the transformation of the traditional centralized electricity
generation and transmission architecture into a more distributed one [1][2]. In any power system,
automatic generation control is an essential control mechanism which regulates the frequency and
power flow between two adjacent areas for reliable power grid operations [3][4]. Traditionally, AGC
is achieved through central control agents governed by power system operators within their juris-
diction, through directly controlling large-scale fuel-based power generators to produce more or less
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electricity against various power system conditions. However, as the scale of microgrids compris-
ing of DGs grows rapidly, a central AGC agent that regulates all small-scale distributed generators
to achieve intelligent power system control is no longer viable due to the colossal communication
requirement [5]. This has motivated the advent of the multi-agent system (MAS) with its applica-
tions in power system control, which mainly include economic dispatch [6], heterogeneous storage
systems [7] and power system control [8][9][10][11] [12]. The overarching improvement for MAS,
in comparison to the conventional centralized AGC structure, is that the control agents, or generators,
only have access to the information from a limited number of neighbors, substantially reducing the
requirement for communication demanded by a central AGC [13]. In an MAS setup, there could still
be a central agent able to pass and receive timely power system information, including system time
and system events, to and from control agents without excessive data transmission and processing, so
as to improve situational awareness of the system [14].

For automatic generation control in microgrids, pinning-based distributed MAS was recently pro-
posed and has gained popularity among researchers due to its proven feasibility and easy implemen-
tation. The PDMA control is generally conducted at a secondary control level through autonomously
changing the nominal frequencies and voltages of control agents, based on the droop control theory
[15]. Upon system disturbances, such as load demand variations, selected control agents with given
communication topology will alter their nominal frequencies and voltages via an automated control
mechanism to realize frequency and voltage synchronization (or consensus) and restoration within
the microgrid. Another main requirement in AGC is that the total load demand and power loss need
to be shared by all generators based on their capacities and droop coefficients [16], which however
were not considered in [15]. In addition, the rationale of pinning decisions, i.e., the number of gener-
ators that need to be pinned and what they are, has been absent in most pinning-control research [17]
[18][15], where the pinning of generators were performed on a trial-and-error basis, until a year ago
when the authors in [9] employed complex network theories to corroborate the choice of the pinning
set. Notwithstanding its merit and vigorous mathematical derivations of the control methodology, the
most recent pertinent work in [9] bears certain shortcomings: the studied microgrid was oversimpli-
fied without considering power flow, power loss and load model in the microgrid of interest, which
can not fully represent the system characteristics from an electrical perspective. The communication
was deemed identical to the physical topology via power-line communication technique, which limits
its applicability in contemporary electric grids; with an increasing number of wireless data transmis-
sion techniques, such phasor measurement units (PMUs), the physical and communication systems
have become totally separable. Lastly, the convergence rate of the decision-making method was com-
puted purely based on cyber-system topology, failing to address the electrical features of microgrids
[19][20].

The above important problems have not yet been addressed in the literature, and to the best of our
knowledge, they need to be appropriately understood and resolved from a cyber-physical perspective.
Due to the dramatic development and deployment of wireless measuring and data transmission de-
vices and techniques, interpreting a modern power system as a cyber-physical system is a necessary
consideration, which however requires substantially more understanding and investigations into both
areas and seamlessly integrate them. In a very recent study [21], the authors incorporated complex
network theories into complex power systems with fixed physical connection but various communica-
tion topologies to investigate the vulnerability of the power system against cascading failure. Similar
ways of perceiving a power system have only been considered in recent couple of years [22][23][24],
where small signal stability analysis, line failure detection, and critical modes were studied respec-
tively for large-scale power systems. These pieces of research work have not been applied to inverter-
interfaced microgrids, which have a totally different modeling approach, nor a multi-agent distributed
control structure.

Therefore, pinning-based secondary control needs to be further developed, with simultaneous
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consideration of the physical and cyber systems that collectively represent modern microgrids, to
improve the robustness of the control system upon stochastic cyberattacks that may disrupt commu-
nication channels. In this paper, from a cyber-physical perspective, we propose a decision-making
strategy for PDMA that has high practicality and implementability for microgrid research. To achieve
this, we first utilize an improved static model of islanded microgrids documented in [25] and dy-
namic model for inverter-interfaced microgrids in [26], to formulate a complete 10-generator 38-bus
autonomous microgrid. Assuming communication connections are completely independent of the
physical architecture, a random communication topology is generated as a typical small-world con-
nection. We then use this initial communication topology as the base system and simulate stochastic
communication disruptions until communication sub-space starts to appear. Based on complex net-
work theories and frequency and voltage characteristics, an optimization problem, for maximizing
the CDR of the microgrid, is formed for a given communication topology, to solve for the minimum
number and identities of DGs to be pinned. Thereafter, time-domain simulations for the 10-generator,
38-bus microgrid are performed to demonstrate the functionality of the proposed method. Lastly, to
substantially reduce the computational burden of the proposed PDMA when operating on a real-time
basis, a DL-based pinning-decision mechanism is devised, enabling fast real-time pinning-decision
for the microgrid of interest.

2. Modeling of a Multi-Inverter Microgrid

In this section, descriptions of the mathematical model of each electrical component in a micro-
grid are presented, including the inverter, network, load and power flow, under the PDMA control
frame.

2.1. DG Inverter with Droop Control

A typical DG-inverter structure comprises a power source, voltage source converters, an LCL filter
and internal controllers for the power converters. To simplify the study without losing generality, we
assume the power source is able to produce the required amount of power for the islanded microgrid
under both steady-state operation and transient operation caused by small disturbances. In this paper,
a multiple-stage control loop is illustrated in Fig. 1. This control scheme consists of three controllers–
the power, voltage and current controller.
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Fig. 1. DG inverter schematic

2.1.1. Power Controller

Voltage and frequency references are generated by the power controller based on the filtered local
active, reactive power, current and voltage measurements from the LCL filter. As shown in Fig. 1,
the calculated instantaneous active and reactive output power, p̃o and q̃o, passes through a low pass
filter (LPF) to obtain the power quantities corresponding to the fundamental components, Po and Qo,
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using the following equations,

p̃o = idov
d
o + iqov

q
o , q̃o = idov

q
o − iqovdo , (1)

Ṗo = ωc (p̃o − Po) , Q̇o = ωc (q̃o −Qo) , (2)

where vdo , vqo ,ido and iqo are the instantaneous d−q voltage and current, and ωc is the cut-off frequency
of the LPF filter.

Secondary
control

Active
power

Frequency

Secondary
control

Voltage

Reactive
power

(a) (b)

Fig. 2. ω − P droop and V −Q droop

Droop control is adopted to regulate the power sharing between DGs. As shown in Fig. 2, a change
in power generation by the inverter-based power sources, which will alter the inverter frequency and
voltage, based on the following relations,

ωk = ωnl
k −mpkPGk

, Vk = V nl
k − nqkQGk

, (3)

v∗dok =

[
(Vk cos θk + rci

d
ok − ωkLci

q
ok)2

+(Vk sin θk − rciqok + ωkLci
d
ok)2

]1/2

,

v∗qok = 0, (4)

where subscript k is used to denote the number of node and superscript ∗ represents the reference
value to be used in subsequent control loops. Term ωk is the inverter frequency, ωn

k and V n
k are the

nominal frequency and voltage,mpk and nqk are the ω−P and V −Q droop coefficients, and θk is the
phase angle of the inverter voltage. The pinning-based AGC control is performed through changing
the nominal frequency and voltage of DGs, e.g., ωn

k and V n
k move to ωn′

k and V n′
k respectively in Fig. 2.

2.1.2. Current and Voltage Control

As shown in Fig. 3, both current and voltage controllers consist of two standard PI-controllers
to regulate the d − q components of voltage and current. As mentioned earlier, reference values of
the d and q-axis output voltage v∗dok and v∗qok are generated by the power controller, and the outputs
of the PI-controllers in the voltage controller are then added together with feed-forward terms KF i

d
ok

and KF i
q
ok , to generate the references of the inverter currents i∗dik and i∗qik

, where KF is the feed-
forward gain and idok and iqok are the d−q components of the output current of the LCL filter as shown
in Fig. 1. Similarly, the generated current references are fed into current controller to generate the
reference values for the inverter voltage v∗dik and v∗qik

with the similar approach used in the voltage
controller. Detailed mathematical expressions can be found in [26].
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Fig. 3. Current and voltage controllers in DG inverter

2.2. LCL Filter

The following differential equations summarizes the dynamics of the output LCL filter connected
to an inverter (Fig. 6 shows the topology),

dvd,qok /dt= 1/Cf

(
id,qik
− id,qok + ωkCfv

q,d
ok

)
,

did,qik
/dt= 1/Lf

(
vd,qik
− vd,qok − rf i

d,q
ik

+ ωkLf i
q,d
ik

)
,

did,qok /dt= 1/Lc

(
vd,qok − v

d,q
k − rci

d,q
ok + ωkLci

q,d
ok

)
, (5)

where vd,qk is the d− q components of voltage at kth node, Lc is the coupling inductance in the LCL
filter, and rf and rc are the parasitic resistances of the filtering coupling inductors respectively.

2.3. Load modeling and Network Equations

Instead of assuming constant power consumption or impedances as in large-scale power system
studies [27][28], in this study, electric loads and transmission lines are modeled asR−L impedances,
which vary with system frequency. The following equation describes the relation between current and
voltage of transmission lines,

diD,Q
likj

/dt =

1/Llikj

(
vD,Q
k − vD,Q

k −Rlikj i
D,Q
likj

+ ωLlinekj i
Q,D
linekj

)
, (6)

where Llikj and Rlikj are the inductance and resistance of the transmission line connecting node k
and k, ilinekj is the current flowing from node k to node k, vk is the voltage of node k, and D − Q
represents the direct and quadrature components of the common reference frame (which differs from
the inverter d− q reference frame for each DG bus) in the islanded microgrid.

The following equations describe the relations between current and voltage at load nodes,

diD,Q
loadk

/dt =

1/Lloadk

(
vD,Q
k −Rloadki

D,Q
loadk

+ ωLloadki
Q,D
loadk

)
, (7)

where Lloadk and Rloadk are the inductance and resistance of the load connected to node k, and iloadk
is the current flowing into node k. In microgrid modeling, the current and voltage at each node also
have the following relation,

vD,Q
k R−1

N = iD,Q
oj − iD,Q

loadj +
N∑

k=1,k 6=j

iD,Q
linekj

, (8)

where RN is the virtual resistance connecting each node to the ground. The introduction of the
virtual resistance is to ensure the numerical stability when conducting the simulation experiments for
the microgrid [26].

Samson S. Yu (Pinning Decision in Interconnected Systems with Communication Disruptions under Multi-Agent

Distributed Control Topology)



ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 2, No. 1, 2022, pp. 18-36

23

2.4. Small Signal Stability Analysis Model

In this section, a brief discussion on small signal stability analysis (SSSA) model formulation
will be presented, where a Differential Algebraic Equation (DAE) formulation is used, and system
linearization is performed to realize the SSSA for microgrids.

The nonlinear mathematical model describing a microgrid can be written in the following compact
form [26][3],

dX/dt = f (X,Υ,V,U) ,
0 = g1 (X,Υ,V) ,

0 = g2 (X,V) , (9)

where X is the dynamic state vector of the microgrid, including the dynamics of the inverters, DGs,
controllers, transmission lines and loads; V is the vector containing the voltage magnitudes and angles
of all nodes; Υ represents inverter algebraic variables; and U is the control input vector comprising
droop coefficients and nominal frequency and voltage of the microgrid. Function f(·) is the system
state-space function, g1(·) = 0 is the inverter algebraic equation set, and g2(·) = 0 is the network
equation set.

System SSSA requires system linearization, with the compact form in (9), the system matrix Asys
can be calculated symbolically as follows,

d

dt
∆X = Asys∆X +Bsys∆U, (10)

where

Asys = A1 −B1 ·D−1
1 · C1 −B2 ·D−1

4 · C2, (11)

A1 =
∂f

∂X
, B1 =

∂f

∂Υ
, B2 =

∂f

∂V
, C1 =

∂g1

∂X
,

C2 =
∂g2

∂X
, D1 =

∂g1

∂Υ
, D4 =

∂g2

∂V
, (12)

and the calculation of the input matrix of the linearized system Bsys is omitted in this paper. With the
acquired system matrix, the effects of varying parameters on the system stability can be observed and
analyzed. See [3] for more details on the procedures of linearizing a power system, where the system
is significantly different from the one used in this study, but the principles are similar.

2.5. Improved Power Flow Analysis

The steady-state solution of the islanded droop-based microgrid can be obtained by power flow
analysis as studied [25] using Newton-Raphson method. However, when pinning-based secondary
frequency and voltage strategies are deployed in an islanded microgrid, its steady-state frequency
settles to a preset set-point programmed in the secondary controller instead of free running according
solely to the droop characteristics described in (3). Therefore, it is necessary to modify and im-
prove the algorithm in order to obtain the power flow solution when implementing a PDMA control
structure. A brief mathematical description is summarized as follows,

W i+1 = J−1
i ∆P i + ∆Wi, (13)

where W , ∆P and ∆W are the modified unknown vector, power mismatch vector and correction
vector at ith iteration respectively, and J is the Jacobian matrix of the power flow formulation. To
demonstrate the islanding feature, the modified unknowns of the power flow problem are given as
follows,

W =
[
ωnl V nl θ |Vload|

]T
, (14)
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where θ and V are respectively the voltage phase angles and magnitudes for all nodes as stated in
original formulation of a power flow problem [3], and ωnl and V nl are two vectors that contain the
nominal frequency and voltage for each inverter node with the secondary control mentioned in Section
2.1. The microgrid will have known unanimous frequency ω and voltage level V at every DG bus-bar.
The formulation of the modified power mismatch vector ∆P can be found in [25]. The dimensions
ofW , ωnl, V nl, θ, |Vload| for an m-DG N -bus microgrid are respectively (2N +m− 1)× 1, m× 1,
m×1, (N−1)×1, and (N−m)×1, under the premises that the angular reference bus is a generator
bus with a known voltage level V and θref = 0, which is a load bus. Note that the power generation
of each inverter node has now become,

PGk
=

1

mpk

(
ωnl
k − ωk

)
, QGk

=
1

nqk

(
V nl
k − Vk

)
, (15)

and RN is modeled as a shunt impedance. Corresponding modifications need to be made when
computing the Jacobian matrix, which are shown as follows,

∆P =

[
∆Pa ∆Qa ∆P ∆Q ∆Θ

]T
, (16)

where the dimension for each element is (2N +m− 1)× 1, 1× 1, 1× 1, (N − 1)× 1, (N − 1)× 1
and (m− 1)× 1, respectively, and

Pa = Ptot − Psys, Qa = Qtot −Qsys, (17)
Ptot = Pload + Ploss, Qtot = Qload +Qloss, (18)

∆P = P − Pcal, ∆Q = Q−Qcal, (19)

∆Θ = mp1PG1I
(m−1)×1 − [mp2PG2 , · · · ,mpmPGm ]T , (20)

PGk
=

1

mpk

(
ωnl
k − ωk

)
, QGk

=
1

nqk

(
V nl
k − Vk

)
, (21)

Pcalk = Vk

N∑
j=1

Vj |Y(k,j)|cos (θk − θj − γjk) ,

Qcalk = Vk

N∑
j=1

Vj |Y(k,j)|sin (θk − θj − γjk) , (22)

Psys =
m∑
k=1

PGk
=

m∑
k=1

1

mpk

(
ωnl
k − ωk

)
,

Qsys =

m∑
k=1

QGk
=

m∑
k=1

1

nqk

(
V nl
k − Vk

)
, (23)

Ploss =
1

2

N∑
k=1

N∑
j=1

<
{
Y(k,j)

(
V ∗k Vj + VkV

∗
j

)}
,

Qloss = −1

2

N∑
k=1

N∑
j=1

=
{
Y(k,j)

(
V ∗k Vj + VkV

∗
j

)}
, (24)

where the extra equation set (20) is introduced to achieve appropriate power sharing based on droop
characteristics, which will be mentioned again in Section 3. After solving the power flow problem,
steady-state Xss can be obtained, from which the initial condition of voltage magnitudes and angles
of all nodes Vss can be extracted.

3. Pinning-Based Distributed Multi-Agent Automatic Generation Control
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3.1. PDMA Physical Control

As mentioned in earlier sections, the two main aspects in PDMA formulation is (1) the physical
droop-based secondary control and (2) the communication network and information exchange. In this
study, we assume that all DGs have droop-based frequency and voltage control mechanisms as stated
in 2, with the control variables being the nominal frequency ωn

k and voltage V n
k (k = 1, 2, · · · ,m) for

each DG. The information exchange between two cyber-connected DGs includes frequency, voltage
and active power. The following equation shows the control of nominal voltage at DG bus k,

V nl
k = nqkQGk

+ Cv

∫ ( m∑
j=1

Aadj(j,k)(Vj − Vk)+Ψ(k,k)Cgv(k,1)(Vref − Vk)

)
, (25)

where Cv is the voltage control gain, Aadj is the adjacency matrix of the communication network
(which can be calculated based on [29]), Cgv is the voltage pinning gain vector, and Ψ is the pinning
matrix, which is defined as follows,

Ψ =


ψ1 0 · · · 0
0 ψ2 · · · 0
...

...
. . .

...
0 0 · · · ψm

 , (26)

where ψ is a Boolean variable (= 1 or 0) for pinning or not pinning a particular DG.

Similarly, the nominal frequency of DG at bus k can be controlled as,

ωnl
k = mpkPGk

+Cω

∫ ( m∑
j=1

Aadj(j,k)(ωj − ωk) + Ψ(k,k)Cgω(k,1)(ωref − ωk)

)
+CP

∫ ( m∑
j=1

Aadj(j,k)

(
mpkPGk

−mpjPGj

))
, (27)

where the last addition term is to share the power demand among all DGs based their droop charac-
teristics, Cω is the frequency pinning gain, CP is the power sharing balancing gain and Cgω is the
frequency pinning gain.

3.2. PDMA Pinning Decision Formulation Based on Complex Network Theory

As stated before, the pinned generator has a three-fold task– (a) synchronizing its frequency/voltage
with the neighboring generator it has communication with, (b) restoring its frequency/voltage to the
nominal value, and (3) alter load sharing based on droop characteristics. If we denote εvk and εωk

as voltage and frequency tracking errors for the kth generator, basing on (25) and (27) the following
equations can be derived,

˙εvk =

m∑
j=1

Aadj(j,k)(Vj − Vk) + Ψ(k, k)Cgv(k,1)(Vref − Vk),

˙εωk
=

m∑
j=1

Aadj(j,k)(ωj − ωk) + Ψ(k, k)Cgω(k,1)(ωref − ωk)

+Ψ(k,k)CP

m∑
j=1

Aadj(j,k)

(
mpkPGk

−mpjPGj

)
, (28)

We know that in complex network theory [30], the Laplacian matrix L is defined as

L = D −Aadj, (29)
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where D is the degree or valency matrix and D(i,i) = deg(υi) and D(i,j) = 0(i 6= j) (υi ∈ N is a
node inside the node set of a graph G), and the adjacency matrix is given as [30],

Aadj(i,j) =

{
1 iff pair{υi, υj} ∈ E ,
0 otherwise

(30)

where E denotes the edge set of a particular graph G. Then the voltage and frequency tracking error
in (28) for all DGs can be manipulated and expressed as,

ε̇v = (L+ CgvΨ) Ξv,

ε̇ω= (L+ CgωΨ) Ξω, (31)

where Ξv and Ξω are respectively the aggregation of voltage and frequency (including power sharing)
control errors. Based on (31) and (28), we now have

ε̇v = −Cv (L+ CgvΨ) εv,

ε̇ω= −Cω (L+ CgωΨ) εω, (32)

which can be generalized by

ε̇= −Gc (L+ CΨ) ε, (33)
with Gc representing the control gain, C the pinning gain and ε the control error.

Lyapunov Stability: A direct Lyapunov candidate L can be assigned as,

L =
1

2
εT ε, (34)

and apparently L > 0. Then we have

L̇=
1

2

(
εε̇T + εT ε̇

)
= εT ε̇ = εT (−Gc (L+ CΨ) ε)

≤ −Gc(L+ CΨ)||ε||2

< 0 (35)

with a positiveGc and appropriately chosen pinning gain C in correspondence to the Laplacian matrix
and pinning matrix, hence Lyapunov stability proved. Despite the fact that Lyapunov stability is only
a mild requirement for stability around the equilibrium point, it is assumed adequate for this study
as the fluctuations of frequencies and voltages will be a small value under power system loading
disturbances.

We are now in the position to look at the objective function that needs to be solved for the pinning-
based PDMA problem. From (33) we know that the robustness and performance of the graph system
are determined by the eigenvalues of L+CΨ, such as the convergence rates of voltage and frequency,
which is of paramount interest in this study, and can be quantitatively represented asGcλmin{L+CΨ}.

In this study, the main purpose of the pinning-based PDMA is to select a set of minimum number
of generators and identify their identities so that the desired network convergence rate %∗ can be
achieved. To simplify this study, we assume the pinning gains are identical for frequency and voltage
control, i.e., Cgv = Cgω and Cv = Cω = CP . Then our problem can be formulated as follows,

minimize R{Ψ},
subject to Gcλmin{L+ CΨ} ≥ %∗, (36)

whereR is the rank operator, and then with the minimum rank ΥΨmin acquired from solving (36), we
need to find which DGs to be pinned to realize the desired control purpose, i.e.,

maximize λmin{L+ CΨ},
subject to R{Ψ} = ΥΨmin. (37)

Using graph theory the objective function in (36) can be solved with the flowchart below.
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Fig. 4. Flowchart for solving problem (36)

3.3. Deep Learning-based Pinning Decision-Making Method

As mentioned in the previous sub-section, the pinning decision in the proposed PDMA con-
trol method is made by solving problems (36) and (37). However, solving such problem is a time
consuming task, jeopardizing the applicability of the PDMA method to microgrids with time-vary
communication networks which require real-time pinning set update. To overcome this limitation, we
proposed a deep learning-based pinning decision-making method to obtain the optimal pinning set
for real-time operations. First, a Monte Carlo simulation is conducted to generate a training set that
covers a wide range of communication network configurations with different connection topologies.
The details of the training data generation process is illustrated in the flowchart shown in Fig. 5, where
GA is employed to obtain the optimal pinning sets. After the training set is generated, a deep neural
network (DNN) is trained to capture the relationship between each topology and the corresponding
optimal pinning set obtained by GA. The vectorized Laplacian matrix LV = vec(L) and the optimal
pinning set Ψmin are employed as the input and the output of the DNN respectively. If undirected
graphs are considered, the dimension of LV can be reduced from N2-by-1 to ((N + 1)N/2)-by-1 by
removing repeated off-diagonal elements in the symmetrical Laplacian matrix.

4. Simulation and Numerical Results

In this study, a 38-node microgrid system is employed, which is modified from [31]. Fig. 6
demonstrates the system topology, where nodes 1 to 28 are the load nodes and whereas nodes 29 to
38 are the DG nodes. For simplicity but without loss of generality, all loads are modeled as RL loads
and the system operate in the islanded mode throughout the study. The load and generator settings are
depicted in Fig. 3. The line parameters and the inverter and LCL parameters are adopted and modified
from [25] for the proposed new microgrid formation. The analysis and simulation are performed in
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Fig. 5. Flowchart for training set generation process

MATLABTM 2018b coding environment, and the time-domain simulation is performed by using the
MATLABTM built-in ode15s solver.

Table 1, Table 3 and Table 4 show respectively the line parameters, load and generator settings,
and the inverter and LCL parameters. Both power flow analysis, modal analysis and time-domain
simulations are conducted in this section. The analysis and simulation are performed in MATLABTM

2018b coding environment. The modal analysis is carried out through system linearization, eigen-
value analysis and eigenvalue sensitivity study, whereas the time-domain simulation is performed by
using the MATLABTM built-in ode15s solver.

Fig. 6. Modified 38-node test system

4.1. Power flow analysis

Power flow analysis is the first step to understand and observe a power system, which is also
an essential step for the modal analysis and time-domain simulations in calculating the steady-state
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Table 1. Line parameters

From To R (p.u.) L (p.u.) From To R (p.u.) L (p.u.)
×10−3 ×10−3 ×10−3 ×10−3

1 2 0.574 0.293 24 25 5.579 4.366

2 3 3.07 1.564 9 26 12.453 12.453

5 6 5.1 4.402 26 28 5.007 4.362

6 7 1.166 3.853 27 28 6.594 5.814

7 8 4.43 1.464 6 29 1.264 0.644

10 11 1.224 0.405 27 29 1.77 0.901

11 12 2.331 0.771 8 30 6.413 4.608

4 13 1.933 2.253 10 30 6.501 4.608

9 13 12.453 12.453 12 31 9.141 7.192

14 15 3.68 3.275 14 31 3.372 4.439

15 16 4.647 3.394 3 32 2.279 1.161

16 17 8.026 10.716 5 32 2.373 1.209

17 18 4.558 3.574 4 33 2.123 3.301

2 19 1.021 0.974 8 34 12.453 12.453

19 20 9.366 8.44 26 35 12.453 12.453

20 21 2.55 2.979 12 36 12.453 12.453

21 22 4.414 5.836 22 37 3.113 3.113

3 23 2.809 1.92 25 38 3.113 3.113

23 24 5.592 4.415

operating points and initial conditions. In this work, a novel microgrid power flow approach, as stated
in Section 2.5, is employed, and the power flow results are shown in Table 6 in 5. In the microgrid
of interest, node 29 is selected as the reference node, and its voltage angle is always assumed to be
0o. The secondary voltage and frequency control mechanism is implemented on all DG inverters.
The nominal frequency and voltage of this microgrid are both 1 p.u. for the purpose of this study.
In real-world situations the nominal values are generated by the tertiary control level, which is not
incorporated in this paper. The secondary control is implemented to maintain this nominal voltage
frequency by varying the no-load voltage and frequency of the DG droop characteristics, i.e., V nl and
ωnl, as illustratively shown in Fig. 2(a). As shown in Table 6, the no-load frequency of all DGs in the
power flow problem converge to a single value, ωnl = 1.0008 p.u., whereas different no-load voltages
are obtained for the DGs, ranging from 0.985 p.u. to 1.0387 p.u. This is because constraint (20) is

Table 2. Load data

Node R (p.u.) L (p.u.) Node R (p.u.) L (p.u.)
1 - - 15 16.4567 2.6749
2 7.5498 4.3578 16 15.1380 4.6374
3 9.4641 3.9279 17 15.2710 4.9356
4 5.9264 3.8724 18 9.4568 3.8098
5 13.6197 6.6048 19 9.4549 4.0409
6 15.1875 4.7646 20 9.4792 4.1143
7 4.0926 2.0011 21 9.4636 3.9168
8 4.0920 2.0032 22 9.4564 4.0594
9 15.1782 4.7400 23 8.7046 4.7186
10 15.2825 4.9941 24 1.9854 0.9197
11 15.8036 10.3266 25 1.9849 0.9222
12 12.7485 7.1925 26 14.4958 5.9204
13 12.7478 7.2856 27 14.4610 5.6901
14 5.9412 3.8154 28 15.2824 4.9939
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Table 3. Load and Generator Settings

Node mp nq Node mp nq

(p.u.) (p.u.)
29 5.102× 10−3 0.02 34 5.102× 10−3 0.02
30 1.502× 10−3 1/30 35 1.502× 10−3 1/30
31 4.506× 10−3 0.02 36 4.506× 10−3 0.02
32 2.253× 10−3 0.05 37 2.253× 10−3 0.05
33 2.253× 10−3 0.05 38 2.253× 10−3 0.05

Table 4. Inverter and LCL filter parameters

Variable Value Variable Value Variable Value
ωbase 120π rad/s Vbase 220V Sbase 1kVA
Cf 50µF rc 0.03Ω Lc 0.35mH
rf 0.1Ω Lf 1.35mH KF 0.75
Kpv 0.05 Kiv 390 Kpc 10.5
Kic 16×103 Kif 10 Kpf 1
ωc 10ωnom J 2s D 17p.u.

incorporated to maintain the power sharing within the microgrid with respect to the capacity of each
DG. Reactive power sharing is, however, not in the consideration in this study.

4.2. Small Signal Stability Analysis and Modal Analysis

Using the proposed Small-Signal Stability Analysis (SSSA) framework and applying to the mi-
crogrid model, the eigenvalues of the system can be acquired. Table 5 demonstrates the eigenvalues
associated with generators, controllers and LCL filters and of low damping ratios in the microgrid
with the base-case setup, where frequencies and dominant states of the modes are presented.

Table 5. Eigenvalues of interest with base-case settings

λ ξ f (Hz) Dominant states
−117.0± j1573 7.41(ξcrit) 250 vdqo6 , iDQ

line23
−144.0± j1934 7.43 307 vdqo6 , iDQ

line23
−4.972± j44.68 11.05 7.11 ω6 and PBESS

6

−57.70± j465.8 12.29 74.1 vdqo of inverter 4, 5, 6
−297.9± j2322 12.73 370 vdqo , idqo of inverter 4, 5
−349.6± j2685 12.91 427 vdqo , idqo of inverter 4, 5
−3.463± j15.69 21.55 2.50 PBESS

6 , xdqv , δ of inverter 5, 6

Combining Table 5, it is safe to state that with the base-case setup of the microgrid, the SSSA
indicates a stable system. Now we are in the position to investigate how changing parameters affect
the stability of the microgrid.

4.3. Monte Carlo Simulation and DNN Model Training

In this subsection, a Monte Carlo simulation is conducted to generate the training data as men-
tioned in Section 3.3. The mircogrid system in this study consists of ten DGs, the communication
network among each DG are modeled as a small-world network, with an average connectivity of 4.
We assume all communication links are bidirectional, i.e., the measurement information is mutually
exchanged between two DGs connected with a link connected with a link. Base on this assumption,
formulas for undirected graph are used for the calculation of the degree matrix D and the Laplacian
matrix L for each sample in this simulation. The Laplacian matrix of each sample is vectorized in or-
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der to generate the input for the DNN to be trained. In this case, the vectorized Laplacian matrix LV is
a 55-by-1 vector after removing the repeated off-diagonal entries of L. By following the steps shown
in Fig. 5, the training process is conducted. In this study, the DNN is trained with TensorFlowTM

and KerasTM libraries using the GoogleTM ColabTM environment. The trained model is applied in
the time-domain simulation for real-time optimal pinning set generation, which will be discussed in
detail in the following subsection.

4.4. Time-Domain Simulation

In this subsection, time-domain simulations are carried out on the modified 38-node microgrid un-
der the islanded mode. The DNN model trained in the previous subsection is imported to MATLABTM

for generation of pinning sets used in the proposed PDMA control method. The microgrid system op-
erating in steady-state for the first 0.5s, and disturbances are then introduced to the microgrid in order
to verify the proposed PDMA method. The time-domain simulation results will further illustrate the
control performance in the case study.
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Fig. 7. Communication network under stochastic disruptions

4.4.1. Case 1: PDMA with Fixed Communication Network

In this case, the communication network is represented by Ga as shown in Fig. 7(a), which used to
verify the functionality of the proposed PDMA control method. Given the gain of the frequency, volt-
age and real power sharing controller both equal to cω = cV = cp = 30 and the desired convergence
rate %∗ = 10, the desired algebraic connectivity to the reference is found to be µ∗ω,V ≥ %∗/Cω,V =
1/3, and the resultant pinning set is Ψa = {DG1, DG2, DG6, DG9} as highlighted in orange in
Fig. 7(a), with the calculated minimum network convergence rate Gcλmin(Ψa) = 10.8318 > %∗. The
time-domain simulation runs for 6.5 seconds with the microgrid operates in the steady-state for the
first 0.5 seconds, an abrupt load decrease is then introduced at t = 0.5s, with a 50% reduction on
the load demand at nodes 2 to 10. After that, the load demand of these nodes is increased by 100%,
and the loading condition is returned to the original at t = 4.5. Note that the cyber network remains
unchanged throughout this case study. Time-domain simulation results in Fig. 8 further confirm that
the frequencies and voltages are restored to the nominal values, and real power sharing among the
DGs reaches consensus after the load variation disturbances. The results also demonstrated that the
proposed method is capable to maintain autonomous operations of the microgrid through droop-based
secondary control strategy.
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4.4.2. Case 2: PDMA with Communication Network under Stochastic Disruptions

In this case, stochastic communication network disruptions are simulated to study the transient
behaviors of the DGs in the microgrid as well as the effectiveness of the proposed pinning decision
making method. As mentioned in Section 3.3, the pinning sets used in the PDMA control are updated
continuously in order to keep the network convergence rate below the desired value %∗ = 10 using
the results obtained based on the pinning decision making method. In this particular study, GA is
used to generate the pinning sets due to the fact that the size of the microgrid is small. Note that
the GA-based decision making method is not applicable when the size of the microgrid is grown,
and the DL-based decision-making method will be used as discussed in Section 3.3. To simulate
the stochastic disruptions, communication links in the network are taken out randomly as shown in
Fig. 7, where the original cyber network is illustrated in Fig. 7(a). First, edges {υ1, υ3}, {υ1, υ5},
{υ1, υ10}, {υ2, υ3}, {υ2, υ10}, {υ4, υ5}, {υ6, υ8} are removed from Fig. 7(a), and the resulting net-
work connection Gb is shown in Fig. 7(b). After the disruption, the network convergence rate with
the original pinning set has dropped from 10.8318 to 8.4479, which violates the design specification.
Therefore, to fulfill the network convergence rate requirement, a new pinning set is obtained with GA
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using the proposed method, with Ψb = {DG2, DG6, DG7, DG8, DG10} and %b = 11.7871. Note
that the number of pinned DGs has increased to |Ψb| = 5 after the disruption, i.e., pinning four DGs
can no longer produce a result that satisfies the design specification. Similarly, an additional link is
disconnected from DG1 and DG7 in order to further examine the proposed method, and the pinning
set is updated again using the same method. As shown in Fig. 7(c), the new pinning set for Gb has the
same cardinality with the previous pinning set, i.e., |Ψb| = |Ψc| = 5, but DG3, DG4, DG6, DG9 and
DG10 are pinned instead, and the network convergence rate is calculated to be %c = 11.8210.

5. Conclusion

In this study, we have proposed a pinning strategy by viewing the power system as a cyber-
physical system, for PDMA-AGC in microgrids. The proposed pinning method aims to make adaptive
pinning decisions with the minimum number pinned generators against communication disruptions
between control agents, to achieve frequency consensus amongst all generators and restore the power
system frequency to the nominal value. A DNN-based learning technique is employed to make online
pinning decisions upon cyber-system topology changes. Time-domain simulations on the modified
IEEE 10-generator, 38-bus microgrid test system have verified the proposed pinning decision-making
approach. Future work may include testing and verification on large-scale microgrid systems and fur-
ther investigations on the correlation between the physical and cyber components in complex power
systems.
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Appendix

Power flow results mentioned in Section 4.1 are shown in Table 6.
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