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ABSTRACT

Diabetes is an increasing health problem all around the world, particu-

larly Type 1 diabetes (T1D), people with T1D require precise glycemic

control, due to a shortage of insulin production. This paper introduces

a new adaptive neural observer-based controller for a class of nonlinear

T1D systems. A solution is proposed to guarantees practical tracking of a

desired glucose concentration by a new adaptive neural observer-based

control strategy. One of the intelligence procedures is the network un-

der online learning that the mentioned controller is learned by a back-

propagation algorithm. This network is a significant class of feed-forward

artificial neural networks that maps a set of inputs into a set of proper

outputs. Guarantee stability of observer and controller by Lyapunov di-

rect and training online are the merit of the method. Also, despite the

presence of internal and external uncertainties, themultilayer perceptron

neural observer-based controller is robust. The performance of the pro-

posed method is hopeful based on the results.

This is an open access article under the CC-BY-SA license.

1. Introduction

The Insufficient generationor shortage counteraction to insulin is caused to create thismeta-

bolic illness [1] which one of the most important chronic diseases is diabetes. More than a few

hundred million people suffer from diabetes worldwide, and it is predicted that this number

will double in the next 30 years [2]. In later decades, significant growth in diabetes outbreaks

has shown stability and latency, while several million people worldwide get involved in diabetes

[11]. According to the International Diabetes Federation, 425 million people in 2017 had type I

diabetes (T1D), and as a perspective by 2045, the number could reach up to 629 million, which

is a worldwide growth of 48 % in only 28 years [12]. As per research, 327 million patients

worldwide are an average age of 20-64 years; this is a 72 % increase over the past 65 years.

The worldwide growth from 2017-2045 is enormous; in North America and the Caribbean, a

projection of 35 % could raise the cases of T1D that can increase rapidly to type-2 diabetes. In

Europe is predicted an increase of 62 %; in the meantime, in the South-Central Americas is ex-

pected a 16% growth in the population with T1D. The lowest estimated growth is related to the

Western Pacific area with 15 %. According to the report, further growth is related to southeast
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Asia, Africa, and the Middle East that go from 72 % up to 156 %, which shows warning state

that requires political strategies and more investigating. Diabetes-related side problems are a

pandemic around the world that has high economic, medical, and social costs [4]. Besides, it is

estimated that about 9% of all deaths worldwide have occurred from diabetes [3]. People’s life

all around the world is affected by diabetes regardless of race, sex, nationality, or social status

despite diabetes being an immunological disease [10]. There are lots of natural feedback loops

inside the human body, which are in charge of maintaining homeostasis. The defect or failure

of one of these loops can make severe illnesses with short or long-term complications. Diabetes

can lead to problems like brain hurt, nerve hurt, mutilation, and eventually death if the blood

glucose level is not properly controlled. Insulin is a hormone, which regulates glucose uptake

by the body cells.

There are two types of diabetes, type I diabetes or insulin-dependent and type 2 diabetes or

non-insulin-dependent [5]. It is predicted that the number of patients under the age of 20 with

T1D or type-2 reaches its peak until 2045 [8][9]. In type 1 diabetes, pancreatic beta cells are

destroyed so the pancreas does not secrete insulin. Thus the effect of glucagon which causes to

elevate the concentration of glucose in the blood cannot be suppressed by insulin. In this case,

the patients need exogenous insulin injections to process and regulate their glucose concentra-

tion to a normal level. There are two situations depending on glucose concentration, namely,

hyperglycemia and hypoglycemia. Moreover, type-1 diabetes (T1D) or Mellitus diabetes which

the production of pancreatic b-cells decays at a rate proportional to leukocyte cell growth [7].

When lymphocytes T-cells diagnose pancreatic b-cells as antigens, diabetes is created. When

b-cells destroy increasingly, causes an absolute lack of insulin production and dysregulation of

glucose metabolism. If the glucose concentration is remarkably higher than the normal level,

hyperglycemia occurs [6]. Hypoglycemia occurs when the glucose concentration is less than

normal [6]. Both hypoglycemia and hyperglycemia can impress the patient’s health and life. It is

essential for a diabetic person to performmanually the procedures of blood glucose regulation.

AS the predictions are globally enormous in terms of how T1D is increasing over time, future

health will be improved by robust strategies based on mathematical modeling. Also, due to lim-

ited understanding of the pancreas’ organogenesis and restricted access to preliminary tissues,

the advancement of novel treatment options is stopped. Therefore, the existence of a system that

controls automatically the blood glucose level of a diabetic will be one of themost useful devices

in community health. This system permits the patient to participate in normal daily activities

with risk mitigation of long-term side effects.

The inferenceof the consequencesof interactions is doneusing the analysis ofmodels through

computational and appliedmathematical methods [13][14][15][16]. Connections between net-

work structure and behavior are created by providing insights into why a system behaves [20].

In addition, with the help of mathematical models, the cause-and-effect process can be formal-

ized and related to biological observations [17]. In control engineering particularly in nonlinear

system control, they have special importance [33][34]. There are severalmethods for delivering

insulin using the feedback controller, such as classical methods such as PID [21][22] and pole

placement [23], which need a linear model for design, also model predictive control [24][25].

Numerous studies have been performed in recent years to intelligently control blood glucose.

In the study [26], for reduction of the time of descending blood glucose, a PID controller based

on neural networks is suggested. In [27], for minimizing the time that lasts for blood glucose

to return to its basic level, several parameters of the Hammerstein controller were optimized.

In [31], an online glucose-insulin identification using the Recurrent High Order Neural Network

is proposed. A smart artificial pancreas for treating Type 1 Diabetes Mellitus in the elderly is

presented In work [32]. Moreover, for use non-model-based controllers like fuzzy controllers

and neural networks have been attempted [28][29].
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One of the artificial intelligence techniques that can be used to develop the performance

of devices and industrial processes is the artificial neural network. Approximation of unknown

nonlinear functions has been done by general approximation capabilities, conformity, and learn-

ing capabilities. One of themost efficient tools for designing a nonlinear observer system is them

[18]. Using the fact that a vast range of nonlinear functions with any demanded degree of ac-

curacy under specific conditions networks can estimate, lots of research has been conducted

in the proposed observer [19]. Meanwhile, to classify patterns, forecasting, diagnosis, and ap-

proximation, multi-layer perceptron neural networks are used. Indeed, these implementations

are because of their capacity for nonlinear functions’ approximation [19]. Multilayer networks

abilities have quickly increased in order to learning and modeling in recent years. This study

presents and describes a mathematical model of the disease that analysis of the complex cel-

lular relation between pancreatic cells. Then, introduce a new adaptive neural observer-based

controller for a class of nonlinear diabetes models. After that, the stability of the observer and

controller are Guaranteed by the Lyapunov direct method. Despite the presence of external and

internal uncertainties, the Multilayer perceptron neural observer-based controller is robust. Fi-

nally, a nonlinear T1D model is simulated by MATLAB in order to show the performance of the

proposed method.

The paper is organized as follows: A brief overview of the mathematical model is presented

in Section 2. the adaptive neural observer-based controller is introduced in Section 3. To proof

the advantages of the introducedmethod, numerical simulation is done in Section 4. Finally, the

conclusions are provided in Section 5.

2. Mathematical Model of T1D

According to [30], resting macrophages have a constant supply rate a with a natural death

rate c. The dynamics of each cell population set are as equation (1):

Ṁ(t) = a+ (b+ K)MA(t)− cM(t)− gM(t)A(t) (1)

where M is the interaction of resting macrophages, MA is activated macrophages, and antigen

cells shows A. Increase due to the recruitment of activated macrophages with a maximum rate

b + k, while g is the rate at which resting macrophages become active due to interaction with

antigenic cells. Activated macrophages have a supply rate g due to interaction between resting

macrophages and antigenic cells, and a natural death rate k.

ṀA(t) = gM(t)A(t)− kMA(t) (2)

Antigen cells increase due to the release of both antigenic peptides by activated macrophages

and β-cell antigenic peptides by dead β-cells due to the interaction between b-cells and T-cells

with a rate l and q, respectively. m is the rate at which antigenic cells are cleared from their

population.

Ȧ(t) = lMA(t) + qB(t)T (t)−mA(t) (3)

Autolytic T-cells have a constant supply rate sT and a natural death rate µT with proliferation

rate s due to a profile of cytokines and chemokines, induced by activated macrophages.

Ṫ (t) = sT + sMA(t)T (t)−µT T (t), (4)

β-Cells have a constant supply rate sB and a natural death rate µB , while q is the depletion of

the β-cell population due to interactions between β-cells and T-cells. The description of each

parameter and its estimation. Autolytic T cells (T), and cells (B) is modelled by the following

system of equations.

Ḃ(t) = sB − qB(t)T (t)−µBB(t). (5)
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Nowthese equationsmaybe represented into state space formby considering the state variables

as following:

x1 = M , x2 = MA , x3 = A , x4 = T , x5 = B (6)

The biological implication due to a population set of resting macrophages (x1) that label a pop-

ulation set of β-cells (x5) as antigens (x3), thereby x1 becomes activated macrophages (x2) and

directly responsible for autolytic T-cell (x4) stimulation that their primary function is to trig-

ger the lymphocytes’ cytotoxic T-cells response. That is, the interaction of the population sets

of resting macrophages, activated macrophages, antigens, autolytic T-cells, and β-cells. In ac-

cordance with the aforementioned, system (6) can be expressed in closed-loop control form as

follows:
�

ẋ(t) = Fd(x) + Gdu(t)
y(t) = C x(t) (7)

where Fd , Gd , and u are cosidered as follows:











































ẋ(t) = [ ẋ1, ẋ2, ẋ3, ẋ4, ẋ5]T

Fd = [ fd1, fd2, fd3, fd4, fd5]T

u(t) = [u1, u2, u3]T

Gd =











00 0
10 0
01 0
00 1
00 0











(8)

Also


















fd1 = a+ (b+ k)x2(t)− cx1(t)− g x1(t)x3(t)
fd2 = g x1 x3(t)− kx2(t)
fd3 = l x2(t)−mx3(t) + qx4(t)x5(t)
fd4 = sT + sx2(t)x4(t)−µT x4(t)
fd5 = sB − qx4(t)x5(t)−µB x5(t)

This paper has been proposed three control inputs for the variables related to activated macro-

phages, b-cells presented as antigens, and autolytic T-cells. The control theory for improving

the immunological response against T1D is presented. Therefore, inhibiting the x2 responses

would contribute to a decreasing x5 labeled as x3, and as a consequence, it will not be elimi-

nated. Hence, this method must be controlling the populations of these undesired cells.

3. Control design

In this section, an effective intelligent nonlinear observer based controller is proposed for

Blood Glucose of T1D model via adaptive neural network.

3.1. Neural observer

Nonlinear neural observer under a conventional backpropagation are followed to improve

performance. A three-layer structure of the multilayer perceptron network is considered as

Gob(x , u) which shows in Fig. 1. By using a multilayer perceptron for some sufficiently large

number of hidden layer neurons, there exist weights and thresholds so that a continuous func-

tion Gob(x , u) can be represented as:

Gob

�

x(t), u(t)
�

=W T (t)σ
�

V T (t) x̄(t)
�

+ ε(t) (9)
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Fig. 1. Structure of the multilayer perceptron neural network

in above, ε ∈ Rn is the bounded approximation error of the neural network, V (t) ∈ Rq×q isweight

matrix of the hidden layer, and W (t) ∈ Rn×q is weight matrix of the output layer that are consid-

ered as follows:

W (t) =







W11 W12 ... W1q
W21 W22 ... W2q
... ... ... ...

Wn1 Wn2 ... Wnq






, V (t) =







V11 V12 ... V1q
V21 V22 ... V2q
... ... ... ...
Vq1 Vq2 ... Vqq






(10)

it is assumed where there exist an upper bound for the fixed ideal weights W (t) and V (t):

‖W‖ ≤WM , ‖V‖ ≤ VM (11)

where σ(V T x̄) ∈ Rn+m is transfer function of the hidden neurons.

In the output and hidden layers, an activation function was considered in order to describ-

ing the nonlinear characteristics of the network. The linear functions often was used for output

layer, the linear threshold, sigmoidal, hard limit, gaussian, and hyperbolic tangent usually were

used for hidden layer, In this work, a tangent hyperbolic function is used as the activation func-

tion. Also, the upper bound for σ(V x̄) is assumed as follows:

‖σ(V x̄)‖ ≤ σM (12)

Due to thementioned definitions, the proposedwavelet network able to estimate any non-linear

function such as f ∈ L2(Rq) (continuous or discontinuous, finite-energy) by an arbitrary preci-

sion. Fig. 1 depicts a structure of the the MLP network. The nonlinear model in the presence of

disturbance is considered in Equation (8). Therefore, equation (13) is obtained fromsubtracting

and adding phrase A x(t) into (7), then

ẋ(t) = A x(t) + Gob

�

x(t), u(t)
�

y(t) = C x(t) (13)

in above equation, the known output matrix is C ∈ Rp×n, A is optional matrix which the eigen-

value of it has negative real part (Hurwitz) and both matrixes Mb, C are observable. Gob

�

x(t),
u(t)
�

is a the unknown nonlinear function that includes uncertain and disturbance terms, such

that

Gob

�

x(t), u(t)
�

= Fd(x) + Gd(x)U(t)− A x(t) (14)
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from the Luenberger observer [18], equation of the nonlinear system (16) is assumed as:

˙̂x(t) = A x̂ + Ĝob

�

x̂(t), u(t)
�

+ Γ e(t)

ŷ(t) = C x̂(t) (15)

where Γ ∈ Rn is the observer gain which it must be chosen such that A− ΓC becomes a Hurwitz
matrix, and x̂(t) is state of the observer. To approximate Gob

�

x(t), u(t)
�

a MLP neural net is

considered that it has enough large number of hidden layer neurons in order to estimate the

unknown nonlinear function (15).

Fig. 2 shows the structure of themultilayer neural adaptive observer. Therefore, unit matrix

I is considered as the first layer weight V = I .

Fig. 2. Structure of the neural observer

Hence, the proposed nonlinear observer can be written as follows:

Ĝob

�

x̂(t), u(t)
�

=Ŵ Tσ
�

ˆ̄x(t)
�

+ ε(t) = Ŵ T tanh
�

x̂(t), u(t)
�

+ ε(t) (16)

the weight error is assumed as:

W̃ =W (t)− Ŵ (t) (17)

by using output error e(t) = y(t)− ŷ(t) and (15) into (17), the nonlinear observer is given as

follows:

˙̂x(t) =Ax̂(t) + Ŵ T (t) tanh
�

x̂(t), u(t)
�

+ Γ
�

y(t)− C x̂(t)
�

(18)

according to (15), (18) and ˙̃x(t) = ẋ(t)− ˙̂x(t) can be writen:

˙̃x(t) = Ax(t)− Ax̂(t) +W T (t) tanh
�

x(t), u(t)
�

− Ŵ T (t) tanh
�

x̂(t), u(t)
�

+ Γ
�

C x̃(t)
�

+ ε(t) (19)

using the estimation error x̃ = x(t)− x̂(t) into (21):

˙̃x(t) = Ab x̃(t) + W̃ T (t) tanh
�

x̃(t), u(t)
�

+∆(t) (20)
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in above equation, Ab represents A− ΓC and:

∆(t) =W (t)
�

tanh
�

x , u
�

− tanh
�

x̂ , u
��

+ ε(t) (21)

is a bounded disturbance term [102] that ‖ε(t)‖ ≤ εM , therefore, can be assumed:

‖∆(t)‖ ≤ K∆. (22)

when the neural network structure is well known, a suitable learning rule should be appointed

to educate the network. In addition, the back propagation algorithm are presented to improve

neural observer performance for state estimation of the fuel cell system. Conventional back

propagation is a popular algorithm [19]. The weight adjustment mechanism is given as follows:

˙̂W (t) = −η
∂$(t)
∂ Ŵ (t)

−ρ ‖e‖ Ŵ (t) (23)

where η > 0 and$ = 0.5(eT e) are the learning rate and the objective function. By using e =
y − C x̂ , the ∂$/∂ Ŵ is computed according to;

∂$

∂ Ŵ
=
∂$

∂ e
∂ e
∂ x̂
∂ x̂

∂ Ŵ
= −eT C

∂ x̂

∂ Ŵ
(24)

where (∂$/∂ Ŵ ) a set of nonlinear dynamical system that should be used for solving the gra-

dient ∂$/∂ Ŵ . Hence, this makes a complex observer and the real-time performance becomes

very hard. The (∂ x̂/∂ Ŵ ) ≈ −M−1(∂ Ξ̂/∂ Ŵ ) is static approximation that is used to solve this

problem, then

∂$

∂ Ŵ
= eT C M−1 ∂ Ξ̂

∂ Ŵ
(25)

now by using (25) and e = C x̃ , the learning rule (28) is obtained:

˙̂W (t) = −η
�

x̃ T C T C M−1
�T �
σ( ˆ̄x)
�T −ρ ‖e‖ Ŵ (t) (26)

where ρ is a small positive number, using the weight error is changed as:

˙̃W (t) = η
�

x̃ T C T C M−1
�T �
σ( ˆ̄x)
�T
+ρ ‖C x̃‖ Ŵ (t) (27)

Theorem 1: Consider the fractional order nonlinear uncertain system with unknown dynamics

(13) and nonlinear neuro-adaptive observer (20). If the weights of themultilayer perceptronwere

updated via adaptive law (27), then x̃ , w̃, and e are guaranteed as uniformly ultimately bounded .

Then, to determine the conditions for each control input, we consider the following Lyapunov

candidate function:

L f (t) =
1
2

x̃ T Bl x̃ +
1
2

t r(w̃T w̃) (28)

where the Bl = BT
l and Q are positive-definite matrix and the Mb is the Hurwitz matrix satisfy-

ing:

AT
b Bl + BlAb = −Q (29)

the time derivative of function (28) can be written by:

L̇ f =
1
2

x̃ T Bl
˙̃x +

1
2

˙̃x T Bl x̃ + t r(w̃T ˙̃w) (30)
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by substituting equations (20), (27), and ˙̃w= − ˙̂w into (35), it gives:

L̇ f ≤−
1
2

x̃ TQx̃ + x̃ T Bl

�

w̃Tf( ˆ̄x , u) +∆(t)
�

+ t r
�

w̃Tηbf( ˆ̄x)
�

eT CA−1
b

�

+ w̃Tρb ‖e‖ ŵ
�

(31)

Also, t r(B) denotes the trace of B, which leads to the inequality t r[ABT ] = BT A. Based on the

inequality, (24), and (34) can be written as:

�

t r(w̃T (w− w̃))≤ wM‖w̃‖ − ‖w̃‖2

t r(w̃Tf( ˆ̄x , u) x̃α1)≤ fM‖w̃‖‖ x̃‖‖α1‖
(32)

according to the equations (11), (12), (22), (29) and (32) can be rewritten as:

L̇ f ≤ −
1
2
λmin(Q)‖ x̃‖2 + ‖ x̃‖‖Bl‖(‖w̃‖fM + K∆)

+fM‖w̃‖‖ x̃‖‖ηbeT CA−1
b ‖+ (wM‖w̃‖ − ‖w̃‖2)ρbC‖ x̃‖ (33)

so that:

L̇ f ≤− (Z1‖ x̃‖ − K∆‖Bl‖)‖ x̃‖ − (‖Bl C‖‖ x̃‖ − Z2)‖W̃‖2 (34)

where terms Z1 and Z2 are defined by

�

Z1 = 0.5(λmin(Q)−fM‖Bl‖ −fM‖Bl C‖)
Z2 = 0.5(fM‖Bl‖+fM‖ηbeT CA−1

b ‖+WM‖Bl C‖)
(35)

To ensure negative definiteness of L̇ f , is negative long the following conditions:

‖ x̃‖> max(s1, s2) (36)

where

s1 =
K∆‖B‖

Z1
, s2 =

Z2

‖BC‖
(37)

it is obvious that L̇ f is negative definite. Therefore, the observer error x̃(t) is uniformly ulti-

mately bounded.

Remark 1 According to Theorem 1, all the estimation errors x̃1, ..., x̃5 are small and uniformly

ultimately bounded. Hence, this here can be assumed the upper bound for the estimation errors

as ( x̃1, ..., x̃5)≤ (XM1, ..., XM5).

3.2. Controller

This section shows three control inputs for the variables related to activated macrophages,

b-cells presented as antigens and autolytic T-cells. The structureT1Dandneural observer-based

controller is displayed in Fig. 3. In accordance with the aforementioned, the closed-loop control

without observer for system (7) can be expressed as follows:

u1(t) = −g x1 x3
u2(t) = −l x2 − qx5 x4
u3(t) = −sx2 x4

(38)
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and closed-loop observer based controller is







uo1(t) = −g x̂1 x̂3
uo2(t) = −l x̂2 − qx̂5 x̂4
uo3(t) = −s x̂2 x̂4

(39)

where u1, u2, and u3 are control inputs that in a biological sense have the objective of preserving

b-cell population in pancreas islets. According to Remark 1, the difference between the inputs

controller under the observer and the input without observer are defined by the delta symbol

(δ1,2,3 = u1,2,3 − uo1,2,3) that are a small constant.

Fig. 3. The structure T1D and neural observer-based controller

Analyse stability: The following Lyapunov candidate function is defined in order to determine

the conditions for each control input:

Lc =
1
2

5
∑

i=1

βi x
2
i (40)

where the derivative of Lyapunov function is given as follows:

L̇c = β1 x1 ẋ1 + β2 x2 ẋ2 + β3 x3 ẋ3 + β4 x4 ẋ4 + β5 x5 ẋ5 (41)

and using (7) into the derivative of (41), is defined by

L̇c =β1 x1(a+ (b+ k)x2 − cx1 − g x1 x3) + β2 x2(g x1 x3 − kx2 + uo1)

+ β3 x3(l x2 + qx4 x5 −mx3 + uo2) + β4 x4(sT + sx2 x4 −µT x4 + uo3)

+ β5 x5(sB − x5 x4 −µB x5) (42)

the control inputs are Substituting the control inputs (39) into (42), then

L̇c =β1ax1 − β1cx2
1 + β1(b+ k)x1 x2 − β2kx2

2 + β2δ1 x2

− β3mx2
3 + β3δ2 x3 − β4µT x2

4 + β4sT x4 + β4δ3 x4

+ β5sB x5 − β5µB x2
5 − β1 g x2

1 x3 − β5 x2
5 x4 (43)

Hence,completing the quadratic form for variables x3, x4, and x5 gives that L̇c is as follows:















β3δ2 x3 − β3mx2
3 = −β3m
�

x3 −
δ2
2m

�2
+ β3

δ2
2

4m

β4(sT +δ3)x4 − β4µT x2
4 = −β4µT

�

x4 −
sT+δ3
2µT

�2
+ β4

(sT+δ3)2

4µT

β5sB x5 − β5µB x2
5 = −β5µB

�

x5 −
SB
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set K1, considering the invariant plane x4(t) = 0.

Now, completing the quadratic form for the positive terms (β1(b + k)x1 x2 − β2kx2
2 + β2δ1 x2)

that contain x1 and x2 factorizing the common term β2 as:
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(45)

using (44) and (45) into (43), the derivative of Lyapunov function can be rewritten as follows:
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and completing the quadratic form for other terms
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So, the equation (46) is defined as:
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with

l1 = a+
β1δ1(b+ k)

2k
, l2 = c −

β2
1 (b+ k)2

4β2k
(49)

where the following condition for β2 must be satisfied to guarantee the positiveness of h:

β2 >
β1(b+ k)2

4ck
(50)

Hence, since all variables present nonlinear dynamics in the positive orthant due to their biological im-

plications, and as the analysis demonstrates in the previous section, equation (47) satisfies Lyapunov

asymptotic stability if the following inequality is also satisfied:
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The proposed control inputs are biologically sound. Moreover, a physical implementationwill be still

a future challenge because it is hard to modify cell populations such as resting macrophages, since they

are produced naturally by the immune system. However, It is obvious that the system with the proposed

control inputs is stable. Therefore, applying the proposed controller to patients can be very helpful and

effective.

4. Numerical Simulation

In this section, the numerical simulation is presented. The parameter values of the model for the

simulation setting are given in Table 1.

Fig. 4 shows the bounded positive invariant domain construct with the invariant plane K1. As can be

seen, when there is no set of T-cells concentration into the system, regardless of the initial populations of

the cells that remain inside it, they will tend to their equilibrium level, which means a stable condition of

the disease where there is no progression. Therefore, it can be concluded that the population of β-cells
in the pancreas is optimal.

In this case, this simulation is considered valuable due to the feasibility of proposing at least one con-

trol input for the system (8) that could help to ensure a stable population of T-cells, or at least prevent

their indiscriminate spread. Moreover, the invariant plane of x4 = 0 implies that there is no immunolog-

ical response. Therefore, all cell populations tend to their optimal concentrations.

In Fig. 5(a-e), the responses of Type-1 Diabetes under the adaptive observer-based controller are

shown. The upper bound domain of the localizing set for both activated and resting macrophages is

shown in Fig. 5(a) and Fig. 5(b). Also, the upper bound domain of the localizing for antigen cells con-

centration is displayed in Fig. 5(c) which the variables associated with activated macrophages have im-

mediate response once the β-cells are presented as antigen. It is a natural response, since they influence
the lymphocyte cells by activating the autolytic T-cells. Fig. 5(d) presents the upper and lower bounds

for the T-cell population. As can be seen, it is important to highlight that exists a minimum level of a cell

population that has a direct impact on triggering cytotoxic T-cells. Finally, the upper bound for the b-cell

population resulting is demonstrated in Fig. 5(e). Therefore, this analysis exposes the complex interac-

tion between these cell populations, demonstrating that when there are no activated macrophages that

label a population set of β-cells as antigens, there is no autolytic response required.

Furthermore, Fig. 6 and Fig. 7 just like Fig. 5, show the model response with the proposed controller

with different initial conditions. According to these figures, it can be seen that if there is no control action,
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Table 1. Parameter descriptions, values, and units

Parameter Definition Value Units

a Macrophage supply 50 mm−3da y−1

b Macrophage induced supply 0.3 da y−1

c Macrophage death rate 0.1 mm−3da y−1

g Rate of antigen uptake 65× 10−6 da y−1

k Macrophage deactivation 0.2 da y−1

l Induced b-cell damage 250× 10−6 da y−1

m Decay rate of b-cell proteins 0.025 mm−3da y−1

q Damage of autolytic cells on β-cells 2× 10−6 mm−3da y−1

sT Supply of autolytic cells 20 da y−1

s Proliferation of autolytic T-cells 2× 10−5 da y−1

µT Death rate of T-cells 0.02 da y−1

sB Supply of β-cells 20 mm−3da y−1

µB Death rate of β-cells 0.02 mm−3da y−1

cell populations will not reach their state of equilibrium and the system is susceptible to parametric vari-

ation that could generate diabetes. Therefore, this leads to the development of a mathematical proposal

supported by the nonlinear neural adaptive observer-based controller theory to treat disease.

A mathematical analysis of a nonlinear model aimed at understanding the complex relation between

β-cells with the immunological response through autolytic T -cells and macrophages demand a deeper

understanding of biological concepts related to Type-1 Diabetes. According to the literature, in diabetes

there is an inverse correlation between b-cells and autolytic T-cells, implying that when the autolytic T-

cell population increases, the β-cell population decreases, activating a diabetic condition. At this point,

we note that in a steady-state condition, cell populations never reach their state of equilibrium (see Fig.

5), some of them even tend to their upper or lower bounds, such as the case of restingmacrophages, acti-

vatedmacrophages, and autolytic T-cells, while an increase ofβ-cells is due toT-cell populationdecreases.
Nevertheless, as can be seen in Fig. 5(c) and Fig. 5(d), the β-cells will not be greater in number than the

autolytic T-cells because β-cells upper bound becomes the autolytic T-cells lower bound; at most, these

populations would be equal. Therefore, it is vital to notice that autolytic T-cells cannot be zero, in any

case, making it so that a diabetic condition could appear at any time. The above emphasizes the impor-

tance of a closed-loop control system able to compensate for the proliferation of autolytic T-cells against

the death rate of b-cells. In this study, we propose a closed-loop control system and have proven that the

control inputs, in accordance with the mathematical analysis, can keep cell populations at a stable level

towards diabetes control in early diagnostics.

5. Conclusion

In this paper, a newadaptiveneural observer-based controller for a class of nonlineardiabetesmodels

was presented. Type 1 diabetes is a growing health problemworldwide because they have a deficiency in

insulin production. The proposed strategy was presented as a solution that guarantees practical tracking

of a desired glucose concentration. Moreover, the feed-forward neural network was used to estimate the

internal state of diabetes that was a set of inputs onto a set of suitable outputs. The network under online

learning is one of the artificial intelligence methods which was trained online that the learning method

was a simple backpropagation algorithm. The promising performance of the mentioned controller was

depicted in simulation results. A physical implementation will be future work.
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