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ABSTRACT

This paper investigates a novel robust fractional adaptive control design

for a class of fractional-order uncertain linear systems. Based on the

Model Reference Adaptive Control (MRAC) configuration, the objective of

the proposed controller is to ensure the output of the controlled plant to

track the output of a given referencemodel system, whilemaintaining the

overall closed-loop stability despite external disturbances and model un-

certainties. An adaptive fuzzy logic controller is employed to eliminate

unknown dynamics and disturbance. Lyapunov stability analysis demon-

strates and verifies the desired fractional adaptive control system stabil-

ity and tracking performance. Numerical simulation results illustrate the

efficiency of the proposed adaptive fuzzy control strategy to deal with un-

certain and disturbed fractional-order linear systems.

This is an open access article under the CC-BY-SA license.

1. Introduction

Fractional calculus is a 300 years old mathematical concept, but no significant impact was

achieved in science andengineeringuntil recent years. Recently, considerable attentionhasbeen

paid to fractional-order systems whose models are described by fractional-order differential

equations and especially, to fractional-order control design since it providesmore robustness to

model uncertainties and better response in comparison with classical controllers. Many works

and applications are found in fractional calculus literature [1][2]withmany applications such as

viscoelastic materials modeling [3], health monitoring [4], modeling and control of robotic sys-

tems [5], renewable energy systems [6], chaotic systems [7] and others [8]. One has to mention

particularly, that fractional order controllers have been extensively used in many applications

to achieve robust performance of the systems [9][10][11].

One of the main research topics in the literature on control theory and engineering for un-
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certain linear systems is adaptive control. One can refer to the papers [12][13][14] and the

books [15][16][17] and references therein. Design of direct Model Reference Adaptive Control

(MRAC) was the subject for many research efforts for linear plants with structured parametric

uncertainties. In this control approach, the principle objective is to obtain a system that follows

closely the behavior of a system called reference model [18][19].

Fractional order adaptive control is one of the most important emerging research topics in

the present century [20][21][22]. Among the proposed fractional adaptive control structures,

MRAC-based approaches have attractedmany researchers and designers because of its simplic-

ity and efficiency [23]. However, when confronted to model uncertainties and disturbances,

other control techniques have to be considered [24][25][26].

An efficient solution is to combine fuzzy systems and estimators to the controller. Fractional

order control has been integrated with fuzzy logic in many successful work in order to improve

the control system behavior and robustness as in Fractional order PID control [27], fractional

adaptive slidingmode control [28][29] and fractional adaptive control [30] of uncertain systems.

Based on the results reported in literature, we propose a novel method to control a class of

uncertain linear fractional-order systems using the MRAC configuration. The controller is de-

veloped to ensure perfect tracking of the reference model behavior despite model uncertainties

and additive disturbances. Numerical simulations show the efficiency of the proposed control

scheme.

This paper is organized as follows: Mathematical preliminaries definitions are presented in

Section2. Descriptionof the fuzzy logic system is given in Section3while theproposed fractional

order model reference adaptive control design and stability proof are developed in Section 4. A

numerical simulation example illustrates the efficiency of the method in Section 5 and finally

concluding remarks are given in Section 6.

2. Preliminaries on Fractional Order Systems

2.1. Fractional order operators

Fractional order calculus opens a new perspective on integrals and derivatives notion and

can be considered as a generalization of integer-order calculus. Let us define the fractional or-

der operator aDγt , where a denotes the lower limit and t is the upper limit respectively of the

operator, and γ ∈ ℜ is the order of integration or differentiation. There are several definitions

for fractional order derivatives. The three most commonly used definitions are the Grünwald-

Letnikov, Riemann-Liouville, and Caputo derivative definition [31][32]. if f (t) is a continuous
time function, for the order n where n ∈ [0,1].

Definition 2.1 The Riemann-Liouville’s, fractional order derivative of f (t) of order γ is defined
as [33],

RL
t0

Dγt f (t) =
1

Γ (n− γ)
dn

d tn

∫ t

t0

(t −τ)n−γ−1 f (τ)dτ (1)

Where (n− 1)< γ < n, t ≥ t0 and Γ (.) is the Euler function defined as Γ (x) =
∫∞

0 e−t t x−1d t

Definition 2.2 The Caputo fractional order derivative of the function f (t) of order γ is defined as,

C
t0

Dγt f (t) =
1

Γ (n− γ)

∫ t

t0

f n(τ)
(t −τ)γ−n+1

dτ (2)

Definition 2.3 The Grünwald-Letnikov fractional order derivative of the function f (t) of order
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γ > 0 is defined as,

GL
t0

Dγt f (t) = lim
h→0

h−γ
k
∑

j=0

(−1) j
�

γ

j

�

f (kh− jh) (3)

Where h is the sampling period andω
(γ)
j are the coefficients of the polynomial:

(1− z)γ =
∞
∑

j=0

(−1) j
�

γ

j

�

z j =
∞
∑

j=0

ω
(γ)
j z j (4)

The coefficients can be expressed as:

ω
(γ)
j =

�

γ

j

�

=
Γ (γ+ 1)

Γ ( j + 1)Γ (γ− j + 1)

with

ω
(γ)
0 =

�

γ

0

�

= 1

and k =
h t − t0

h

i

.

The Grünwald-Letnikov definition of the fractional-order derivative is used in this paper due

to its well-understood physical interpretation and implementation easiness.

Remark 1 For the sake of simplicity, we will also note Dαt f (t) as f (α)(t).

2.2. Some properties of the fractional order derivative

Two general properties of the fractional-order derivative will be used are recalled below:

property 2.4 The additive index law:

Dαt Dβt f (t) = Dβt Dαt f (t) = Dα+βt f (t) (5)

where α and β are real numbers.

property 2.5 The Caputo fractional order derivative is a linear operator:

Dαt (a f (t) + bg(t)) = aDαt ( f (t)) + bDαt (g(t)) (6)

where a and b are real constants.

2.3. Stability of fractional order systems

We recall here some important results on the stability analysis of fractional order systems

[34].

Theorem 2.6 Let x = 0 be an equilibrium point for the non autonomous fractional order system

given by,
C
t0

Dγt x(t) = h (x(t), t) , γ ∈ )0,1] (7)

Let us assume that there exists a continuous function V (x(t), t) such that:

• V (x(t), t) is positive definite.
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• C
t0

Dβt V (x(t), t), β ∈ ]0,1], is negative semidefinite.

Then the origin of system (7) is Lyapunov stable.

• Furthermore, if V (x(t), t) is decreasing, then the origin of system (7) is Lyapunov uniformly

stable.

Lemma 2.7 Assume h(t) ∈ ℜ be a continuous and derivable function. Then, for any time instant

t ≥ t0, the following inequality holds [34],

1
2

C

t0

Dγt f 2(t)≤ f (t)Ct0
Dγt f (t) (8)

3. Description of the Fuzzy Logic System

Fuzzy Control is the field of control theory based on Fuzzy Set Theory introduced by Zadeh in

1965 [35]. A Fuzzy Logic System (FLS) consists of four parts: the knowledge base, the fuzzifier,

the fuzzy inference engine using a set of fuzzy rules and the defuzzifier. Usually, a FLS ismodeled

by the knowledge base of the FLS which is constituted of a collection of fuzzy If-then rules of the

following form [28][36]:

R j : IF x1 is F j
1 and x2 is F j

2 and ... and xn is F j
n, THEN: y is φ j , j = 1,2, ...N .

where x = (x1, ..., xn)T and y are the fuzzy logic system input and output, respectively. Fuzzy

sets F j
i and φ j , associated with the fuzzy functions µF j

i
(x i) and µφ j (y) respectively. N is the

number of rules. Through singleton function, center average defuzzification, and product infer-

ence, the fuzzy logic system can be expressed as [37]:

ξ j =

∏n
i=1µF j

i
(x i)

∑N
j=1

�

∏n
i=1µF j

i
(x i)
� (9)

and,

f̂ (x) =
N
∏

j=1

θ jξ j (10)

Where θ = [y1, y2, ...yN ]
T = [θ1,θ2, ...θN ]

T is a vector of the adjustable factors of the conse-

quence part of the fuzzy rule and ξ = [ξ1(x),ξ2(x), ...ξN (x)]
T is a regressive vector with the

regressors (fuzzy basis functions) ξ j(x). We recall this important result [37],

Theorem 3.1 For any real function f (x) continue on a given compact U ∈ ℜ, there is a fuzzy

system f̂ (x) in the form (10) such that:

sup
x∈U



 f (x)− f̂ (x)


≤ ε (11)

where ε > 0 is an arbitrary constant.

4. Fractional Order Model Reference Adaptive Control Design

The MRAC control structure is very efficient for plants with parameters that are unknown

or varying slowly in the time, with better performance and robustness than fixed controllers. As

illustrated in the block diagram of Fig. 1, it is structured in four main parts; the plant, the con-

troller, the reference model and the adjustment mechanism. In order to introduce the fractional
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Fig 1. Model reference adaptive control block diagram.

order model reference adaptive control problem, we first consider the class of fractional-order

uncertain linear system described by:

Dαt x(t) = A[x(t) +δx(t)] + Bu(t) (12)

where x(t) ∈ ℜn is a state vector and u(t) ∈ ℜ is the system input, A∈ ℜn×ℜn and B ∈ ℜn have

unknown constant parameters. δx(t) is regarded as an uncertain dependent nonlinear state

perturbation.

In order to introduce the proposed control input, the following assumptions are supposed

true:

Assumption 4.1 There exists a vector φ ∈ ℜn, a real functionω(t) and scalar η ∈ ℜ such that:

Aφ = ηB.

and

δx(t)φ = Bω(t)

Assumption 4.2 The states of the system x(t) are measurable.

Assumption 4.3 δx(t) is unknown but bounded.

According to Assumption 4.1, the system given by (12) can be written as,

Dαt x(t) = Ax(t) + Bu(t) + Bω(t) (13)

The fractional order reference model was chosen in order to generate the desired trajectory

xm(t)which the plant output has to follow. The reference model is:

Dαt xm(t) = Am xm(t) + Bmur(t) (14)

The referencemodel is evidently stable and the input signalur(t) ∈ ℜ is a boundedpiecewise

continuous function. Am ∈ ℜn ×ℜn and Bm ∈ ℜn are known, xm(t) ∈ ℜn is the reference model

state vector available at each time t .
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The design objective is to make the tracking error e(t) = x(t) − xm(t) converge to 0 and

based on the universal approximation theorem [38], the above fuzzy logic system is capable

of uniformly approximating any well-defined nonlinear function over a compact set Uc to any

degree of accuracy.

Firstly, the ideal controller is defined as,

u(t) = u?a(t) + u?f (t) (15)

where
�

u?a(t) = K?Tx x(t) + K?r ur(t)
u?f (t) = −θ

?Tξ(t) (16)

Where the vectors K?x and K?r are constant but unknown ideal gains and u?f (t) is approximation

of smooth functionω(t).

Comparing the ideal closed-loop transfer function of the controlled plant to the desired ref-

erence model, the model-matching conditions are,







A+ BK?Tx = Am
BK?r = Bm
ω(t) = θ ?Tξ(t)

(17)

In the adaptive control problem, the parameters of A and B are unknown and so, the control

(15) cannot be implemented. Therefore, an adaptive controller which has the same structure as

in (15) is used as follows,

u(t) = K T
x (t)x(t) + Kr(t)ur(t) + u f (t) (18)

Where Kx(t) and Kr(t) are the estimates of K?x and K?r at time t , and we search an adaptive law

to generate Kx(t) and Kr(t) on-line with,

u f (t) = −θ Tξ(t) (19)

In order to develop the adaptive laws for Kx(t), Kr(t) and θ (t), we need an error equation in

terms of tracking error e(t) = x(t)− xm(t) and the parameters errors







K̃x(t) = Kx(t)− K?x
K̃r(t) = Kr(t)− K?r
θ̃ (t) = θ (t)− θ ?

(20)

Based on the certainty equivalence principle and the proposed adaptive control input (18), the

closed-loop fractional order error dynamic system can be described by,

Dαt e(t) = Ame(t) + B
�

K̃ T
x (t)x(t) + K̃r(t)ur(t)− θ̃ T (t)ξ(t)

�

(21)

or

Dαt e(t) = Ame(t) + Bm

�

K̃ T
x (t)x(t)

K?r
+

K̃r(t)ur(t)
K?r

−
θ̃ T (t)ξ(t)

K?r

�

(22)

Let us define the matrix P = PT ∈ ℜn ×ℜn solution of the following Lyapunov equation:

PAm + AT
mP = −Q (23)

for any chosen matrix Q ∈ ℜn ×ℜn such that Q = QT . Then we present the main result of this

paper,
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Theorem 4.4 Consider the fractional-order uncertain linear system (12) in the presence of the

uncertainties subject to assumptions 4.1-4.3. The robust adaptive controller defined by (18)-(20)

with adaptation laws given by







Dαt Kx(t) = −si gn
�

K?r
�

Γx x(t)eT (t)PBm

Dαt Kr(t) = −si gn
�

K?r
�

γrur(t)eT (t)PBm

Dαt θ (t) = si gn
�

K?r
�

Γθξ(x)eT (t)PBm

(24)

where the positive-definite matrices Γx = Γ T
x ∈ ℜ

n ×ℜn and Γθ = Γ T
θ
∈ ℜp ×ℜp and the scalar

γr ∈ ℜ+ are design parameters. Ensures that all the closed-loop signals are bounded, and the

tracking errors converge to zero.

Proof of Theorem 4.4:

In order to analyse the closed-loop stability, let us consider the followingLyapunov candidate

function,

V =
1
2

eT Pe+
1

2
�

�K?r
�

�

�

K̃ T
x Γ
−1
x K̃x +

1
γ

K̃2
r + θ̃

T Γ−1
θ θ̃

�

(25)

where Γx and Γθ are the adaptation rate matrices for Kx and Kθ respectively. γ is as adaptive

scalar gain that affects the speed of the parameter adaptation.

Taking the fractional order derivative of (25) with respect to time and using Lemma 2.7, one

has

Dαt V (t) ≤
1
2

eT Pe(α) +
1
2

e(α)T Pe+ ... (26)

+
1
�

�K?r
�

�

�

K̃ T
x Γ
−1
x K̃(α)x +

1
γ

K̃r K̃(α)r + θ̃ T Γ−1
θ θ̃

(α)
�

By substituting (22) into (26) we obtain

V (α) ≤ eT
�

PAm + AT
mP
�

e+ ...

+

�

1
K?r

eT PBmK̃x x +
1
�

�K?r
�

�

K̃ T
x Γ
−1
x K̃(α)x

�

+ ...

+

�

1
K?r

eT PBmK̃rur +
1

γ
�

�K?r
�

�

K̃r K̃(α)r

�

+ ...

+

�

1
K?r

eT PBmθ̃ +
1
�

�K?r
�

�

θ̃ T Γ−1
θ θ̃

(α)

�

(27)

Then, in order tomake V (α) ≤ 0wechoose the adaptive laws forKx(t), Kr(t) andθ (t) as specified
in (24), namely







Dαt Kx(t) = −si gn
�

K?r
�

Γx x(t)eT (t)PBm

Dαt Kr(t) = −si gn
�

K?r
�

γrur(t)eT (t)PBm

Dαt θ (t) = si gn
�

K?r
�

Γθξ(x)eT (t)PBm

It follows that

V (α) ≤ −eTQe (28)

Using Barbalat’s lemma [15][39], we conclude that the system is Lyapunov stable with all

variables bounded and converge to zero: e(t)→ 0 exponentially as t →∞ for all initial condi-

tions of the variables x(0) ∈ ℜn. This completes the proof.
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Remark 2 The proposed adaptive fuzzy controller for the class of uncertain fractional order lin-

ear systems has never been designed before to the best of our knowledge. Based on the MRAC

configuration, the system is forced to behave like the desired reference model despite the lack of in-

formation and uncertainties on the system’s signals. Most of existing similar approaches consider

nonlinear systems [40].

5. Simulation Results and Discussion

In this section we will give a numerical example to illustrate the efficiency of the proposed

fuzzy robust adaptive scheme. Consider the plant represented by a state-space model of the

form (12) with,

A=

�

0 1
−1 −1

�

, B =

�

0
1

�

(29)

with the disturbance signal modeled as,

ω(t) = 0.8cos(0.1 t) sin(2.5 t) (30)

and consider the reference model represented with state-space equation (14) with,

Am =

�

0 1
−4 −2

�

, Bm =

�

0
4

�

(31)

For the proposed fuzzy adaptive controller design, we chose the following membership func-

tions for error and error derivative,

µF j
1
(ei) = exp
�

−
ei + 1
0.75

�

µF j
2
(ei) = exp

�

−
�

ei + 1
0.75

�2
�

µF j
3
(ei) = exp
�

−
� ei

0.75

�2�

(32)

µF j
4
(ei) = exp

�

−
�

ei − 0.75
0.75

�2
�

µF j
5
(ei) = exp

�

−
�

ei − 1.5
0.75

�2
�

where i = 1,2.

The simulation test parameter settings are as follows:

Γx =

�

100 0
0 50

�

, Γr = 10, (33)

With the initial conditions,

x0 =

�

−2
0

�

, x0m =

�

1
0

�

, (34)

Simulation results are shown in Figs. 2-6, from which we can conclude that the stability of

the system are guaranteed. Fig. 5 shows that the error signal converges rapidly towards zero.

Fig. 6 shows also that all the varying gains are bounded during the control action.

It is also noticeable that error signal e(t) converges relatively slowly to zero, approximately

in 30s (response time). This fact can be explained by the learning phase for adaptive control in

presence of uncertainties and disturbances. However, the system is able to follow the varying

reference perfectly after this limited time.
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Fig 2. State response.
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Fig 3. Control input u.

6. Conclusion

In this paper, we propose a new robust fractional adaptive control design for a class of frac-

tional order uncertain linear systems. We introduce a fractional order adaptive fuzzy controller

using the MRAC configuration in order to deal with external disturbances andmodel uncertain-

tieswhile forcing the output of the controlled plant to track the output of a given referencemodel

system, while maintaining the overall closed loop stability and signals convergence. The stabil-

ity analysis is performed using Lyapunov stability theorem. Simulation results illustrate the ef-

ficiency of the proposed fuzzy adaptive controller to deal with uncertain fractional order linear

systems. Further research will concentrate on application of this control scheme to real pro-

cesses and compare its performance to other available control techniques in the same operating

conditions. Extension to fractional order linear systems with delays is also a challenge.
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