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1. Introduction 

Chaotic behavior has many applications in various fields of science. Unfortunately, chaotic 
behaviors are a source of instability and disturbance in some dynamic systems. Therefore, it is 
interesting to control chaotic behavior in such dynamical systems.  Many authors proposed 
methods to suppress chaos such as resonant parametric perturbation control [1], generalized 
predictive control [2], adaptive control [3, 4], the input-output linearization control [5], 
frequency domain analysis control [6, 7], zero spectral radius control [8], optimal control [9], 
sliding mode control [10], single feedback control [11] and various other control methods. The 
single feedback control technique is concise, simple, and easy to realize. A single feedback 
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 The electronic implementation, synchronization, and control of 
hyperchaos in a five-dimensional (5D) autonomous homopolar disc 
dynamo are investigated in this paper. The hyperchaotic behavior is 
found numerically using phase portraits and time series in 5D 
autonomous homopolar disc dynamo is ascertained on Orcad-PSpice 
software. The synchronization of the unidirectional coupled 5D 
hyperchaotic system is also studied by using the feedback control 
method. Finally, hyperchaos found in 5D autonomous homopolar disc 
dynamo is suppressed thanks to the designed single feedback. 
Numerical simulations and electronic implementation reveal the 
effectiveness of the single proposed control. 
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control method is used to control hyperchaos in 5D autonomous homopolar disc dynamo [12] 
in this paper.   

On the other hand, since Pecora and Caroll [13] demonstrated the synchronization between 
chaotic coupled dynamical systems, a multitude of papers devoted to the synchronization of 
chaotic systems [14-18]. Several types of synchronization known as complete synchronization 
[13], offset synchronization [19], generalized synchronization [20-22], projective 
synchronization [23-27], modified projective synchronization [28], function projective 
synchronization [29] and various other synchronizations. A technique for synchronizing a 
chaotic four-dimensional system using a feedback controller, a single variable, has been 
proposed and demonstrated in [30]. Recently, the authors of [31] investigated the dynamics, 
chaos control, and synchronization in autonomous homopolar dynamo systems. The authors 
of [32] studied the existence of Hopf bifurcation and synchronization by using a new fuzzy 
controller in a 5D autonomous homopolar disc dynamo system.  

Based on contributions from previous works, this paper opted to study analytically and 
numerically the feedback synchronization of unidirectional coupled 5D autonomous 
homopolar disc dynamo and chaos control using a single controller in this paper. These 
constitute a significant contribution to the best of our knowledge and complement of some 
earlier works. 

The paper is structured in five sections: The rate equations and circuit design of the 5D 
autonomous homopolar disc dynamo are described in Section 2. A feedback synchronization 
of a unidirectional coupled 5D hyperchaotic system is studied in Section 3. In Section 4, the 
single controller is used to control hyperchaos in the 5D hyperchaotic. Section 5 concludes this 
paper. 

2. Rate equations and circuit design of 5D autonomous homopolar disc dynamo 

The rate equations of 5D autonomous homopolar disc dynamo are [12] 

  w,
dx

r y x
dt
    (1a)   

 1 v,
dy

m y xz
dt

    
 

(1b) 

 21 1 ,
dz

g mx m xy
dt

     
 

(1c) 
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2 1 w ,
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m xz k x
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2

v
v ,

d
m k y

dt
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Where variables , , , , vx y z w are the state variables and t are the time, the parameters

1 2, , , ,g m r k k are positive reals. System (1) exhibits hyperchaotic behavior for given values of 

parameters, as shown in Fig. 1. The parameter is r = 8, m = 0.04, g = 140.6, k1 = 34, and k2 = 12.  
The initial conditions of (𝑥, 𝑦, 𝑧, 𝑤, 𝑣) are  (0.05, −0.5, 0.1, −1, 2). The electronic circuit of the 
system (1) is implemented on the Orcard-PSpice software and is depicted in Fig. 2.  
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Fig. 1. Hyperchaotic attractor in system (1) for r = 8, m = 0.04, g = 140.6, k1 = 34, and k2 = 12.  
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Fig. 2. The electronic circuit describing system (1). 
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The circuit of Fig. 2 is made of resistors, capacitors, operational amplifiers, and analog 
multiplier devices. Resistors and capacitor values are 𝑅𝑎 = 10𝑘Ω, 𝑅𝑏 = 12.5𝑘Ω, 𝑅𝑐 = 12.5𝑘Ω, 
𝑅𝑑 = 98.154𝑘Ω, 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 𝐶5 = 1𝑛F, 𝑅𝑒 = 100𝑘Ω, 𝑅𝑓 = 100𝑘Ω, 𝑅𝑔 = 6.84𝑘Ω, 

𝑅ℎ = 177.81𝑘Ω, 𝑅𝑖 = 100𝑘Ω, 𝑅𝑗 = 29.41𝑘Ω, 𝑅𝑘 = 100𝑘Ω, 𝑅𝑙 = 48.08𝑘Ω, 𝑅𝑚 = 2500𝑘Ω, 𝑅𝑛 =

83.33𝑘Ω, 𝑅1 = 𝑅2 = 𝑅4 = 𝑅5 = 𝑅3 = 10𝑘Ω, 𝑅6 = 𝑅7 = 𝑅8 = 𝑅10 = 𝑅9 = 10𝑘Ω, 𝑅12 = 𝑅13 =
𝑅14 = 𝑅15 = 10𝑘Ω, 𝑉𝑐𝑐 = 14.06𝑉. The phase planes obtained from Fig. 2 are depicted in Fig. 3. 
The phase planes of Fig. 3 and the one of Fig. 1 confirm each other.

 

 

Fig. 3. Phase planes of hyperchaotic attractors are obtained from the electronic circuit of the system 
(1). 

3. Synchronization of unidirectional coupled 5D autonomous homopolar disc 
dynamo 

The drive and the response 5D hyperchaotic systems are expressed, respectively as 

 1
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Where 1 2,u u and 3u are the controllers. The synchronization errors are defined as follows:

1 2 1 2 2 1 3 2 1 4 2 1, , , w we x x e y y e z z e         and 5 2 1v ve   . Its derivatives are given 

as 
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By choosing the controllers  1 2 4 2 3 1 2, 1u re e u e m x e       and  3 43 1u m e   , 

system (4) becomes 
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The solution of (5a) is    1 1 0 rte t e e . So  1lim 0
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 and system (5) becomes 
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  (8)   

For 0.04m  and 2 12k  , the eigenvalues of A at the equilibrium point  2 50, 0e e  are

1,2 0.54 3.42782730020052 j    with
2 1j   . So, system (8) is asymptotically stable. 
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Therefore, the controllers  1 2 4 2 3 1 2, 1u re e u e m x e       and  3 43 1u m e   can 

synchronize the drive system (2) and the response system (3). The synchronization errors are 

depicted in Fig. 4. The controllers 1 2,u u and 3u are activated at 1400t  . The initial 

conditions of systems (2) and (3) are (𝑥1(0), 𝑦1(0), 𝑧1(0), 𝑤1(0), 𝑣1(0)) =

(0.05, −0.5, 0.1, −1, 2) and (𝑥2(0), 𝑦2(0), 𝑧2(0), 𝑤2(0), 𝑣2(0)) = (0.5, −0.5, 0.1, −1, 2), 

respectively. Fig. 4 reveals the effectiveness of the synchronization between system (2) and 
system (3). 

 

Fig. 4. Time series of synchronization errors for 𝑟 = 8, 𝑚 = 0.04, 𝑔 = 140.6, 𝑘1 = 34, and 𝑘1 = 12.  

4. Hyperchaoscontrol of 5D autonomous homopolar disc dynamo via a single 
controller 

System (1) with the controller 4u becomes 
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By choosing  2

4 1 1u z g mx m xy        , system (9) becomes: 
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 (11)   

For 𝑟 = 8, 𝑚 = 0.04, 𝑘1 = 34, and 𝑘2 = 12, the eigenvalues of B at the equilibrium point

 0, 0, w 0, v 0x y    are 𝜆5,6 = −2.96 ± 2.9323028492978𝑗 and 𝜆5,6 = −0.54 ±

3.42782730020052𝑗 with
2 1j   . So, system (11) is asymptotically stable. Therefore, the 

hyperchaotic behavior found in the system (1) is controlled using the controller

 2

4 1 1u z g mx m xy        . 

The time evolutions of the state variables and the controller 4u are shown in Fig. 5. The 

controller 4u is activated at 1300t  . The initial conditions are (x(0), y(0), z(0), w(0), 

v(0))=(0.05,-0.5, 0.1,-1, 2). Fig. 5 demonstrates that the control of hyperchaos system (1) using 

the controller  2

4 1 1u z g mx m xy        is effective. The electronic implementation 

of the controlled system (9) is obtained from the electronic implementation of the system (1) 
in Fig. 2 as shown in Fig. 6. 

The circuit of Fig. 6 has 32 resistors, 5 capacitors, 13 operational amplifiers, 3 analog 
multiplier devices, and 1 switcher. Resistors and capacitor values are 𝑅𝑎 = 10𝑘Ω, 𝑅𝑏 =
12.5𝑘Ω, 𝑅𝑐 = 12.5𝑘Ω, 𝑅𝑑 = 98.154𝑘Ω, 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 𝐶5 = 1𝑛F, 𝑅𝑒 = 100𝑘Ω, 𝑅𝑓 =

100𝑘Ω, 𝑅𝑔 = 6.84𝑘Ω, 𝑅ℎ = 177.81𝑘Ω, 𝑅𝑖 = 100𝑘Ω, 𝑅𝑗 = 29.41𝑘Ω, 𝑅𝑘 = 100𝑘Ω, 𝑅𝑙 =

48.08𝑘Ω, 𝑅𝑚 = 2500𝑘Ω, 𝑅𝑛 = 83.33𝑘Ω, 𝑅1 = 𝑅2 = 𝑅4 = 𝑅5 = 𝑅3 = 10𝑘Ω, 𝑅6 = 𝑅7 = 𝑅8 =
𝑅10 = 𝑅9 = 10𝑘Ω, 𝑅12 = 𝑅13 = 𝑅14 = 𝑅15 = 10𝑘Ω, 𝑉𝑐𝑐 = 14.06𝑉. 
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Fig. 5. Time evolutions of 𝑥, 𝑦, 𝑤, 𝑣 and 𝑢4 for 𝑟 = 8, 𝑚 = 0.04, 𝑔 = 140.6, 𝑘1 = 34 and 𝑘2 = 12 
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Fig. 6. The electronic circuit is describing the controlled system (9). 
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The time evolutions of the state responses and the output of the single controller generated 
from the circuit of the controlled system (9) are shown in Fig. 7. The time evolutions of Fig. 7 
and the one of Fig. 5 confirm each other. 

 

Fig. 7. Time evolutions of the controlled system (9) are obtained from Fig. 6. 

5. Conclusion 

The electronic implementation, synchronization, and control of hyperchaos in five-
dimensional autonomous homopolar disc dynamo were investigated in this paper. The 
designed circuit of the five-dimensional autonomous homopolar disc dynamo was realized on 
Orcad-PSpice software to ascertain the hyperchaotic behavior found during the numerical 
simulations. The synchronization of unidirectional coupled five-dimensional autonomous 
homopolar disc dynamo was achieved by using the feedback control method. Finally, it was 
theoretically and electronically proven that the proposed single controller can control the 
hyperchaotic behavior of the five-dimensional autonomous homopolar disc dynamo. 
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