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1. Introduction  

Large disturbances in power systems are difficult to precisely model and may require 
imposing unrealistic assumptions when modeling them. Their significant inherent uncertainty 
mainly causes the difficulty. This study investigates a nonlinear model of Single Machine Infinite 
Bus System (SMIBS), and we design an advanced robust control law that guarantees asymptotic 
stability under bounded unknown uncertainties to handle those exacting conditions. Before 
discussing some of the proposed control laws in the literature, we first give an overview of 
modeling Synchronous Machines (SM) in general. In the literature, different SM nonlinear 
models with different orders are considered, mainly depending on the study's objectives. We 
observed that a general nonlinear dynamic model is deliberated by Kundur in [1], where the 
model states are the stator and rotor flux linkages representing a seventh order model in the 
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 The inherent uncertainties in a Single Machine Infinite Bus System 
(SMIBS) are governed by unmodeled dynamics or large disturbances 
such as the system's faults. The existence of these uncertainties 
demands robust controllers to guarantee the system's asymptotic 
stability under such exacting conditions. In this work, we propose an 
Adaptive Sliding Mode Control (ASMC) design implemented on a fifth-
order nonlinear SMIBS to handle those uncertainties without prior 
knowledge about its upper bounds. We develop the ASMC with gains of 
two nested adaptive layers to asymptotically stabilize the system's 
internal states, the machine's terminal voltage, and power angle within 
a region of unknown bounded uncertainties while mitigating the 
chattering phenomena associated with conventional Sliding Mode 
Control (SMC). To verify the design's effectiveness and prove the 
conducted Lyapunov theoretical stability analysis, we simulate the 
occurrence of a large disturbance represented by a 3-phase fault at the 
system's universal bus. The results show that the ASMC can successfully 
achieve asymptotic stable output errors and stabilizing the SMIBS 
internal states after the clearance of the fault. Moreover, the ASMC 
noticeably outperforms the SMC in chattering mitigation, where the 
ASMC's signal is significantly smoother than that of the SMC.  
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dq0 frame.  The objective of the work presented by Fatima in [2] is to develop an adaptive 
controller for a synchronous generator driven by a hydraulic turbine connected to an infinite 
bus. Therefore, the model accounts for the drive-side dynamics, and hence two additional states 
are considered, water flow and valve opening, making the model with ninth order. Šundrica's 
aim in [3] is to introduce a control system the achieves high-performance speed tracking of a 
synchronous motor. Consequently, the SM dynamics is formulated with a seventh-order model 
considering the states as stator currents, rotor flux linkages, rotor angular speed, and load 
torque. Gao in [4], on the other hand, is aiming to investigate the transient behavior of 
synchronous motor's speed during start-up, and accordingly, a sixth-order model is considered 
with presenting the states as the flux linkages in the DQ frame, field voltage, and rotor angular 
speed.  Since Sadabadi's purpose in [5] is only performing system identification of the SM, the 
considered model in the study is like the one discussed by Kundur in [1]. 

Generally speaking, the ultimate purpose of establishing nonlinear models of SM when 
acting as generators is studying their stability under large power system disturbances during 
faults or sudden significant change in the load; these are both considered as significantly 
unpredictable uncertainties within the system [15]. In that sense, the "strength" of a generator-
dynamic performance is methodically investigated to ensure satisfactory performance under 
such uncertain exacting situations. Under these situations, the strength principally means how 
strong the generator in terms of supporting the system voltage while at the same time reducing 
the oscillations and settling time of the power angle and frequency [9]. Although that stability 
analysis of synchronous generators was historically assessed deeply for traditional systems, the 
sharp incline in Distributed Generation (DG) penetration recently has brought attention to 
researchers for investigating their impacts on generators stability, the works presented in [10]-
[13] are few of them among others. Besides the fact that this penetration induces further 
uncertainties into the system, DG penetration (for example, Renewable Energy Sources) affects 
the stability of traditional systems by reducing the overall inertia and limiting the capabilities 
of supplying short circuit current [14]. All of these consequences directly impact synchronous 
generators' dynamic performance during large disturbances. Therefore, the challenges above 
motivated researchers to develop more advanced controllers to enhance the SM dynamic 
performance. For instance, Prachitara in [11] proposed a sophisticated methodology to estimate 
the controller gains parameters of a system composed of Photovoltaic (PV) and diesel 
generators. The presented harmony search-based hybrid firefly algorithm (IHBFA) in the paper 
works by estimating the gain parameters such that the damping of the overall system is 
optimized, and in turn, the stability is improved. Interestingly, as presented in [12] by Siming, 
the stability of a windfarm power plant is enhanced by integrating synchronous motor-
generator pair with it and controlling the active power of the pair with a closed-loop controller; 
this consequently improved the system inertia and restrained the oscillation of power angle and 
frequency. To this end, we believe that SMC, as a candidate control law for SMIBS, worth 
investigating and may open the door for further research in hybrid power systems that 
constitute conventional and renewable power sources. 

We need to point out here that the literature related to Sliding Mode Control (SMC) designs 
for SMIBS are limited. Chang [20] proposed a nonlinear SMC for a synchronous generator 
system to stabilize the rotor angle and terminal voltage under known disturbances. On the other 
hand, a third-order linearized model of a SMIBS with SMC is discussed by Awelewa in [21].  
Awelewa 's objective is to design a control law for the excitation system that ensures sufficient 
robustness under the system's parameters variation. The severe disturbances in power 
systems, such as faults, are practically unpredictable. This unpredictability is caused by many 
factors such as fault location, connected load, and running generators. Moreover, controllers 
based on linearized models can only perform well around the vicinity of an equilibrium point; 
hence they most probably would fail when exposed to large external disturbances. Thus, 
designing SMC for synchronous generator infinite bus system while assuming known 
uncertainties or considering a linearized model to achieve asymptotic stability under large 
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disturbances has practical limitations. To this end, we propose an ASMC design for a SMIBS 
following the Edwards approach in [18] since it overcomes the challenge of estimating 
uncertainties' upper bounds even when the system's model is nonlinear. 

 It is noteworthy that SMC has been through significant advancement recently. One well-
known controller is the Higher Order-Sliding Mode Control (HOSMC) introduced by the Levant 
in [16]. The HSMC strength lay in the fact that it can altogether remove chattering effects if 
appropriately designed [16]. However, it has a significant drawback: it needs the bounds of the 
system uncertainty to be priorly known. Although that super-twisting SMC circumvents this 
drawback, its implementation requires the knowledge of the bound of the uncertainty 
derivative [25]. One approach to handle these difficulties in the design of HOSMC and super-
twisting controllers is the implementation of observer-based algorithms, see for example [22] , 
[23] and [24]. The other approach introduces adaptability into the control algorithm, hence 
designing an ASMC that can adaptively estimate the uncertainty bounds. For example, the ASMC 
law developed by Abadi et al. in [26], namely Adaptive Non-singular Terminal SMC (ANTSMC), 
is implemented for synchronizing smart grid chaotic systems with the requirement of 
continuously estimating the bounds of the uncertainties presented in the system.  It is also the 
case in the proposed algorithm of Alinaghi in [27]. Edwards et al. presented a novel ASMC 
algorithm in [18] when he proposed a nested two-layer adaptive scheme that neither requires 
the estimate of the uncertainty upper bound nor the bound of its derivative. We believe that the 
Edwards framework is remarkable because it significantly reduces the control algorithm 
complexity and enhances its robustness.  

The novelty of this work is in the design of an advanced controller for a SMIBS. Our contribution, 
in particular, is fourfold as described below: 

 We are designing a nested two-layer ASMC for a fifth-order nonlinear SMIBS Multi-Input-
Multi-output (MIMO) model that guarantees asymptotic stable outputs' errors and system's 
internal states within finite time under unknown bounded uncertainties.  

 The design procedure guarantees to offset bounded unknown uncertainties with significant 
mitigation of chattering effect, which is usually associated with conventional SMC. 

 Our design approach neither requires a priori knowledge about the uncertainties' upper 
bound nor the bound of its derivative. Therefore, the stage of estimating uncertainties in our 
control algorithm is completely abolished.  

 The complete system's nonlinearity is modeled as unknown uncertainties; this besides any 
large external disturbance. This helps in absorbing any unmodeled system or disturbance 
dynamics. Also, following this approach, the complexity of the control design is significantly 
reduced since the machine terminal voltage, one of the system outputs, is highly nonlinear. 

This manuscript has the following structure. In section 2, the fifth-order nonlinear model of 
the SMIBS is developed. We then proceed to the design of the closed-loop system utilizing 
Adaptive Sliding Mode Controller in 3. A comprehensive simulation that assesses the overall 
performance of the designed closed-loop system is presented in 4, and the manuscript is finally 
concluded in section 5. 

2. Multi-Input-Multi-Output Synchronous Machine Infinite Bus State-Space Model 

As stated earlier, the model selection is usually based on the objective of the study. This 
work aims to develop a control law that asymptotically stabilizes the terminal voltage and 
power angle of an SM connected to an infinite bus using field voltage and mechanical torque as 
control variables. Hence, the selected model is quite similar to the nonlinear electro-mechanical 
seventh-order presented by Fodor in [6], with, however, minor modifications derived from [7]. 
Note that all variables and parameters mentioned henceforth are defined in Table 1 and Table 
2, respectively. The overall power system that is under investigation is shown in Fig. 1. 
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Fig. 1. Single Machine Infinite Bus System (SMIBS) schematic 

Table 1.  SMIBS nonlinear model variables definitions 

Variable Type Description 

𝑖𝑑 State Projection of line current in d-axis 

𝑖𝑞 State Projection of line current in q-axis 

𝑖𝐹  State Field winding current 

𝜔 State Rotor mechanical angular velocity 

𝑣𝑓  Input Field winding voltage 

𝑇𝑚𝑒𝑐ℎ Input Mechanical driver torque 

𝑣𝑡(𝑥), 𝑣𝑑 , 𝑣𝑞 State, output 
Machine terminal voltage and projection of line voltages in the dq 

frame 

𝜗 State, output Electrical power angle in rad 

Table 2.  SMIBS parameters definitions 

Parameter Description Values (pu) [2] 

𝑟𝑠 Stator winding resistance 1•10-3 

𝑟𝐹 Rotor field winding resistance 7.40•10-4 

𝐿𝑑 d-axis stator inductance 1.70 

𝐿𝑞 q-axis stator inductance 1.64 

𝐿𝐹 Rotor field winding inductance 1.65 

𝑀𝐹 Stator-to-rotor mutual inductance 1.89 

𝑅𝑒 Transmission line and/or transformer equivalent resistance* 0.2 

𝐿𝑒 Transmission line and/or transformer equivalent inductance* 1.64 

𝑉∞ Infinite bus phase rms voltage 1.00 

𝜔𝑟 Angular velocity of stator magnetic field 1.00 

𝜃 Infinite bus angle 0 

𝐻 Inertia constant 3.195 

𝐷 Damping constant 2.004 

*Representing the equivalent impendence from the generator terminal to the infinite bus 

 
Considering 𝑣𝑓 and 𝑇𝑚𝑒𝑐ℎ as the model inputs, the overall state-space model is described as 

follows: 

 �̇� = 𝐹(𝑥) + 𝑩𝑢,     𝑦 = [𝑣𝑡(𝑥)     𝑥4]
𝑇 (1) 

Where 

𝑥 = [𝑖𝑑 𝑖𝑞 𝑖𝐹 𝜗 𝜔]T = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]T; 

𝐹(𝑥) =

[
 
 
 
 
 
 

𝐴11𝑥1 + 𝐴12𝑥3 + 𝐴13𝑥2𝑥5 + 𝐴14 sin(𝑥4 − 𝜃)

𝐴21𝑥1𝑥5 + 𝐴22𝑥3𝑥5 + 𝐴23𝑥2 + 𝐴24 cos(𝑥4 − 𝜃)

𝐴31𝑥1 + 𝐴32𝑥3 + 𝐴33𝑥2𝑥5 + 𝐴34 sin(𝑥4 − 𝜃)

(𝑥5 − 1)𝜔𝑟

𝐴51𝑥1𝑥2 + 𝐴52𝑥2𝑥3 + 𝐴53𝑥5 ]
 
 
 
 
 
 

; 
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𝑩 = [
𝐵11 0 𝐵31 0 0

0 0 0 0 𝐵52

]

T

; 

𝑢 = [𝑣𝑓 𝑇𝑚𝑒𝑐ℎ]𝑇 

with 𝐴𝑖𝑗  and 𝐵𝑖𝑗  elements in (1) are properly defined by Akhrif in [7]. The values of these 

elements depend on the machine design parameters are defined in Table 2. 

Remarks 

1. The model is MIMO, and the input dynamics, 𝑣𝑓 and 𝑇𝑚𝑒𝑐ℎ, are neglected. 

2. The phase voltages are assumed to be balanced at all times (even during faults), and 
hence the 0 component in the dq0 frame can be neglected. 

3. The model is highly coupled, and the nonlinearity is observed in all states' dynamics 
except for the power angle 𝜗. 

4. Model bifurcation analysis is worthy since common practical machine defects during 
its operation will alter the parameters. For example, such a common defect could be 
stator windings turn-to-turn insulation failure, shorted turns in the field windings, or 
combined. However, this type of analysis is out of the scope of this work.  

The nonlinearity in 𝐹(𝑥), in (1), can be seen as a separated perturbation term from a linear 
term, and hence linearization techniques can be implied to investigate the stability of the 
equilibrium points. The open-loop perturbed system can be depicted as linear and nonlinear 
segregated terms [8]: 

 �̇� = 𝐹(𝑥) = 𝐴𝑥 + 𝑔(𝑥) (2) 

Where: 

𝐴 =

[
 
 
 
 
 
 
𝐴11 0 𝐴12 0 0

0 𝐴23 0 0 0

𝐴31 0 𝐴32 0 0

0 0 0 0 𝜔𝑟

0 0 0 0 𝐴53]
 
 
 
 
 
 

;  𝑔(𝑥) =

[
 
 
 
 
 
 

𝐴13𝑥2𝑥5 + 𝐴14 sin(𝑥4 − 𝜃)

𝐴21𝑥1𝑥5 + 𝐴22𝑥3𝑥5 + 𝐴24 cos(𝑥4 − 𝜃)

𝐴33𝑥2𝑥5 + 𝐴34 sin(𝑥4 − 𝜃)

0

𝐴51𝑥1𝑥2 + 𝐴52𝑥2𝑥3 ]
 
 
 
 
 
 

 

Without loss of generality, and for notation brevity1, it is assumed that 𝑥 = 0 is an equilibrium 
point such that 𝐹(0) = 0 (2). It can be observed that 𝑔(𝑥) → 0 as 𝑥 → 0; hence, the nonlinearity 
in (2) is vanishing around the vicinity of the equilibrium points. Thus, linearization techniques 
can be applied to investigate the stability of those equilibrium points. 

3. Adaptive Sliding Mode Control Design 

As mentioned before, the design of the controllers is quite challenging as its main objective 
is to asymptotically stabilize the output errors and stabilizing the system's internal states 
under unknown uncertainties. To achieve this objective, an ASMC is selected. In the ASMC 
scheme, with properly structured sliding surfaces and Lyapunov function, an asymptotic stable 
closed-loop system can be guaranteed, as shown in the upcoming sections. The design of the 
controllers will take several steps. First, two sliding manifolds will be designed, each of which 
handles a sub-system, i.e., the electrical and the mechanical sub-systems. After that, the 
reachability conditions are deliberated in detail to select the controllers' gains accordingly. 
Like Edwards et al. method [18], the adaptation rules of these gains are then derived so that 

                                                      

1 𝑧 = 𝑥 − �̅� → �̇� = �̇� = 𝐹(𝑥) = 𝐹(𝑧 + �̅�) =⏞
def

𝜉(𝑧), 𝜉(0) = 0, but here the notation is not changed to ease the process of 

following the analysis. 
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the chattering effects resulting from the switching functions are minimized. Finally, the 
asymptotic stability of the overall system is investigated through the Lyapunov stability 
approach. The overall closed-loop system with the ASMC controllers' designs is shown in Fig. 
2 (sliding manifolds coefficients are not included in the Figure for simplicity). 

 
 Sliding manifolds' structures 

 ASMCs 

 Unknown uncertainties/disturbances 

- - - Uncertainty/disturbance signals 
 

Fig. 2. SMIBS overall closed-loop system block diagram 

 Design of Sliding Manifolds 

Since the objective of ASMC is to stabilize outputs' errors as well the internal system states, 
then the two sliding surfaces are selected as follows: 

 𝑆1 = 𝜆1𝑒𝑦1
+ 𝜆2 ∫𝑒𝑦1

+ 𝜆3(𝑥3 − 𝑥1) (3) 

 𝑆2 = 𝑒𝑦2
+ �̇�𝑦2

 (4) 

Where 𝑒𝑦1
= 𝑦1 − 𝑦1𝑟𝑒𝑓; 𝑒𝑦2

= 𝑦2 − 𝑦2𝑟𝑒𝑓 are the output errors, 𝑦1𝑟𝑒𝑓; 𝑦2𝑟𝑒𝑓  are constant 

references and 𝜆1, 𝜆2, 𝜆3 are the sliding manifolds coefficients. Noteworthy, the structure of the 
sliding surfaces in (3) and (4) are specifically selected so that during maintaining sliding, that 
is when 𝑆1 = 𝑆2 = �̇�1 = �̇�2 = 0, the output errors are zeros while all states in 𝑥 will have finite 
values as 𝑡 → ∞; this is proven below. 

First, let us consider the first sliding manifold in (3). While sliding 𝑆1 = 0, if the manifold's 
coefficients are selected such that 𝜆2 < 0 < 𝜆1 < 𝜆3, then: 

lim
𝑡→∞

𝜆3(𝑥3 − 𝑥1) = ∆𝑥1𝑥3
 

Where ∆𝑥1𝑥3
 is a finite constant represents the difference between 𝑥3 and 𝑥1 at steady-state. 

Consequently, as 𝑡 → ∞: 

𝜆2 ∫𝑒𝑦1
= −𝜆3(𝑥3 − 𝑥1) → 𝜆1𝑒𝑦1

= 0 

Hence, at sliding 𝑆1 = 0, the first output error 𝑒𝑦1
 is zero while the states 𝑥1, 𝑥3 and 𝑥2 are all 

with finite values.  

1

2

3
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For the second sliding surface in (4), during sliding 𝑆2 = 0, the two terms must equal to 
zero: 

𝑒𝑦2
= �̇�𝑦2

= 0 

Since 𝑦2 = 𝑥4, this implies: 

 𝑒𝑦2
= 𝑦2 − 𝑦2𝑟𝑒𝑓 = 𝑥4 − 𝑦2𝑟𝑒𝑓 = 0 → 𝑥4 = 𝑦2 = 𝑦2𝑟𝑒𝑓 (5) 

From the dynamics of 𝑥4 in F(x) in (1) and the fact that of �̇�𝑦2
= 0 when 𝑆2 = 0: 

�̇�𝑦2
= �̇�4 = (𝑥5 − 1)𝜔𝑟 = 0 

As 𝑡 → ∞: 

�̇�4 = (𝑥5 − 1)𝜔𝑟 = 0 → 𝑥5 = 1 

Hence the second output error 𝑒𝑦2
 is zero while 𝑥4 and 𝑥5 both have finite values as 𝑡 → ∞ 

when 𝑆2 = 0. 

 Reachability Conditions 

To guarantee reachability of errors and states trajectories into the surfaces 𝑆1 = 𝑆2 = 0, 
both conditions 𝑆1�̇�1 < 0 and 𝑆2�̇�2 < 0 shall be achieved. The achievability of reaching these 
manifolds is proven separately in the following subsections.  

1) Reachability Condition of First Sliding Manifold 

Let us first consider 𝑆1 and its reachability condition 𝑆1�̇�1 < 0. From (3), the dynamics of 
the first sliding surface is given by: 

 �̇�1 = 𝜆1�̇�𝑦1
+ 𝜆2𝑒𝑦1

+ 𝜆3(�̇�3 − �̇�1) = 𝜆1�̇�1 + 𝜆2(𝑦1 − 𝑦1𝑟𝑒𝑓) + 𝜆3(�̇�3 − �̇�1) (6) 

The first output is a function of the states such that 𝑦1 = 𝑣𝑡(𝑥), then: 

 �̇�1 = 𝜆1�̇�1 + 𝜆2[𝑣𝑡(𝑥) − 𝑦1𝑟𝑒𝑓] + 𝜆3(�̇�3 − �̇�1) (7) 

Also, the first input 𝑢1 = 𝑣𝑓 appears in �̇�1: 

 �̇�1 = �̇�𝑡(𝑥) =
1

2
(𝑣𝑑

2 + 𝑣𝑞
2)

−
1
2 ∙ (2𝑣𝑑�̇�𝑑 + 2𝑣𝑞�̇�𝑞) (8) 

𝑢1 specifically appears in �̇�𝑑 and �̇�𝑞: 

 

�̇�𝑑 = (𝑅𝑒 + 𝐿𝑒𝐴11)�̇�1 + 𝐿𝑒𝐴12�̇�3 + (𝐿𝑒𝐴13 − 𝐿𝑒)(�̇�2𝑥5 + 𝑥2�̇�5)

+ (𝑉∞ + 𝐿𝑒𝐴14)�̇�4 cos(𝑥4 − 𝛼) 

�̇�𝑞 = (𝑅𝑒 + 𝐿𝑒𝐴33)�̇�2 + (𝐿𝑒𝐴21 − 𝐿𝑒)(�̇�1𝑥5 + 𝑥1�̇�5) + 𝐿𝑒𝐴22(�̇�3𝑥5 + 𝑥3�̇�5)

− (𝑉∞ + 𝐿𝑒𝐴24)�̇�4 sin(𝑥4 − 𝛼) 

(9) 

Where it can be observed from (1) that 𝑢1 appears in �̇�1 and �̇�3. Noteworthy, the second input 
𝑢2 also appears in �̇�1through �̇�5 by tracking (1), (8), and (9). Hence, from (1), (7), (8), and (9), 
it can be concluded that the dynamics of the first sliding surface is a function of the states and 
both inputs and can be described in the following general form: 

 �̇�1 = ℎ1(𝑥, 𝑢2) + 𝑧1(𝑥)𝑢1 (10) 

Consider the following controller: 

 𝑢1 = −[𝑘1(𝑡) + 𝜂1]𝑠𝑖𝑔𝑛(𝑆1) (11) 

Where 𝑘1(𝑡) is the controller gain and 𝜂1 is a constant. The dynamics of the sliding surface in 
(10) now can be expanded as: 

 �̇�1 = ℎ1(𝑥, 𝑢2) − 𝑧1(𝑥)[𝑘1(𝑡) + 𝜂1]𝑠𝑖𝑔𝑛(𝑆1) (12) 

Define a bounded uncertainty such that: 
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 𝜚1(𝑥, 𝑢2) =
ℎ1(𝑥, 𝑢2)

𝑧1(𝑥)
< 𝜚10 (13) 

It is clear from (12) and (13) that if the controller gain is selected such that 𝑘1(𝑡) >
|𝜚1(𝑥, 𝑢2)|, then the reachability condition of the first sliding manifold 𝑆1�̇�1 < 0 is achieved. 
Note that the gain 𝑘1(𝑡) is a function of time since it is adaptive, and the design of it is discussed 
in sections 3-3. Also, from (13), the signal of the second controller is considered an uncertainty 
that the first controller shall absorb. Therefore, an essential condition to secure the boundness 
of 𝜚1 is bounding the second controller such that 𝑢2 < 𝑢20 where 𝑢20 is a predefined constant. 
Next, the reachability condition of the second manifold is discussed. 

2) Reachability Condition of Second Sliding Manifold 

As discussed earlier, to guarantee the reachability to the surface 𝑆2 = 0, then the condition 
𝑆2�̇�2 < 0 shall be satisfied. The dynamics of the second sliding surface defined in (4) is given 
by: 

 �̇�2 = �̇�𝑦2
+ �̈�𝑦2

 (14) 

Since 𝑒𝑦2 = 𝑥4 − 𝑦2𝑟𝑒𝑓 and the second derivative of 𝑥4 is a function of �̇�5, then: 

 �̇�2 = �̇�4 + �̈�4 = �̇�4 + 𝜔𝑟�̇�5 (15) 

Where the second controller 𝑢2 appears in �̇�5. Consequently, the derivative of the second 
sliding surface can be written in the following general structure: 

 �̇�2 = ℎ2(𝑥) + 𝑧2(𝑥)𝑢2 (16) 

Consider the controller: 

 𝑢2 = −[𝑘2(𝑡) + 𝜂2]𝑠𝑖𝑔𝑛(𝑆2) (17) 

Where 𝑘2(𝑡) is the controller gain and 𝜂2 is a constant. The dynamics of the sliding surface in 
(16) can be then expanded as: 

 �̇�2 = ℎ2(𝑥) − 𝑧2(𝑥)[𝑘2(𝑡) + 𝜂2]𝑠𝑖𝑔𝑛(𝑆2) (18) 

Define a bounded uncertainty such that: 

 𝜚2(𝑥) =
ℎ2(𝑥)

𝑧2(𝑥)
< 𝜚20 (19) 

It is clear from (18) and (19) that if the controller gain is selected such that 𝑘2(𝑡) > |𝜚2(𝑥)|, 
then the reachability condition of the second sliding manifold 𝑆2�̇�2 < 0 is achieved. So far, we 

have proved that the reachability conditions of 𝑆1�̇�1 < 0 and 𝑆2�̇�2 < 0 are only guaranteed if 
𝑘1(𝑡) > |𝜚1(𝑥, 𝑢2)| and 𝑘2(𝑡) > |𝜚2(𝑥)|. Therefore, it is required now to design these 
controllers' gains, with adaptation rules, to achieve these conditions while mitigating 
chattering effects as much as possible.  

 Derivation of Controllers Gains Adaptation Rule  

It is well-known that one of the main drawbacks of SMC is the associated "chattering" 
effects resulted from the inherent switching function within the controller [16]. Although that 
chattering affects the power angle and machine rotor speed (𝑥5) may be acceptable, the 
appearance of this phenomenon in the machine terminal voltage (𝑦1) and the currents (𝑥1, 𝑥2 
and 𝑥3) will cause a catastrophic impact on the power quality due to the associated harmonics 
with the chattering. One of the proven solutions for chattering is the adaptive scheme of SMC, 
and they are, for example, discussed by Utkin in [17] and by Edwards in [18]. The ASMC 
incorporates an adaptive controller gain such that it is as small as possible to mitigate 
chattering while simultaneously guarantees a sliding motion that offsets a bounded 
uncertainty. Therefore, the ASMC scheme is implemented in this work and discussed in the 
following subsections.  



234 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 1, No. 3, 2021, pp. 226-243 

 

 

Magdi S Mahmoud (An Adaptive Sliding Mode Control for Single Machine Infinite Bus System under Unknown Uncertainties) 

 

The development of the adaptation rule will compose of several steps. First, an estimated 
equivalent controller instead of the actual will be used to develop the rule. More importantly, 
the controllers' gains' adaptation rule will have two nested adaptation layers as described in 
[18]. The first layer of adaptation is designed so that the gain 𝑘 varies with the magnitude of 
the sliding surface dynamics to offset the bounded uncertainty. On the other hand, the second 
layer will take care of the gain rate of change to guarantee that the dynamics of 𝑘 follow the 

bounded uncertainty rate of change such that �̇� > �̇�(𝑥). 

Noteworthy, since the derivation of both controllers' gains 𝑘1(𝑡) and 𝑘2(𝑡) is similar, the 
subscript i = 1, 2 to represent the first and second controllers, respectively, is used henceforth 
for notation brevity. Also, |𝜚1(𝑥, 𝑢2)| will be described as |𝜚1(𝑥)| for brevity. 

Let us first define the equivalent controller that will be used to derive the gains adaptation 
rule. To maintain sliding on the surface 𝑆𝑖 = �̇�𝑖 = 0, one shall have an equivalent controller that 
exactly cancels the bounded disturbance such that: 

 |𝑢𝑒𝑞𝑖
| = |𝜚(𝑥)𝑖| (20) 

According to Utkin in [19], this equivalent controller can be estimated as �̅�𝑒𝑞𝑖
 in real-time by a 

low-pass filter as follows: 

 �̇̅�𝑒𝑞𝑖
=

1

𝜏
[−[𝑘𝑖(𝑡) + 𝜂𝑖]𝑠𝑖𝑔𝑛(𝑆𝑖) − �̅�𝑒𝑞𝑖

] (21) 

Where 𝜏 is a positive constant that ensures the equivalent controller estimate error 
|𝑢𝑒𝑞𝑖

− �̅�𝑒𝑞𝑖
| is small. From (20) and the requirement of 𝑘𝑖(𝑡) > |𝜚𝑖(𝑥)|, it is clear that the 

condition 𝑘𝑖(𝑡) > |𝑢𝑒𝑞𝑖
| shall be satisfied to enforce sliding. However, since an estimate of the 

equivalent control is used instead of the actual, a safety margin should be introduced as 
follows: 

 𝑘𝑖(𝑡) >
1

𝛼𝑖
|�̅�𝑒𝑞𝑖

| + 𝜖𝑖  (22) 

Where 0 < 𝛼𝑖 < 1 and 𝜖𝑖 > 0 are constants, and their selection will be discussed in sections 3-

4. These constants are implemented to ensure that the controller estimates satisfy: 

 
1

𝛼𝑖
|�̅�𝑒𝑞𝑖

| +
𝜖𝑖

2⁄ > |𝑢𝑒𝑞𝑖
| (23) 

And by defining an error term such that [18]: 

 𝛿𝑖(𝑡) = 𝑘𝑖(𝑡) −
1

𝛼𝑖
|�̅�𝑒𝑞𝑖

| − 𝜖𝑖 (24) 

If 𝛿𝑖(𝑡) → 0, then: 

 𝑘𝑖(𝑡) =
1

𝛼𝑖
|�̅�𝑒𝑞𝑖

| + 𝜖𝑖  (25) 

From (23) and (25), it can be seen that: 

 𝑘𝑖(𝑡) > |�̅�𝑒𝑞𝑖
| = |𝜚𝑖(𝑥)| (26) 

Hence, if it is guaranteed that 𝛿𝑖(𝑡) → 0 as 𝑡 → ∞, such that 𝑘𝑖(𝑡) + 𝜂𝑖 > |𝜚𝑖(𝑥)|, then forcing 
sliding motion is achieved. 

Now, the two nested adaptation layers of 𝑘𝑖(𝑡) are derived as follows. First, we will define 
the adaptation of 𝑘𝑖(𝑡), that is the first adaptive layer, as [18]: 

 �̇�𝑖(𝑡) = −𝜌𝑖(𝑡) ∙ 𝑠𝑖𝑔𝑛[𝛿𝑖(𝑡)] (27) 

Where 𝜌𝑖(𝑡) is a function of time and represents the upper bound of the uncertainty dynamics 
|𝜚�̇�(𝑥)| < 𝜚𝑖𝑖 and it has the following form: 
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 𝜌𝑖(𝑡) = 𝑟𝑖0 + 𝑟𝑖(𝑡) (28) 

Where 𝑟𝑖0 is a design scalar (selection of it is discussed in section 3.4) and 𝑟𝑖(𝑡) is the second 
adaptation rule in our scheme. Assuming the uncertainty bounds are unknown (both 𝜚𝑖0 and 
𝜚𝑖𝑖  are unknown), the adaptation rule of 𝑟𝑖(𝑡) given by [18] is: 

 �̇�𝑖(𝑡) = {
𝛾𝑖|𝛿𝑖(𝑡)|; |𝛿𝑖(𝑡)| > 𝛿𝑖0

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (29) 

Where 𝛿𝑖0 > 0 and 𝛾𝑖 > 0 are both design scalars, and their selection will be discussed in 
section 3.4. To allow 𝑟𝑖(𝑡) tracks the rate of change of the uncertainty, we define an error 
function as: 

 𝑒𝑖(𝑡) =
𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
− 𝑟𝑖(𝑡) (30) 

Where 𝑞𝑖 > 1 is a safety factor to ensure �̇̅�𝑒𝑞𝑖
< 𝑞𝑖𝜚𝑖𝑖. 

 Lyapunov Stability Analysis 

The stability analysis is crucial to investigate the asymptotic stability of the overall closed-
loop system along with the output errors. As discussed earlier, reaching the sliding manifolds 
and maintaining sliding guarantee asymptotically stable outputs errors and internal states of 
the system. However, reaching the surface can only be guaranteed if 𝑘1(𝑡) > |𝜚1(𝑥, 𝑢2)| and 
𝑘2(𝑡) > |𝜚2(𝑥)|. It was also shown that these conditions are met if the error functions defined 
in (24) and (30) are approaching zero as 𝑡 → ∞. Therefore, a reasonable candidate for a 
Lyapunov function is a quadratic one in terms of the sliding manifolds and errors defined in 
(3)-(4) and (24)-(30), respectively: 

 V =
1

2
𝛿1

2 +
1

𝛾12
𝑒1

2 +
1

2
𝛿2

2 +
1

𝛾22
𝑒2

2 +
1

2
𝑆1

2 +
1

2
𝑆2

2 (31) 

The derivative of this Lyapunov is: 

 V̇ = 𝛿1�̇�1 +
1

𝛾1
𝑒1�̇�1 + 𝛿2�̇�2 +

1

𝛾2
𝑒2�̇�2 + 𝑆1�̇�1 + 𝑆2�̇�2 (32) 

And from (31), the derivative of 𝛿𝑖  for i = 1, 2 is: 

 �̇�𝑖 = �̇�𝑖 −
1

𝛼𝑖
|�̇̅�𝑒𝑞𝑖

| = −(𝑟𝑖0 +
𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
− 𝑒𝑖) 𝑠𝑖𝑔𝑛(𝛿𝑖) −

𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
 (33) 

While the derivative of e from (30) is: 

 �̇�𝑖 = −�̇�𝑖 (34) 

Hence: 

 𝛿𝑖�̇�𝑖 ≤ −𝑟𝑖0|𝛿𝑖| + (𝑒𝑖 −
𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
) |𝛿𝑖| + |𝛿𝑖|

𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
= −𝑟𝑖0|𝛿𝑖| + 𝑒𝑖|𝛿𝑖| (35) 

It also can be seen that 𝑒𝑖 ≤
𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
 since 𝑟𝑖 ≥ 0. Let us now examine the derivative of the 

Lyapunov function at both conditions of the adaption of 𝑟𝑖 defined in (29). If |𝛿𝑖| > 𝛿𝑖0, then 
substituting (34) and (35) into (32) yields to: 

 V̇ = −𝑟10|𝛿1| + 𝑒1|𝛿1| −
1

𝛾1
𝑒1�̇�1−𝑟20|𝛿2| + 𝑒2|𝛿2| −

1

𝛾2
𝑒2�̇�2 + 𝑆1�̇�1 + 𝑆2�̇�2 (36) 

Substituting (36) into (43) yields: 

 
V̇ = −𝑟10|𝛿1| + 𝑒1|𝛿1| − 𝑒1|𝛿1| −𝑟20|𝛿2| + 𝑒2|𝛿2| − 𝑒2|𝛿2| + 𝑆1�̇�1 + 𝑆2�̇�2

= −𝑟10|𝛿1|−𝑟20|𝛿2| + 𝑆1�̇�1 + 𝑆2�̇�2 
(37) 
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If |𝛿| < 𝛿0, then 𝑟�̇� = 0 and 𝑒𝑖 < 0 since 𝑟𝑖 ≥
𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
; hence from (36) also: 

 V̇ = −𝑟10|𝛿1| + 𝑒1|𝛿1| − 𝑟20|𝛿2| + 𝑒2|𝛿2| + 𝑆1�̇�1 + 𝑆2�̇�2 (38) 

Since the error terms in the Lyapunov derivative in (37) and (38) at both values of 𝑟�̇� are 
negative, then 𝛿𝑖 , 𝑒𝑖 → 0 as 𝑡 → ∞. Consequently, the condition 𝑘𝑖(𝑡) > |𝜚𝑖(𝑥)| is achieved, and 

as a result, the terms 𝑆1�̇�1 and 𝑆2�̇�2 in (37) and (38) are both negative. Therefore, the derivative 
of this Lyapunov is semi-negative definite since V̇(0) = 0. However, at 𝛿𝑖 = 𝑒𝑖 = 𝑆𝑖 = 0, the 
sliding on the manifolds is attainable and maintained, resulting in stable output errors and 
internal states as discussed in sections 3.1 and 3.3. Since this is the case and V is radially 
unbounded positive definite, then the output errors and the system's internal states are 
asymptotically stable under the condition of bounded uncertainties defined by 𝜚𝑖0 and 𝜚𝑖𝑖 .  

Remarks 

 From (37) and (38), the selection of 𝑟𝑖0 constitutes the decaying rate of the gain errors 
defined in (24) and consequently how fast the states and outputs errors trajectories will 
start moving toward the sliding manifolds.  

 The controllers' coefficients 𝜖𝑖, 𝛼𝑖, 𝛿𝑖0 and 𝛾𝑖  shall be selected such that: 

 
1

4
𝜖𝑖

2 > 𝛿𝑖0
2 +

1

𝛾𝑖
(
𝑞𝑖𝜚𝑖𝑖

𝛼𝑖
)
2

 (39) 

to guarantee asymptotic stable gain errors, defined in (24) and (30), and to secure bounded 
controllers' gains [18]. 

4. Simulation and discussion 

The simulation is carried out on the SMIBS shown in Fig. 1 with two different closed-loop 
control systems. The first governs our design shown in Fig. 2, while the second is a conventional 
SMC with constant gains for performance comparison. The main objective of the simulation is 
to verify the effectiveness of the designed ASMC in terms of chattering mitigation and to assess 
its capability in achieving asymptotic stable output errors and stabilizing the systems' internal 
states, such that lim

𝑡→∞
𝑒𝑦 = 0 and lim

𝑡→∞
𝑥 = 𝑥𝑓 , under the presence of severe disturbance. The 

disturbances defined previously by 𝜚1(𝑥, 𝑢2) and 𝜚2(𝑥) will also be "momentarily" perturbed 
during the simulation by altering the infinite bus voltage, that is, in particular, altering the 
parameter 𝑉∞. With this, we eventually simulate a short circuit fault on the SM bus that is 
cleared within finite time. We then assess the system's overall closed-loop performance under 
such severe conditions and compare it with conventional SMC. 

 Scenario 

The duration of the simulation is 380 tu (this is around a second). A three-phase fault 
occurs at 150 tu in the power system's bus, at the location indicated in Fig. 1, and the fault is 
cleared at 190 tu (fault duration is around 40 tu, which is equivalent to 100 msec). As indicated 
previously, this system fault is simulated by altering the value of 𝑉∞. In this case, its value will 
be reduced from 1.0 to 0.5 during the fault only; when the fault is cleared, 𝑉∞ returns to its 
nominal value of 1.0. For the output references 𝑦1𝑟𝑒𝑓 and 𝑦2𝑟𝑒𝑓 , a reasonable selection is 1.0 

and 0.15 𝑟𝑎𝑑, respectively. For 𝑦1𝑟𝑒𝑓 , since the SM is connected to an infinite bus with 𝑉∞ =

1.0 nominal, then the SM is expected to operate at the same voltage level during a steady-state 
condition. On the other hand, 𝑦2𝑟𝑒𝑓 , the power angle of the SM should be positive since the SM 

is running on generation mode.  

The sliding manifolds and the controller coefficients are selected based on the discussions 
in sections 3.1 and 3.4, respectively, and their values are depicted in Table 3. Note that 𝛾1, 𝛾2 
are both chosen to be sufficiently large, and 𝛼1, 𝛼2 are set at the high side of their allowable 
range to ensure reducing the right-hand side of inequality (39), and hence the inequality is 
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satisfied. The values of 𝛿10, 𝛿20 are adjusted to be as small as possible while at the same time 
avoiding any potential computational errors during simulation, as suggested in [18]. For the 
SMC gains, they are selected to be sufficiently large to offset the unseen disturbances. The 
parameters' values of the nonlinear SMIBS model, 𝐴𝑖𝑗  and 𝐵𝑖𝑗 , are shown in Table 4. As 

indicated previously, these values are functions of the system's components. 

 Results 

All results of the simulation during and after the fault are represented in plots. The 
internal states of the system are shown in Fig. 3, while the outputs are shown in Fig. 4. Also, the 
controllers' signals are shown in Fig. 6; meanwhile, the ASMC gains are reported in Fig. 5. The 
sliding manifolds are illustrated in Fig. 7. Finally, the trajectories of electrical states 𝑥1, 𝑥2, 𝑥3 
are shown in Fig. 8, the trajectories of the mechanical states 𝑥4, 𝑥5 are depicted in Fig. 9, and 
the output errors are in Fig. 10.  

Table 3.  Sliding manifolds and controllers' coefficients values 

Coefficient Assignee Value 

𝜆1 First Sliding Manifold 1.00 

𝜆2 First Sliding Manifold -1.00 

𝜆3 First Sliding Manifold 10.0 

𝜖1, 𝜖2 ASMC 0.01 

𝛿10 , 𝛿20 ASMC 0.05 

𝑟10, 𝑟20 ASMC 0.5 

𝛼1, 𝛼2 ASMC 0.99 

𝛾1, 𝛾2 ASMC 400 

𝜂1, 𝜂2 ASMC 0.05 

𝜏 ASMC 0.01 

𝑘1 SMC 5.00 

𝑘2 SMC 10.0 

Table 4.  SMIBS parameters' values 

Parameter Value Parameter Value Parameter Value 

𝐴11 -0.173 𝐴23 0.06128 𝐴51 0.00939 

𝐴12 -0.000734 𝐴24 -0.3049 𝐴52 -0.2958 

𝐴13 2.823 𝐴31 -0.1994 𝐴53 -0.3136 

𝐴14 -0.8607 𝐴32 -0.001297 𝐵11 0.9919 

𝐴21 -1.018 𝐴33 3.253 𝐵31 1.753 

𝐴22 0.5762 𝐴34 -0.9919 𝐵52 0.1565 

 

 Discussion 

The system's internal states and outputs, depicted in Fig. 3 and Fig. 4, respectively, are 
asymptotically stabilized after the fault clearance with almost similar performance observed 
with ASMC and SMC. That asymptotic stability is also indicated by the electrical and mechanical 
states trajectories depicted in Fig. 8 and Fig. 9, respectively. Although the overshooting 
observed within the electrical states are acceptable, around rated values of 1, the oscillations 
are rather high. On the other hand, a remarkable performance of the controllers, ASMC and 
SMC, can be observed in the mechanical states as their dynamic response during the fault was 
negligible; this is also seen in their trajectories shown in Fig. 9. For the input-output responses 
depicted in Fig. 4, the controllers could successfully force them to follow the reference signals 
after clearing the fault at 190 tu, proving the asymptotic stability of the output errors discussed 
in section 3.4. The errors' trajectories depicted in Fig. 10 also confirm this as they settle at zero. 
Noteworthy, the dynamic response of the first output experienced large momentarily 
overshoot and oscillation when the fault was cleared. Although that response may affect the 
SM's windings insulation, the overshoot (or voltage surge in power system terminology) is 
expected when the infinite bus voltage is restored to its nominal value. This is attributed to the 
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difference in the machine terminal and bus voltages at the instant of bus voltage restoration. 
On the other hand, the dynamic performance of the second output is superior. 

Although both ASMC and SMC achieve similar states and outputs dynamic performance, a 
dichotomy in their performance is observed in their signals, which can be seen in Fig. 6. The 
chattering seen in the SMC signal is significant, while our design of the ASMC mitigates it. 
Reducing chattering in the SMIBS controllers is vital to extend the system's physical 
components' lifetime; this includes both excitation and governor systems. This satisfactory 
performance results from the adaptive gains reported in Fig. 5, where we can see how the gains 
vary in response to the disturbance introduced into the system. In that sense, the designed 
adaptation rules could successfully adjust the gains, resulting in offsetting the disturbance and 
simultaneously mitigating the chattering phenomenon.  

The sliding manifolds shown in Fig. 7 reveal that the SMC and the ASMC both reach the 
manifolds and maintain sliding even during the presence of a system's fault. We can observe 
that the switching of the first surface is more than that of the second manifold. That can be 
attributed to the high nonlinearity inherent in its uncertainty term defined in (13), where this 
term is a function of the first output dynamics, defined in (8), and the second input. 

Overall, the performance of the ASMC is satisfactory as it was proven that, with its two 
nested adaptive layers scheme, it could force the trajectories of the states and the output errors 
to the sliding manifolds during the presence of severe disturbance. That indeed also verifies 
the stability analysis conducted previously, where it was shown that the output errors are 
asymptotically stable, and all internal states are reaching finite values as 𝑡 → ∞. Besides the 
successful dynamic performance, the ASMC outperforms the SMC in terms of mitigating the 
chattering phenomenon. That is attributed to the ASMC's capability in adaptively adjusting the 
gains in response to the disturbance rather than the stationary gain SMC gains. 

 
Fig. 3. Simulation – System's internal states as 

function of time 

 

Fig. 4. Simulation – System's outputs as function 

of time 
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Fig. 5. Simulation – ASMC's adaptive gains as function of time 

 

 
Fig. 6. Simulation – Controllers' signals as function of time 
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Fig. 7. Simulation – Sliding manifolds as function of time 

 

Fig. 8. Simulation – Electrical states trajectories 

 

Fig. 9. Simulation – output errors trajectories 
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Fig. 10. Simulation – output errors trajectories 

5. Conclusion 

 Modeling of Synchronous Machine (SM) can be performed with various approaches that 
depend significantly on the main objective of their development. This work aims to design a 
stable closed-loop system that can efficiently handle large disturbances such as faults occurring 
at the power system bus. Consequently, the model selected for the analysis is a MIMO 5th order 
nonlinear model representing the dynamics of a SMIBS. The model composes of two sub-
models, electrical and mechanical sub-models. To handle the SMIBS's wild uncertainties, 
including nonlinearities and severe disturbances, an Adaptive Sliding Mode Control (ASMC) is 
designed with gains of two nested adaptive layers. The robustness of this ASMC is that it neither 
requires prior knowledge about uncertainties nor an explicit estimation through observer-
based controllers. The simulation results of the closed-loop system with the ASMC proved its 
effectiveness and verified the conducted theoretical stability analysis. We saw that the 
controllers could successfully achieve asymptotic stable outputs error and stabilizing the SMIBS 
internal states during large disturbances. Most importantly, the ASMC outperforms the SMC in 
terms of mitigating the chattering phenomenon. That is attributed to the ASMC's capability in 
adaptively adjusting the gains in response to the disturbance rather than the stationary gain 
SMC gains. 

 Yet, as future work, we believe that the performance of the designed controllers can still be 
improved, especially enhancing the dynamic performance. We, therefore, recommend exploring 
the control design of Edwards et al. in [27], where they present HOSM control laws to prevent 
overestimating the gains of the adaptive scheme. In addition, we see that the work of Roy et al. 
in [28] worths investigating.  They propose an ASMC design that does neither require a priori 
knowledge about the uncertainties nor their upper bounds, which ultimately enhances the 
robustness of the controller's performance.  
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