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1. Introduction 

Autonomous robots play a vital role in several commercial and domestic applications. These 
robots are widely used in military factories, secular power plants, chemical industries, and 
locomotive industries. One of their kind is a wall following robot, which plays a vital role in 
detecting faults in machinery, cracks in infrastructure, perform rescue activities, and are used 
in medical and rehabilitation centers [1-4]. The accurate control of these autonomous robots 
is necessary for their robust performance and the surroundings’ safety. 
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 In this paper, we presented an autonomous control framework for the 
wall following robot using an optimally configured Gated Recurrent 
Unit (GRU) model with the hyperband algorithm. GRU is popularly 
known for the time-series or sequence data, and it overcomes the 
vanishing gradient problem of RNN. GRU also consumes less memory 
and is computationally more efficient than LSTMs. The selection of 
hyper-parameters of the GRU model is a complex optimization 
problem with local minima. Usually, hyper-parameters are selected 
through hit and trial, which does not guarantee an optimal solution. To 
come around this problem, we used a hyperband algorithm for the 
selection of optimal parameters. It is an iterative method, which 
searches for the optimal configuration by discarding the least 
performing configurations on each iteration. The proposed HP-GRU 
model is used on a dataset of SCITOS G5 robots with 24 sensors 
mounted. The results show that HP-GRU has a mean accuracy of 
0.9857 and a mean loss of 0.0810, and it is comparable with other deep 
learning algorithms. 
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There are many classical to modern state-of-the-art methods proposed for the controlled 
motion of wall-following robots [5-13]. Juang et al. [5] proposed a fuzzy control for the hexapod 
robot trained through differential evolution. Dash et al. [7] used a dataset of 24 ultrasonic 
sensors mounted on SCITOS G5 robot and applied a neural network (NN) to train a model to 
design control with an accuracy of 92.67%. Later, Dash et al. [9] proposed another hybrid 
model composed of gradational search approach with feedforward neural network and 
achieved an accuracy of 86.38% within 0.28 sec. Likewise, Dash et al. [10] proposed another 
approach known as Adaptive Resonance Theory-1 for the control of a wall-following robot with 
an average accuracy of 91.78%. Some heuristic techniques are also employed for the control of 
the robot [14, 15]. For instance, Chen et al. [16] used an optimization-based meta-heuristic 
approach known as PSO and achieved a maximum accuracy of 98.8%. Likewise, Isaac et al. [17] 
compared the performance of Bayesian and k-NN networks in a dynamic environment with the 
accuracy of 93.3% and 73.3%. 

The Recurrent Neural Networks (RNNs) are popularly known for the time-series data since 
they can understand the contextual information stored in sequential data. RNNs are popularly 
used in several real-world applications [18-25]. Likewise, they have used in the control of the 
wall the following robot as well. Hammad et al. [26] employed LSTM and GRU models (two 
variants of RNN) for the control of the robot and obtained an accuracy of 96.15% and 96.52%. 

In this paper, we presented an optimally configured HP-GRU (Hyperband Gated Recurrent 
Unit) model for the robust control of the wall following the robot. In all the models discussed 
above, the hyper-parameters are manually chosen through hit and trial because the selection 
of hyper-parameters is an optimization problem. We employed a Hyperband algorithm to 
select optimal parameters from the search space for GRU and achieved a robust control 
framework for the wall-following robot. In the simulation, the dataset is taken from a SCITOS 
G5 robot with 24 ultrasonic sensors mounted on it [27]. The dataset contains four moves of the 
robot based on the sensory information. We used our proposed HP-GRU model on the dataset 
and achieved a mean accuracy of 98.58%. We compared the results with other methods to 
show the superiority of our optimally configured GRU model. 

The rest of the paper is as follows. In section 2, we will discuss the architecture of RNN and, 
more particularly, GRU. In section 3, we will discuss in detail Successive-Halving and 
Hyperband Algorithm. Besides, we will also discuss our proposed optimally configured GRU 
model, and finally, we will discuss the nature of the dataset collected from SCITOS G5. In section 
4, we will discuss the numerical results and the comparison with other algorithms. In section 
5, we will conclude the paper with the final remarks. 

2. Gated Recurrent Unit (GRU-RNN) 

RNNs are known for sequential or time-series data. They are an extension of neural 
networks (NN), where several NNs are stacked together and share the common weights. RNNs 
overcome the limited input length limitation of NNs but still faces the vanishing gradient 
problem. There are two solutions to come around this problem, i.e., LSTM (Long Short Term 
Memory) and GRU (Gated Recurrent Units). Both have their pros and cons, but GRU consumes 
less memory and is faster than LSTM. The comparison between LSTM and GRU is given below, 

• LSTM processes longer input-sequence than GRU. 

• GRU has two memory gates, whereas LSTM has three memory gates. 

• GRU model includes lesser trainable variables than LSTM. 

• GRU are computationally and time-wise faster than LSTM. 
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At input, it includes an 𝑿𝒕 and a cell state 𝑪𝒕−𝟏 and at the output, it has cell-state 𝑪𝒕 for the 
next GRU unit. The formulation of GRU is given as, 

 
𝒛𝒕 = 𝜎(𝑾𝒛[𝑪𝒕−𝟏, 𝑿𝒕]) (1) 

 
𝒓𝒕 = 𝜎(𝑾𝒓[𝑪𝒕−𝟏, 𝑿𝒕]) (2) 

 
�̂�𝒕 = tanh(𝑾[𝒓𝒕 ∗ 𝑪𝒕−𝟏, 𝑿𝒕]) (3) 

 
𝒉𝒕 = (1 − 𝒛𝒕) × 𝑪𝒕−𝟏 + (𝒛𝒕 × �̂�𝒕) (4) 

where 𝒓𝒕 and 𝒛𝒕 are the intermediary matrices for the reset and update gate, respectively. The 
architecture of GRU is shown in Fig. 1. It shows the reset and update gate. These gates control 
the flow of information through the GRU cell so that relevant information passes on to the next 
cell and discard the useless information. This technique helps the GRU-RNN model to overcome 
the vanishing gradient problem. 

 

Fig. 1. (a) shows the schematic of the GRU model, which is similar to LSTM, but with fewer gates and 
trainable parameters. (b) shows the compact form of input and forget gates of LSTM as a reset 
gate, (c) shows the update gate of GRU, which will pass the information to the next GRU unit. 

3.  Hyperband Algorithm (HP) 

3.1. Successive-Halving 

There are numerous classical approaches for the selection of hyper-parameters of learning 
models. Bayesian optimization methods are at the top of the list, with their probabilistic 
approach to configure the optimal configuration. For highly complex non-linear problems, they 
fail to optimize the selection of hyper-parameters, so they are integrated with heuristic 
approaches to come around this problem. 

Successive-halving is a modern approach, and as suggested from the name, it allocates the 
resources 𝑅 to all possible configurations and then evaluates their performances along with 
time-consumption. The half-best configurations move to the next iteration, while the 
remaining are drop. This iterative process continues until the best configuration of hyper-
parameter is achieved. in the beginning, successive-halving allocates uniform resources to all 

the configurations, let us say, 
𝑅

𝑛
 , where 𝑛 ∈ 𝑹+. With time, it allocates exponential resources to 

the best configurations. The selection of 𝑛 itself is an optimization problem. For instance, if 𝑛 
is small, more resources (time) will be allocated to the configurations, which may not achieve 
the optimal design. Whereas, if 𝑛 is large, fewer resources will be assigned to the configurations 
resulting in premature convergence. 
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3.2. Hyperband 

Hyperband is an extension of Successive-Halving, which addresses the “n Vs.  
𝑅

𝑛
.” It computes 

the performance of the model for different values of 𝑛. The algorithm includes two nested 
loops, the inner loop performance successive halving for the given value of 𝑛, whereas the 
outer-loop tries different values of n to find the optimal value. The outer loop is known as the 
“bracket,” where each bracket utilizes 𝑅 resources. 

The algorithm is shown in Fig. 2. It takes two inputs, 𝑅𝑚𝑎𝑥, the maximum resource allocates 
to one configuration and, 𝛼, which is the proportion of configurations to discard on each 
iteration. Likewise, it includes 𝑖𝑚𝑎𝑥 + 1 different values of 𝑛. 

 

Fig. 2.  Hyperband Algorithm 

For the implementation of Hyperband, we employed a keras-tuner. It takes different 
configurations of training models, e.g., number of layers, number of hidden units in each layer, 
activation function, dropout %, and learning-rate, etc. The user also inputs the number of trials 
𝑁 and the number of executions in each trial is 𝑀. Table 1 and Table 2 shows hyper-parameters 
configuration space and also show the optimal configuration of hyper-parameters for the GRU 
model. We tuned the HP-GRU model based on the validation loss. The model will the smallest 
loss will be the best to use. Fig. 3 shows the results that the worst model has the loss of 0.5275, 
best model has a validation loss of 0.1104, so the optimally configured model is almost five 
times better than the worst configured model. 

Table 1.  Hyperband (HP): Optimal Model Selection 

Model Parameters Configurations Spaces 

 Choices Minimum Maximum 

Number of Units (GRU) - 32 512 

Number of Units (Dense) - 0 128 

Dropout (%) - 0 0.3 

Activation Function sigmoid, relu, tanh - - 
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Table 2.  Hyperband (HP): Optimal Model Selection 

Hyperband Options 

Total Trials 10 Executions/Trial 5 

Optimal Configuration 

Validations Loss 0.110 Total Trainable Parameters 1,608,292 

Model Summary 

Layer Name Type Shape/ Units Dropout (%) Activation Function 

Input Layer Input (5455,4) - - 

Layer_1 GRU 448 - relu 

Layer_1 Dropout - 10 - 

Layer_2 GRU 384 - relu 

Layer_2 Dropout - 30 - 

Layer_3 GRU 96 - sigmoid 

Output Layer Output (4) - softmax 

 

 

Fig. 3.  HP-GRU is tuned based on validation loss. It shows that the worst model has a validation loss of 
0.5275 best model has a validation loss of 0.1104. 

 

3.3. Proposed Method 

As mentioned above, the optimal configuration of the GRU model is selected through the 
hyperband algorithm. The details of hyper-parameters of each layer are given as follows. 

3.3.1. Input Layer 

The input layer consists of four input features extracted from the ultrasound sensors 
mounted on the wall following the robot, i.e., 𝑆𝑓 (Front Sensor), 𝑆𝑙 (Left Sensor), 𝑆𝑟 (Right 
Sensor), and 𝑆𝑏 (Back Sensor). The format of the input is (𝑏𝑠, 𝑓)=(5455, 4), where 𝑏𝑓 is batch 
size and 𝑓 is features. 

3.3.2. Layer 1 

The first layer includes 448 hidden units with a “relu” activation function followed by a 10% 
dropout layer, which means that the network will randomly discard 10% of hidden units before 
passing the cell state 𝑪𝒕 to the second layer. 
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3.3.3. Layer 2 

The second layer includes 384 hidden units with a “relu” activation function followed by a 
30% dropout layer, which means that the network will randomly discard 30% of hidden units 
before passing the cell state 𝑪𝒕 to the flatten layer. The flattened layer flats the hidden units 
and connect them with the fully connected layer, i.e., the fourth layer. 

3.3.4. Layer 3 

The third layer includes 96 hidden units with a “sigmoid” activation function, and then it 
passes the output to the final and output layer. 

3.3.5. Output Layer 

The last and the output layer consists of 4 possible outputs for the wall following robot, i.e., 
Slight-Right-Turn, Move-Forward, Sharp-Right-Turn, and Slight-Left-Turn. To keep the output 
between 0 and 1, we used the “softmax” activation function. 

3.4. The Datasheet 

The dataset is recorded with the help of the SCITOS G5 robot navigated in a room in the 
clockwise direction. The 24 sensors are attached to the robot’s waist to measure its distance 
from the walls. The sampling rate is nine samples per second during the four rounds of the 
robot in the room. 

The dataset of 24 sensors is then compressed into four parts, i.e., Front Sensor (𝑆𝑓), Right 
Sensor (𝑆𝑟), Left Sensor (𝑆𝑙), and Back Sensor (𝑆𝑏) known as features, and based on these 
features, the robot can take four decisions, i.e., Slight-Right-Turn, Move-Forward, Sharp-Right-
Turn, and Slight-Left-Turn, known as classes. There are mainly two data preprocessing 
techniques are employed, i.e., min-max normalization and conversion of classes into numerical 
numbers. All the data is normalized between 0 and 1 using min-max normalization, and since 
we used “Sparse Categorical Cross-entropy,” so we assigned a number to the classes, i.e., Slight-
Right-Turn = 0, Move-Forward = 1, Forward, Sharp-Right-Turn = 2, and Slight-Left-Turn = 3. 
The sample of the dataset is shown in Table 3. The dataset is divided into three portions, i.e., 
training, validation, and test. As mentioned earlier, the dataset contains 5455 samples, and it 
is divided as, the training data is 65% of the total data, validation data is 10%, and training data 
is 25% of the total dataset. 

Table 3.  Few Sample from Dataset 

Features 

Sample No 𝑺𝒇 𝑺𝒓 𝑺𝒍 𝑺𝒃 Class 
1 0.264 0.022 0.359 0.013 0 

10 0.053 0.027 0.355 0.019 1 

20 0.070 0.030 0.207 0.022 1 

30 0.253 0.028 0.209 0.021 0 

40 0.241 0.028 0.198 0.030 0 

238 0.2034 0.0354 0.160 0.104 2 

5543 0.145 0.270 0.103 0.415 3 

4.  Results and Discussion 

In the simulation section, we will explore the accuracy of our HP-GRU model. There are 
some additional parameters for the training phase mentioned in Table 4. First, we will discuss 
the accuracy of all the models tested during the best model selection through hyperband. The 
results are shown in Table 5. It shows the performance of the best HP-GRU model to the worst 
HP-GRU model. There are four performing metrics, i.e., validation loss, validation accuracy, test 
loss, and test accuracy. It can be seen that the best model, the first model, has out-performed 
the rest in all metrics because hyperband manages to converge the hyper-parameters of the 
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GRU model to the optimal configuration. It can also observe that the validation accuracy of HP-
GRU models during ten trials increased from 0.7707 to 0.9659, and likewise, the test accuracy 
increased from 0.7780 to 0.9857, which is almost 1.25 times. Likewise, the test loss decreased 
from 0.5169 to 0.0810, which is 6.3 times. 

Table 4.  Additional Hyper Parameters 

Additional Hyper-parameters Value/Method 
Optimizer Adam 

Loss Function Sparse Categorical Cross-Entropy 

Batch Size 32 

Total Epoch 10 

Weight Initialization Xavier Initialization 

Table 5.  Additional Hyper Parameters 

Models Validation Loss Validation Accuracy Test Loss Test Accuracy 

1 0.1104 0.9659 0.0810 0.9857 

2 0.1129 0.9415 0.0883 0.9766 

3 0.1178 0.9390 0.0967 0.9661 

4 0.1212 0.9610 0.1032 0.9700 

5 0.1903 0.9195 0.1627 0.9413 

6 0.2174 0.9122 0.1674 0.9560 

7 0.2547 0.8927 0.2178 0.9403 

8 0.2950 0.8707 0.2391 0.9071 

9 0.4088 0.7829 0.3702 0.8302 

10 0.5205 0.7707 0.5169 0.7780 

 

We used the optimal HP-GRU model, the first model, for comparison with other state-of-the-
art methods. For comparison, we used DFNN with Weight Sharing [26], DFNN (3 Hidden 
Layers) [26], FNN (1 Hidden Layer) [26], Gated Recurrent Unit (GRU) [26], and Long Short 
Term Memory (LSTM) [26]. The comparison is shown in Table 6. It shows that HP-GRU has 
higher accuracy of 0.9857 and a lower loss of 0.0810 as compared to other methods. 

Table 6.  Additional Hyper Parameters 

Metrics HP-GRU  DFNN [26] 
(Shared Weights) 

DFNN [26] 
(3 Hidden Layer) 

FNN [26] 
(1 Hidden Layer) 

GRU [26] LSTM [26] 

Accuracy 0.9857 0.9680 0.9250 0.9010 0.9652 0.9615 

Loss 0.0810 0.0990 0.1018 0.1089 0.0989 0.0995 

5. Conclusion 

In this paper, we presented an optimally configured Gated Recurrent Unit (GRU) model with 
a hyperband algorithm to design the control framework of the wall-following robot. GRU is a 
variant of RNN networks used for time-series or sequence data. With the help of hyperband, 
we selected the optimal configuration of hyper-parameters of our GRU model. The proposed 
HP-GRU model is used on a dataset of SCITOS G5 robots with 24 sensors mounted. There are 
four decision classes, i.e., Slight-Right-Turn = 0, Move-Forward = 1, Forward, Sharp-Right-Turn 
= 2, and Slight-Left-Turn = 3, and the dataset is normalized before the training. The results 
show that HP-GRU has a mean accuracy of 0.9857 and a mean loss of 0.0810, and it is 
comparable with other deep learning algorithms. 
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