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 This paper addresses the problem of improving speed control 

accuracy and disturbance rejection capability for Permanent Magnet 

Synchronous Motors (PMSMs), which are widely used in industrial 

applications requiring high-performance drives. Conventional 

controllers such as PID often exhibit limited performance under 

nonlinear and time-varying conditions. The sliding mode control 

combined with a Radial Basis Function Neural Network (RBFNN) 

is proposed to enhance robustness and adaptability to overcome 

these limitations. The main contribution of this study is the 

integration of an adaptive RBFNN to estimate and compensate for 

unknown disturbances in real time, ensuring precise and stable 

motor operation. The theoretical stability of the system is guaranteed 

based on Lyapunov’s theory. The proposed method is implemented 

in a MATLAB/Simulink environment and tested on the OPAL-RT 

OP5707XG real-time hardware platform. The control system 

includes a speed loop using the RBFNN and a current loop for field-

oriented control. The motor is subjected to varying speed commands 

in three stages to evaluate performance under dynamic conditions. 

Simulation results show that the RBFNN controller significantly 

improves speed tracking accuracy, reduces overshoot, and adapts 

better to sudden changes compared to conventional PID control. 

Real-time experimental results further confirm the effectiveness of 

the controller, despite the presence of noise and hardware delays. 

Current control performance also demonstrates better torque 

production and phase symmetry under dynamic loading with the 

RBFNN. A comparative analysis between simulation and 

experimental data highlights the practical applicability of the 

proposed approach. 
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1. Introduction 

The demand for electric vehicles (EVs) is increasing to meet the requirements of sustainable 

development and environmental impact reduction. Carbon dioxide (CO₂) and nitrogen oxides (NOₓ) 

emissions from fossil fuel vehicles not only negatively affect the environment but also cause many 

serious problems for human health. Compared with traditional motors in industrial applications, 

motors used in electric vehicles need to be able to flexibly adjust their speed to adapt to diverse 

operating conditions such as starting, stopping, accelerating, braking, and decelerating quickly and 

accurately. Among current motor technologies, permanent magnet synchronous motors (PMSMs) 

stand out with superior features such as high torque at low speeds, high power density, superior 

efficiency, low vibration and noise, and high reliability [1]. An effective EV drive system needs to 

ensure precise torque management to improve dynamic performance, safety, longevity, durability, and 

optimize the cost-performance ratio for users [2]. Meanwhile, traditional direct current (DC) motors 

exhibit many limitations, such as low efficiency, large weight, and poor reliability due to the existence 

of commutators and brushes. Although simple in design and suitable for low-speed applications, DC 

motors require high maintenance costs and have difficulty in precise control at low speeds [3]. 

Switched Reluctance Motor (SRM) is another notable option with a simple structure, high starting 

torque, good performance, and high reliability. However, the disadvantages of SRM are high noise 

and high torque ripple [4]. Meanwhile, induction motors (IMs) are widely used in EVs due to their 

high reliability, low noise, easy maintenance, and stable operation at high speeds, but require more 

complex control. Brushless DC motors (BLDCs) and PMSMs have similar structures; the main 

difference lies in the stator current waveform: BLDCs use trapezoidal waves while PMSMs use sine 

waves. As a result, PMSMs provide higher efficiency, greater power density, and lower torque ripple 

than other types of motors, making them the optimal choice for high-performance applications in EVs 

[5]-[7]. 

In most PMSM motor control applications, two common global control strategies are 

implemented: Direct Torque Control (DTC) and Field Oriented Control (FOC). DTC has a simpler 

control structure, which is implemented based on two discrete on/off hysteresis controllers to regulate 

the stator torque and flux. However, the main drawback of DTC is that it causes significant torque and 

current fluctuations, which negatively affect the overall performance of the PMSM drive system [8], 

[9]. In contrast, FOC is implemented as a series of hierarchical control structures, in which the outer 

control loop (open loop – OL) performs speed control and sets the q-axis current setpoint, while the 

d-axis current setpoint is usually maintained at zero to optimize torque. The inner control loop (closed 

loop – IL) precisely regulates the d–q current through the corresponding voltage control, in order to 

achieve linear control characteristics similar to those in conventional DC systems. Current and speed 

controllers in FOC often use proportional–integral (PI) controllers due to their simplicity and good 

tunability under nominal operating conditions. However, PI controllers are often limited in 

performance in nonlinear situations, primarily when the motor operates far from the design operating 

point. The main reasons come from changes in system parameters (such as reactance, time constant) 

and the impact of load torque disturbances [10], [11]. These significant challenges require effective 

handling to ensure accurate and stable control of the PMSM drive system. In studies [12], the authors 

proposed applying genetic algorithms to optimize the initial parameters of the FOPID controller. 

Although it brings certain efficiency in the initialization stage, this method shows limitations when 

deployed in a volatile environment, because the genetic algorithm only stops at determining the initial 

optimal parameter set without performing online correction during operation. Therefore, when the 

system is subjected to uncertain factors, it becomes difficult to maintain the desired stability and 

accuracy. 

Due to the nonlinear nature and complex dynamic characteristics, the application of traditional 

linear control techniques to achieve optimal control performance for permanent magnet synchronous 

motors (PMSMs) is challenging. The main difficulties include inherent nonlinearity, high sensitivity 

to noise, and torque variation, which significantly affect the performance and accuracy of the control 

system. In response to this situation, many nonlinear control strategies have been developed to 
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improve the controllability of PMSMs under variable and uncertain working conditions. Nonlinear 

control methods include: Model Predictive Control (MPC) [13], Fuzzy Logic Control [14], Active 

Disturbance Rejection Control (ADRC) [15], [16], and Data-Driven Event-Triggered Adaptive 

Dynamic Programming Control [17], [18]. These methods are often used in cases where the 

mathematical model of the system is incomplete or inaccurate. In studies [19], [20], the parameter 

optimization problem of fuzzy controllers has been mentioned to improve control accuracy. However, 

a standard limitation of this method is that it requires the designer to deeply understand the system's 

characteristics and behavior to build a compatible and efficient controller. Moreover, during operation, 

the appearance of uncertain parameters that are difficult to predict in advance makes the design of a 

fixed controller less suitable. Therefore, developing controllers that can learn and adapt from errors is 

extremely necessary. 

Many advanced control methods have been studied to overcome the above limitations, including 

adaptive control [21], [22], robust control [23], sliding mode control (SMC) [24], [25], de-noising 

control [26], as well as disturbance observation and estimation techniques [27], [28]. Among them, 

SMC – developed from the theory of variable structure control systems (VCS)-is evaluated to be 

outstanding due to its ability to tolerate parameter uncertainty, high noise immunity, and fast response 

time [29]-[35]. However, SMC still has some limitations in practical applications, mainly due to 

“chattering” – high-frequency oscillations that cause hardware wear and affect the system's stability. 

In addition, this method also requires an accurate mathematical model with complete information 

about physical parameters, making the implementation complicated [36], [37]. Many solutions have 

been proposed to reduce chattering, such as redesigning the sliding surface, replacing the sign function 

with a saturation function, or combining it with other soft control techniques [38]-[41]. Recently, 

fractional-order sliding mode control (SMC) has also received attention to improve performance and 

expand the design space by adding more degrees of freedom in the control structure [42]-[44]. Thanks 

to its simplicity in implementation, high anti-interference ability, and suitability for harsh operating 

environments, SMC is still considered one of the preferred solutions for PMSM control systems 

requiring high precision and robustness [45]-[51]. 

In order to simultaneously exploit the advantages of SMC and overcome the above limitations, 

this study integrates adaptive control technology into SMC to ensure both response speed and 

sustainability, as well as the ability to self-adjust parameters. In addition, modern control methods 

based on artificial neural networks (ANNs) have also received significant attention in recent years, 

thanks to their ability to approximate arbitrary nonlinear functions and high flexibility in system 

modeling [52]-[55]. A prominent approach is the disturbance-aware control strategy using the Radial 

Basis Function Neural Network (RBFNN) [54]. Due to its global learning properties and high 

adaptability, RBFNN is particularly suitable for handling nonlinear, unmodeled uncertainties and 

external disturbances in control systems such as electric drives and robot control. Furthermore, 

controllers combining RBFNN and online learning algorithms have shown great potential in 

improving control performance through the ability to update parameters in real time, ensuring 

convergence and fast response in changing environments [54]-[62]. These characteristics make 

RBFNN a prominent research trend in intelligent control strategies, especially in the context of 

increasingly complex, nonlinear and noise-sensitive systems. 

1. The SMC ensures robustness, fast response, and system stability under parameter uncertainties 

and external disturbances. Béides, the RBFNN is designed to estimate and compensate for the 

total unknown disturbance in real time. 

2. The RBFNN is designed to estimate the total unknown nonlinear disturbance, including external 

load torque and uncertainties existing in the system. In addition, RBFNN also contributes 

effectively to reducing the chattering phenomenon on the sliding surface. 

3. The experiments are carried out in two environments: simulation on Simulink and Real-time on 

the OPAL-RT platform, to verify the feasibility of the proposed theory. 
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The rest of the paper is organized as follows. The mathematical model of the permanent magnet 

synchronous motor (PMSM) is presented in Section 2. Section 3 introduces the proposed controller in 

detail. Experiments to verify the effectiveness of the control scheme are carried out in Section 4. 

Finally, Section 5 provides the conclusions of the study. 

2. Mathematical Model of PMSM Drive Systems 

The model of the PMSM can be represented in the (d–q) coordinate system through the Park 

transformation, with the stator voltage equations on the d–axis and q–axis in the rotor reference frame 

as follows [63]-[64]: 

 

{
𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑

𝑑𝑖𝑑
𝑑𝑡

− 𝜔𝑒𝜆𝑞

𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞
𝑑𝑖𝑞
𝑑𝑡

+ 𝜔𝑒𝜆𝑑

 (1) 

where 𝜆𝑞 = 𝐿𝑞𝑖𝑞, 𝜆𝑑 = 𝐿𝑑𝑖𝑑 + 𝜑𝑓; 𝑖𝑑 and 𝑖𝑞 are the d–q axis currents, 𝑢𝑑 and 𝑢𝑞 are the d–q axis 

voltages, 𝑅𝑠 is the stator resistance, 𝐿𝑞 = 𝐿𝑑 = 𝐿 is the stator inductor, 𝜑𝑓 is the rotor flux linkage 

and 𝜔𝑒 is the electric angular speed. The equation describing the PMSM drive system motor according 

to the rotor is defined as follows [65]: 

 

{
  
 

  
 

𝑑𝑖𝑑
𝑑𝑡

= −
𝑅𝑠
𝐿
𝑖𝑑 + 𝑛𝑝𝜔𝑚𝑖𝑞 +

𝑢𝑑
𝐿

𝑑𝑖𝑞
𝑑𝑡

= −𝑛𝑝𝜔𝑚𝑖𝑑 −
𝑅𝑠
𝐿
𝑖𝑞 −

𝑛𝑝𝜑𝑓

𝐿
𝜔𝑚 +

𝑢𝑞
𝐿

𝑑𝜔𝑚
𝑑𝑡

=
𝐾𝑡
𝐽
𝑖𝑞 −

𝐵

𝐽
𝜔𝑚 −

𝑇𝐿
𝐽

 (2) 

where 𝜔𝑚 =
𝜔𝑒

𝑛𝑝
 is the rotor angular speed, 𝑛𝑝 is the pole pairs, 𝐽 is the rotor moment of inertia, 𝐵 is 

the viscousfriction coefficient, 𝑇𝐿 is the load torque. 𝐾𝑡 = 1.5𝑛𝑝𝜑𝑓 is the torque constant. The 

mathematical model describing the dynamics of PMSM is formulated as: 

 𝐽𝜔̇𝑚 = 𝑇𝑒 −𝐵𝜔𝑚 − 𝑇𝐿 (3) 

where 𝑇𝑒 =
3

2
𝑛𝑝𝑖𝑞[𝑖𝑑(𝐿𝑑 − 𝐿𝑞) + 𝜑𝑓] =

3

2
𝑛𝑝𝜑𝑓𝑖𝑞 = 𝐾𝑡𝑖𝑞 is the electromagnetic torque. However, 

variations in the operating environment can cause deviations in parameters such as rotational inertia, 

rotor flux, and viscous friction coefficient, so the dynamic equation is adjusted to reflect these 

uncertainties as follows: 

 𝐽0𝜔̇𝑚 + 𝛥𝐽𝜔̇𝑚 = (𝐾𝑡0𝑖𝑞 + 𝛥𝐾𝑡𝑖𝑞) − (𝐵0𝜔𝑚 + 𝛥𝐵𝜔𝑚) − 𝑇𝐿 (4) 

where 𝐵0, 𝐾𝑡0, and 𝐽0 denote the nominal values of the viscous friction coefficient, torque constant, 

and moment of inertia, respectively. The terms 𝛥𝐵, 𝛥𝐾𝑡, and 𝛥𝐽 represent the corresponding 

deviations from these nominal values, accounting for possible uncertainties or variations in the 

system's physical properties. Considering the discrepancies between actual and nominal parameters, 

the dynamic equation (4) can be simplified as follows: 

 
𝜔̇𝑚 = −

𝐵0
𝐽0
𝜔𝑚 +

𝐾𝑡0
𝐽0
𝑖𝑞 − 𝑑 (5) 

where 𝑑 =
(𝛥𝐽𝜔̇𝑚−𝛥𝐾𝑡𝑖𝑞+𝛥𝐵𝜔𝑚+𝑇𝐿)

𝐽0
 represents the combined effect of parameter mismatch and load 

moment, which is considered as the sum of all disturbances existing around the system. However, in 

practice, these disturbance and uncertainty components are often not known accurately. Therefore, 
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this study proposes to use the RBFNN controller to estimate and compensate for the uncertainty 

components existing around the system to improve the accuracy and stability of the control system. 

3. Controllers Design  

Improving the control accuracy and performance of the system during operation is achieved by 

designing an RBFNN controller that acts as a nonlinear compensator to estimate and suppress the total 

disturbances affecting the PMSM system. The sliding surface is presented in [66] as follows: 

 
𝑠 = 𝑒 + 𝑐1∫ 𝑒

𝑡

0

𝑑𝜏 (6) 

where 𝑒 = 𝜔𝑚
𝑟𝑒𝑓

−𝜔𝑚 is the speed error, 𝜔𝑚
𝑟𝑒𝑓

 is the reference speed and 𝑐1 ≥ 1 is the integral gain. 

The derivative of Eq. (6) with respect to 𝑠 is: 

 𝑠̇ = −𝑐2𝑠 − 𝜇𝑠𝑖𝑔𝑛(𝑠) (7) 

where 𝑐2 ≥ 1 is identified as the amplification factor, and 𝜇 is a positive constant that adjusts the gain 

of the sliding mode control. The result of derivative both sides of Eq. (6) is: 

 
𝑠̇ = 𝑒̇ + 𝑐1𝑒 = 𝜔̇𝑚

𝑟𝑒𝑓
−
𝐾𝑡0
𝐽0
𝑖𝑞 +

𝐵0
𝐽0
𝜔𝑚 + 𝑑 + 𝑐1𝑒 (8) 

By defining 𝑑 as the total disturbance and substituting Eq. (6) into Eq. (7), the resulting ideal 

control can be designed as follows: 

 
𝑖𝑞
𝑟𝑒𝑓

=
𝐽0
𝐾𝑡0

[𝜔̇𝑚
𝑟𝑒𝑓

+
𝐵0
𝐽0
𝜔𝑚 + 𝑐1𝑒 + 𝑐2𝑠 + 𝑑 + 𝜇𝑠𝑖𝑔𝑛(𝑠)] (9) 

where 𝑖𝑞
𝑟𝑒𝑓

 is the 𝑞 − 𝑎𝑥𝑖𝑐 reference current. 

Proof. The Lyapunov function is defined as follows: 

 𝑉 = 𝑠2 (10) 

Derivative of Eq. (10): 

 
𝑉̇ =

1

2
𝑠𝑠̇ 

𝑉̇ =
1

2
𝑠(𝑒̇ + 𝑐1𝑒) 

𝑉̇ =
1

2
𝑠 (𝜔̇𝑚

𝑟𝑒𝑓
−
𝐾𝑡0
𝐽0
𝑖𝑞 +

𝐵0
𝐽0
𝜔𝑚 + 𝑑 + 𝑐1𝑒) 

𝑉̇ =
1

2
𝑠 [𝜔̇𝑚

𝑟𝑒𝑓
−
𝐾𝑡0
𝐽0

𝐽0
𝐾𝑡0

(𝜔̇𝑚
𝑟𝑒𝑓

+
𝐵0
𝐽0
𝜔𝑚 + 𝑐1𝑒 + 𝑐2𝑠 + 𝜇𝑠𝑖𝑔𝑛(𝑠)) +

𝐵0
𝐽0
𝜔𝑚 + 𝑑 + 𝑐1𝑒] 

𝑉̇ =
1

2
𝑠 [𝜔̇𝑚

𝑟𝑒𝑓
− 𝜔̇𝑚

𝑟𝑒𝑓
−
𝐵0
𝐽0
𝜔𝑚 − 𝑐1𝑒 − 𝑐2𝑠 − 𝜇𝑠𝑖𝑔𝑛(𝑠) +

𝐵0
𝐽0
𝜔𝑚 + 𝑑 + 𝑐1𝑒] 

𝑉̇ =
1

2
𝑠[−𝑐2𝑠 − 𝜇𝑠𝑖𝑔𝑛(𝑠) + 𝑑] 

(11) 

Assuming 𝜇 ≥ 𝑑, Eq. (11) can be rewritten as follows: 

 
𝑉̇ = −

1

2
𝑐2𝑠

2 −
1

2
𝑠𝜇|𝑠| + 𝑑 ≤ −

1

2
𝑐2𝑠

2 −
1

2
𝜇𝑠2 ≤ 0 (12) 

Remark. In Eq. (12), the amplification factor 𝜇 must be greater than the total disturbance 𝑑 to 

guarantee system stability. Nonetheless, due to the nonlinear nature and uncertainty of 𝑑, selecting an 
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appropriate 𝜇 becomes challenging. A small 𝜇 may lead to system instability, whereas an excessively 

large 𝜇 may induce chattering phenomena. it is essential to estimate and compensate for the 

disturbance 𝑑, thereby allowing the use of a smaller 𝜇 that still maintains system stability and 

effectively mitigates chattering. Therefore, an adaptive RBFNN is designed in this subsection to 

estimate and compensate for the total online perturbation, allowing the use of a smaller gain factor 𝜇 

while still ensuring system stability and reducing chattering. 

The structure of the RBFNN is illustrated in Fig. 1. The RBF network consists of an input layer 

𝑥̱ =  [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇, a hidden layer 𝐻(𝑥̱) =  [ℎ1, ℎ2, … , ℎ𝑚]

𝑇, a weight vector 

𝑊 =  [𝑤1, 𝑤2, … , 𝑤𝑚]
𝑇, and an output layer 𝑦. In this study, the RBFNN is employed to approximate 

the unknown total disturbance 𝑑. Consequently, the input of the RBFNN selected as 𝑥 = [𝑒, 𝑒𝑖,𝑞]
𝑇, 

where 𝑒𝑖,𝑞 = 𝑖𝑞
𝑟𝑒𝑓

− 𝑖𝑞 represents the 𝑞 − 𝑎𝑥𝑖𝑡 current tracking error. In order to balance the trade-

off between approximation accuracy and computational complexity, the number of neurons 𝑗 in the 

hidden layer is set to 5. Each neuron uses a Gaussian activation function, with a center vector 𝒄𝑗 =

[𝑐1𝑗, 𝑐2𝑗]
𝑇

 and widths 𝑏𝑗 of the Gaussian function. 

Input 

Layer

Hidden 

Layer

Output 

Layer

5
w

2
w

1
w1

x

2
x

 
  

 

Fig. 1. Structure of radial basis function neural network 

 
ℎ𝑗 = 𝑒𝑥𝑝(−

‖𝒙̱ − 𝒄𝑗‖
2

2𝑏𝑗
2 ) , 𝑗 = 1,2,… ,5 (13) 

The RBF neural network is used to approximate the total disturbance 𝑑, where 𝑑 can be 

represented as follows: 

 𝑑 = 𝑊∗𝑇𝐻(𝑥̱) + 𝜀 (14) 

where 𝜀 is the approximate error, 𝑊∗𝑇 = [𝑤1
∗, 𝑤2

∗, … , 𝑤5
∗] is the ideal weight matrix. An online 

adaptive method is proposed to adjust the weight matrix 𝑊, aiming at achieving the ideal weight 

matrix 𝑊∗. Then, the output of the real-time neural network can be represented as follows: 

 𝑑̂ = 𝑊̂𝑇𝐻(𝑥̱) (15) 

where 𝑑̂ is an approximation of the total disturbance 𝑑, and 𝑊̂𝑇 = [𝑤̂1, 𝑤̂2, … , 𝑤̂5] is the adaptive 

weight matrix. The weight adaptation law 𝑊̇̂𝑇 = [𝑤̇̂1, 𝑤̇̂2, … , 𝑤̇̂5] is expressed as follows: 
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 𝑊̇̂ = 𝜂𝑠𝐻(𝑥̱) (16) 

where 𝜂 > 0 is gain factor, and 𝑠 is the sliding surface Eq. (6). When the approximate value of the 

total disturbance 𝑑̂ is inserted into Eq. (9), the control expression is obtained as follows: 

 
𝑖𝑞
𝑟𝑒𝑓

=
𝐽0
𝐾𝑡0

[𝜔̇𝑚
𝑟𝑒𝑓

+
𝐵0
𝐽0
𝜔𝑚 + 𝑐1𝑒 + 𝑐2𝑠 + 𝑑̂ + 𝜇𝑠𝑖𝑔𝑛(𝑠)] (17) 

Proof. The Lyapunov function is defined as follows: 

 
ℒ =

1

2
𝑠2 +

1

2𝜂
𝑊̃𝑇𝑊̃ (18) 

where 𝑊̃ = 𝑊∗ − 𝑊̂. The derivative of Eq. (18) yields the following result: 

 
ℒ̇ = 𝑠𝑠̇ +

1

𝜂
𝑊̃𝑇𝑊̇̃ = 𝑠 [𝜔̇𝑚

𝑟𝑒𝑓
−
𝐾𝑡0
𝐽0
𝑖𝑞 +

𝐵0
𝐽0
𝜔𝑚 + 𝑑 + 𝑐1𝑒] −

1

𝜂
𝑊̃𝑇𝑊̇̃ (19) 

When applying control law Eq. (17) to Eq. (19), the expression obtained is as follows: 

 ℒ̇ = 𝑠𝑠̇ +
1

𝜂
𝑊̃𝑇𝑊̇̃ = 𝑠 [𝜔̇𝑚

𝑟𝑒𝑓
−
𝐾𝑡0
𝐽0
𝑖𝑞 +

𝐵0
𝐽0
𝜔𝑚 + 𝑑 + 𝑐1𝑒] −

1

𝜂
𝑊̃𝑇𝑊̇̃ 

ℒ̇ = 𝑠 [𝜔̇𝑚
𝑟𝑒𝑓

−
𝐾𝑡0
𝐽0

𝐽0
𝐾𝑡0

(𝜔̇𝑚
𝑟𝑒𝑓

+
𝐵0
𝐽0
𝜔𝑚 + 𝑐1𝑒 + 𝑐2𝑠 + 𝑑̂ + 𝜇𝑠𝑖𝑔𝑛(𝑠)) +

𝐵0
𝐽0
𝜔𝑚 + 𝑑 + 𝑐1𝑒] −

1

𝜂
𝑊̃𝑇𝑊̇̃ 

ℒ̇ = 𝑠[−𝑐2𝑠 − 𝑑̂ − 𝜇𝑠𝑖𝑔𝑛(𝑠) + 𝑑] −
1

𝜂
𝑊̃𝑇𝑊̇̃ 

(20) 

Substituting the expressions in Eq. (14) and Eq. (15) into Eq. (20), the resulting expression is as 

follows: 

 
ℒ̇ = 𝑠[−𝑐2𝑠 − 𝑊̂

𝑇𝐻(𝑥̱) − 𝜇𝑠𝑖𝑔𝑛(𝑠) +𝑊∗𝑇𝐻(𝑥̱) + 𝜀] −
1

𝜂
𝑊̃𝑇𝑊̇̃ 

ℒ̇ = 𝑠[−𝑐2𝑠 − 𝜇𝑠𝑖𝑔𝑛(𝑠) + 𝑊̃
𝑇𝐻(𝑥̱) + 𝜀] −

1

𝜂
𝑊̃𝑇𝑊̇̃ 

ℒ̇ = 𝑊̃𝑇 [𝑠𝐻(𝑥̱) −
1

𝜂
𝑊̇̃] − 𝑠[−𝑐2𝑠 − 𝜇𝑠𝑖𝑔𝑛(𝑠) + 𝜀] 

(21) 

Finally, applying the weight adaptation law Eq. (16) to Eq. (21) leads to the following expression: 

 ℒ̇ = 𝑊̃𝑇[𝑠𝐻(𝑥̱) − 𝑠𝐻(𝑥̱)] + 𝑠[−𝑐2𝑠 − 𝜇𝑠𝑖𝑔𝑛(𝑠) + 𝜀] 
ℒ̇ = 𝑠[−𝑐2𝑠 − 𝜇𝑠𝑖𝑔𝑛(𝑠) + 𝜀] ≤ −𝑐2𝑠

2 ≤ 0 
(22) 

From Eq. (22), it can be observed that −𝑐2𝑠
2 ≤ 0. Therefore, the system achieves global 

asymptotic stability, with 𝑠 → 0 and 𝑒 → 0 as 𝑡 → ∞.  

Fig. 2 illustrates a PMSM drive system based on rotor FOC, which consists of a speed control 

loop and two current control loops. Setting the d-axis reference current 𝑖𝑑
∗  to zero allows for achieving 

the optimal speed-to-current ratio and ensuring decoupling between current and speed control. PI 

controllers are implemented in the two current loops to suppress the d-q-axis current error and 

maintain system stability. The proposed control method is applied to the speed control loop in the 

PMSM drive system in this study.  

4. Simulation and Real-Time Implementation Results 

In this section, the experiments are conducted in two stages: simulation and real-time control on 

the OPAL-RT 5707 system. The aim is to evaluate the efficiency and reliability of the proposed 
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controller under different operating conditions. The parameters of the PMSM model used in the 

experiments are presented in Table 1, corresponding to the parameters described in Section 2. 
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Fig. 2. An illustration of the control block diagram corresponding to the proposed method for PMSM 

Table 1.  PMSM parameters used in the experiment 

Parameter Value 

Moment of inertia (𝐵) 3.5 × 10−4𝑘𝑔 ⋅ 𝑚2 

Viscous damping coefficient (𝐵) 7.21 × 10−5𝑁 ⋅ 𝑚 ⋅ 𝑠/𝑟𝑎𝑑 

Stator resistance (𝑅) 1𝛺 

Stator inductor (𝐿) 6.25 × 10−3𝐻 

Permanent magnet flux (𝜑𝑓) 0.32𝑊𝑏 

Number of pole-pairs (𝑛𝑝) 4 

 

The parameters of the radial basis function neural network (RBFNN) are determined based on 

the synthesis of practical experience and previous research results of the authors in this field, to ensure 

suitability with the characteristics of the control object. RBFNN parameters used in the experiment 

shown in Table 2. 

4.1. Simulation Results 

The controlled object is a permanent magnet synchronous motor (PMSM) to evaluate the speed 

tracking ability of the system when applying the designed controller. The reference speed signal is set 

up in three stages: from 0 to 4 seconds, the speed increases from 0 to about 500 rpm and remains 

stable; from 4 to 7 seconds, the speed is increased rapidly to about 1250 rpm and maintained; from 7 

to 10 seconds, the speed decreases to about 750 rpm. The model is built in the MATLAB/Simulink 

environment, including both the control block and the PMSM motor model. The controller used in the 

simulation is a previously designed RBFNN controller to ensure the ability to track the reference speed 

quickly, accurately, and stably. The actual speed signal of the motor in the simulation environment is 

recorded and compared with the reference signal to evaluate the control error, response time and 
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stability of the system. In addition, the current, control voltage, and electromagnetic torque signals are 

also recorded to analyze the characteristics of the motor when operating under the impact of speed 

changes. 

Table 2.  RBFNN parameters used in the experiment 

Parameter Value 

𝑛𝑗  5 

𝜂 0.5 

𝒄 [-1 1] 

𝑏 1.2 

 

Fig. 3 shows the motor speed response over time and the corresponding speed tracking error 

between the actual signal and the reference signal for two control methods: the conventional PID and 

the RBFNN controller. In Fig. 3 (a), both controllers track the reference signal quite well for most of 

the time. However, the RBFNN exhibits better tracking accuracy at many critical times, especially 

during fast transients such as the initial acceleration (t = 0–0.2 s), sudden speed changes (𝑡 = 3.5𝑠 and 

𝑡 = 7.5𝑠), and deceleration (𝑡 = 7.5𝑠 − 10𝑠). The zoomed-in plots clearly show that the RBFNN 

significantly improves the tracking and reduces overshoot compared to the PID. Fig. 3 (b) clearly 

shows the difference in tracking error between the two methods. While both maintain small errors 

during steady-state periods, the PID controller struggles during periods of abrupt speed changes, 

typically at t = 6 s, when the error spikes and takes a long time to stabilize. In contrast, the RBFNN 

generates only a small error pulse and quickly returns to steady state, demonstrating superior 

adaptability to changing operating conditions. 

Fig. 4 presents a detailed comparison of the current control performance between the PID and 

RBFNN controllers in both the synchronous rotating (a) and three-phase stator (b) reference frames. 

In the top left sub-plot, the direct shaft current 𝑖𝑑 is expected to remain at or near zero under ideal 

field-oriented control to minimize core losses. Both controllers attempt to track this condition; 

however, the RBFNN exhibits higher ripple and noise in the 𝑖𝑑 response than the PID controller. This 

may be due to the adaptive nature of the RBFNN in estimating model uncertainty. The lower-left 

subplot shows the quadrature-axis current 𝑖𝑞, which directly relates to the electromagnetic torque 

production. The RBFNN controller demonstrates superior tracking accuracy, especially during the 

dynamic load change around 𝑡 = 6𝑠, with faster convergence and smaller steady-state error than the 

PID. This indicates that the RBFNN more effectively compensates for nonlinearities and time-varying 

disturbances in the system. 

(a) Motor speed response (b) Speed tracking error  

Fig. 3. Comparison of speed control performance between PID and RBFNN controllers 

Fig. 4 (b) shows the three-phase stator current 𝑖𝑎𝑏𝑐 controlled by the RBFNN-based current 

controller. During the low-current steady-state period around 𝑡 = 1𝑠, the current amplitude is small 

and exhibits slight oscillations and phase shifts, which are attributed to the initial adaptive phase of 

the RBFNN. During the transient period near 𝑡 = 3.5𝑠, the current waveform shows increased high-
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frequency components, indicating the presence of nonlinear adaptive compensation as the system 

responds to load changes. Despite this, the amplitude and symmetry of the waveform are still 

acceptable. It is worth noting that during high load steady-state operation at around 𝑡 = 6𝑠, the current 

achieves a clean sinusoid with appropriate phase separation, confirming that the RBFNN has fully 

adapted and stabilized the current injection process. 

(a) Direct-axis current and Quadrature-axis current (b) Three-phase stator currents of  RBFNN  

Fig. 4. Current control performance using the RBFNN controller 

4.2. Real-Time Implementation Results 

In this case, the author used the Real-Time Digital Simulator Flagship OP5707XG system (shown 

Fig. 5) to simulate and control PMSM in real time, as in the previous section. This is a high-end real-

time hardware device developed by OPAL-RT, equipped with a powerful 8-core Intel Xeon processor, 

integrated Xilinx Kintex-7 FPGA, and supporting flexible I/O connections, meeting the requirements 

in industrial control research and application. Thanks to its superior computing power and low latency, 

OP5707XG allows for the efficient implementation of the proposed control algorithms. Therefore, the 

author chose this tool to verify the stability of the proposed control method in a real-time environment, 

thereby creating a premise to get closer to practical applications. 

Fig. 6 illustrates the speed tracking results of the PMSM motor in both simulation and real-time 

experiments. In Fig. 6 (a), it can be seen that the actual speeds achieved in both cases closely follow 

the reference signal over the three speed change stages. However, some small deviations still appear 

at the speed change times, in which the error in real-time experiments is more obvious due to the 

impact of noise and hardware delay. Fig. 6 (b) shows that the amplitude of the speed error in 

experiments is larger than that in simulation, especially noticeable at around 6 seconds. This reflects 

the difference between the ideal simulation environment and the actual operating conditions. 

However, the error is still within an acceptable limit, confirming that the proposed controller operates 

effectively in both simulation and real-time experiments. 

Fig. 7 shows a comparison of the three-phase current 𝑖𝑎𝑏𝑐 of the PMSM motor in two cases: (a) 

real-time experiment on OPAL-RT hardware and (b) simulation in a virtual environment. In both 

cases, the current has a clear change through three stages corresponding to the load change. In the first 

stage (0 − 3𝑠), the current fluctuates with a small amplitude due to the inertia of the system which is 

accurately simulated in the device in real time. When entering the middle stage (3𝑠 − 6.5𝑠), the 

amplitude increases significantly, the current signal has a clearer sinusoidal shape, indicating that the 

system has reached a more stable operating mode. The last stage (6.5𝑠 − 10𝑠) is the stage of load 

existence appearing from 𝑡 = 6𝑠, the current increases sharply in amplitude in both cases; however 

the simulation has a more ideal waveform and less noise than the experiment. Notably, the zoomed-

in images reveal the detailed difference: the simulated current signal is nearly ideal with a balanced 

three-phase sinusoidal waveform, while the experimental data is affected by real noise and hardware 

errors. 

4.3. Comparison Results of Methods when Implementing Real-Time 

In order to confirm the effectiveness of the proposed method, the author conducted a comparative 

study with typical controllers, including PID, FOPID, and FOPID optimized by the PSO algorithm. 
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The test scenarios were selected similarly to the previous sections, to ensure objectivity and 

transparency in the evaluation process. The comparison results will show apparent differences 

between the methods and highlight the superiority of the controller based on the proposed theory. 

 

Fig. 5. Real-Time digital simulator flagship OP5707XG system 

(a) Motor speed response (b) Speed tracking error  

Fig. 6. Speed response and speed error of PMSM in both simulation and real-time experiments 

(a) Real-time (b) Simulator  

Fig. 7. Comparison of three-phase stator current between real time and simulation 

Observing Fig. 8 clearly shows the difference in the response of the controllers. The PID 

controller has a reasonably fast response speed, but oscillations and errors appear at some stages, as 

zoomed in the figure, especially when the system changes the desired value. FOPID helps improve 

the accuracy, but the stabilization speed is not optimal. When FOPID is optimized with PSO, the 

control quality is significantly improved: the error is reduced, the response is smoother than pure PID 

and FOPID, but there is still a small oscillation phenomenon in the transition region. Meanwhile, the 

RBFNN controller (red line) shows superior performance. The response curve closely follows the 

reference signal at most stages, the transition oscillation is small, and the steady-state error is almost 
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zero. In the zoomed regions, RBFNN demonstrates a clear advantage when it quickly converges to 

the desired value, limits oscillations, and maintains stability even when there is a sudden change in 

the desired value. 

 

Fig. 8. Speed response and speed error of PMSM in both simulation and real-time experiments 

Fig. 9 shows the system's speed error when using different controllers, including PID, FOPID, 

FOPID-PSO, and RBFNN. It can be observed that the PID controller (green line) maintains a larger 

error during the transient period and takes more time to converge to the desired value. FOPID (blue 

line) improves the error compared to PID, but still has significant oscillations when the system is 

subjected to disturbances or sudden changes. Optimizing FOPID with PSO (purple line) reduces 

oscillations and shortens the convergence time; however, the maximum error still appears clearly at 

the load change points. Meanwhile, the RBFNN controller (red line) performs better with significantly 

smaller maximum error amplitude, fast quenching time, and almost zero steady-state error. Especially 

when the system changes the reference value (about 3.5s and 7.5s), RBFNN gives the most stable 

response, quickly bringing the error back to near zero without causing prolonged oscillation. This 

demonstrates the RBF neural network's strong adaptive learning and generalization capabilities, 

helping the system maintain higher accuracy and stability than traditional control methods and 

algorithm-based optimization methods. 

 

Fig. 9. Speed response and speed error of PMSM in both simulation and real-time experiments 
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The Fig. 10 shows a quantitative comparison of the errors of the PID, FOPID, FOPID-PSO, and 

RBFNN controllers according to the indices 𝑒𝐴, 𝑒𝐵, 𝑚𝑠𝑒𝐴 and 𝑚𝑠𝑒𝐵. It can be clearly seen that the 

RBFNN consistently achieves the smallest error values in all four criteria, demonstrating its ability to 

reduce the overall error in both instantaneous and mean square values. In contrast, the PID and FOPID 

controllers have significantly higher errors, reflecting poor accuracy in tracking the output signal. The 

FOPID-PSO shows an improvement over the PID and FOPID, but still fails to achieve the low and 

stable error level of the RBFNN. This result is consistent with the speed response and error curves 

presented earlier: the RBFNN ensures fast and stable response and optimizes the error according to 

various criteria. 

 

Fig. 10. Speed response and speed error of PMSM in both simulation and real-time experiments 

5. Conclusion 

This paper presents an advanced sliding mode control (SMC) scheme integrated with a Radial 

Basis Function Neural Network (RBFNN) to enhance the precision and robustness of speed regulation 

for permanent magnet synchronous motors (PMSMs). In the proposed method, the RBFNN is 

designed to directly estimate and compensate for unknown nonlinearities and external disturbances in 

real time, thereby effectively suppressing chattering and improving the disturbance rejection 

capability of the SMC. The closed-loop stability of the control system is rigorously guaranteed through 

Lyapunov theory, ensuring reliable operation under parameter variations and load disturbances. 

To validate the feasibility and performance of the proposed approach, extensive simulations and 

real-time experiments were carried out on the OP5707XG hardware-in-the-loop platform. The 

comparative results against conventional PID, fractional-order PID (FOPID), and optimized FOPID-

PSO controllers clearly demonstrate that the RBFNN–SMC achieves faster transient response, 

reduced overshoot, smaller steady-state error, and superior robustness against sudden load changes. 

In particular, the error response curves indicate that the proposed controller maintains minimal error 

with rapid convergence, outperforming benchmark methods in dynamic and steady-state conditions. 

The results confirm that the proposed RBFNN–SMC ensures accurate and reliable PMSM speed 

regulation and provides a flexible framework that can be extended to current control and generalized 

to other motor drive systems. The novelty and significance of this work lie in the effective combination 
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of neural network learning capability with sliding mode robustness, offering a promising solution for 

high-performance drive applications requiring precision, adaptability, and resilience to disturbances. 
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