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1. Introduction  

Rigid link manipulators (RLMs) play a critical role in industrial, medical, and service robotics 

due to their structural stability, mechanical simplicity, and high precision [1], [2]. However, 
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 As robotic manipulators increasingly operate in dynamic and safety-critical 

environments, the need for intelligent control strategies that ensure 

adaptability, robustness, and real-time performance has become critical. 

While earlier reviews have addressed aspects of this domain, they often 

lacked systematic rigor, overlooked emerging hybrid and learning-based 
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controllers, which demonstrate enhanced adaptability in addressing 

nonlinear dynamics and uncertainties. However, most studies remain 

simulation-based, with limited real-world validation and reproducibility. 

Major research gaps include the lack of standardized benchmarking, 

insufficient explainability, and limited generalizability across application 

domains. These insights support the development of deployable, 

interpretable, and reliable robotic controllers, particularly for industrial 

automation and medical robotics, where transparency and safety are 

paramount. 
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controlling such manipulators under dynamic, nonlinear, and uncertain conditions remains a major 

challenge [3]-[5]. These systems often face actuator limitations, external disturbances, and unmodeled 

dynamics, which traditional control strategies—particularly Proportional–Integral–Derivative (PID) 

controllers—struggle to address [6], [7].  

In response, intelligent control methods have gained increasing attention. Approaches such as 

Fuzzy Logic Control (FLC), Artificial Neural Networks (ANNs), Sliding Mode Control (SMC), 

Reinforcement Learning (RL), and hybrid techniques aim to improve adaptability, fault tolerance, and 

performance under uncertainty [8]-[11] . Despite their promise, many existing reviews on this topic 

remain narrative in nature, lack systematic rigor, or fail to offer quantitative comparisons across 

control methods [12], [13]. 

Moreover, few reviews justify the exclusion of studies prior to 2016, despite their foundational 

role in the development of intelligent control systems. This study focuses on 2016–2024 because this 

period coincides with the rapid growth of reinforcement learning, deep neural networks, hybridization 

of classical and intelligent controllers, and the introduction of hardware-in-the-loop validation—

trends that were largely absent in earlier literature. 

To address this gap, the present study conducts a systematic review of intelligent control 

strategies applied to RLMs, covering 80 peer-reviewed articles published between 2016 and 2024. 

The review is conducted in accordance with PRISMA guidelines to ensure transparency, 

reproducibility, and comprehensiveness. 

The research contribution is a structured, comparative, and performance-oriented synthesis of the 

literature, including quality assessment, trend visualization, and identification of unresolved 

challenges such as benchmarking, reproducibility, and explainability, thereby bridging the gap 

between theoretical approaches and their real-world applicability in industrial and medical domains 
[14], [15]. 

While intelligent control techniques have become central to robotic manipulator research, the 

lack of a systematic and comparative synthesis has created ambiguity in selecting the most appropriate 

strategies for different application domains. Previous reviews often lack methodological transparency, 

overlook key performance indicators such as trajectory error, convergence time, or robustness scores, 

and fail to assess recent developments such as explainable AI and hardware-in-the-loop learning. 

This study fills that gap by offering a structured, PRISMA-compliant review with in-depth 

performance evaluation, quality assessment, and visualization of research trends [16], [17] . These 

findings aim to support academic researchers, robotics engineers, and system designers in selecting 

suitable intelligent control paradigms and fostering the development of reliable and adaptive robotic 

manipulators. 

Accordingly, this paper seeks to answer the following research questions: 

RQ1: What intelligent control strategies have been applied to RLMs from 2016 to 2024? 

RQ2: What trends exist in publication years, source types, and publishers? 

RQ3: How do various methods compare in terms of control performance (e.g., tracking accuracy, 

robustness, convergence), implementation complexity, and hardware validation? 

RQ4: What are the key research challenges that remain unresolved (e.g., reproducibility, 

benchmarking, explainability), and which future directions offer the most promising research 

avenues? 

By addressing these questions, this study aims to provide researchers with a consolidated 

understanding of the current landscape and a foundation for advancing reliable, real-time, and adaptive 

control solutions for robotic manipulators. 

To facilitate clarity and logical flow, the structure of this review is outlined as follows: Section 2 

describes the methodology adopted for the systematic review, including the PRISMA framework, 
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search strategy, inclusion and exclusion criteria, and quality assessment process. Section 3 presents 

the results of the review, including trends in publication years, source types, publisher distribution, 

citation analysis, and a comparative summary of 25 key studies. Section 4 discusses the major insights, 

strengths, and limitations of the reviewed approaches, while highlighting unresolved challenges and 

knowledge gaps. Section 4.5 outlines future research directions in intelligent control of RLMs, 

focusing on explainable AI, real-time learning, benchmarking, and simulation-to-reality transfer. 

Section 5 concludes the study by summarizing the key findings and their implications for advancing 

robust, adaptive, and intelligent robotic control systems. 

2. Method  

This section outlines the methodology adopted to conduct a systematic review of intelligent 

control techniques applied to rigid link manipulators (RLMs). The review process was guided by the 

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework to 

ensure methodological transparency, reproducibility, and rigor. The steps included defining eligibility 

criteria, executing a comprehensive search strategy across multiple databases, screening and selecting 

relevant studies, extracting data using predefined coding schemes, and evaluating study quality. The 

overall goal of the methodology is to ensure that the included studies are relevant, high-quality, and 

representative of the state of the art in intelligent control for RLMs. 

This review protocol was not registered in a public repository such as PROSPERO; however, all 

steps were predefined and adhered to systematically to reduce selection bias. A PRISMA flow diagram 

summarizing the article selection process is presented in Fig. 1. Automation tools for screening and 

data extraction were not used, as manual review was preferred to ensure contextual understanding of 

control strategies and their implementations. 

 

Fig. 1. PRISMA flow diagram of study selection 



1952 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 3, 2025, pp. 1949-1974 

 

 

M. Y. Alwardat (Intelligent Control of Rigid-Link Manipulators: A Systematic Review of Recent Advances and 

Future Trends) 

 

The methodology is presented in eight subsections: review framework, data sources and search 

strategy, inclusion and exclusion criteria, study selection process, data extraction and coding, quality 

assessment, risk of bias assessment, and data synthesis and analysis. 

2.1. Review Framework 

This systematic review was conducted in accordance with the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses) guidelines, which provide a structured approach 

for transparent and reproducible literature synthesis [18]. The methodology comprised defining 

research questions, establishing eligibility criteria, performing a structured database search, screening 

and selecting studies, extracting relevant data, assessing study quality, and synthesizing findings using 

both qualitative and quantitative approaches. 

The PRISMA approach was selected due to its widespread acceptance in engineering and 

biomedical systematic reviews, ensuring standardized reporting of search strategies, screening 

outcomes, and synthesis steps. Although the protocol was not registered in PROSPERO or similar 

repositories, all procedures were defined a priori and strictly followed to reduce selection bias and 

maintain transparency. 

The literature search was conducted across four major scientific databases—IEEE Xplore, 

Scopus, Web of Science, and ScienceDirect—to ensure comprehensive coverage of peer-reviewed 

contributions in the field. 

2.2. Data Sources and Search Strategy 

A structured search strategy was employed across three major scientific databases: IEEE Xplore, 

Web of Science, and ScienceDirect (Elsevier), covering peer-reviewed engineering and robotics 

research. Google Scholar was used only as a supplementary tool to identify potentially missed studies, 

but its results were included only if peer-reviewed, due to its indexing of non-academic sources. The 

search targeted intelligent control strategies applied to rigid-link manipulators (RLMs), published 

between January 2016 and March 2024. Grey literature, preprints, and non-peer-reviewed sources 

were excluded to maintain methodological rigor, although this may increase the risk of publication 

bias. 

Boolean logic and keyword combinations were applied. The general search string was: 

("robot manipulator" OR "robotic arm") AND ("intelligent control" OR "fuzzy logic" OR "neural 

network" OR "sliding mode" OR "genetic algorithm" OR "reinforcement learning") AND ("rigid link" 

OR "rigid body"). 

The syntax was tailored to each database, with truncation/wildcards where supported. The last 

update was conducted on March 15, 2024. Only English-language, peer-reviewed articles were 

included. Backward snowballing was used to enhance coverage, and all retrieved records were 

imported into Mendeley/Zotero for duplicate removal. The initial search yielded 5,907 records, which 

were then screened as described in Section 2.3. 

2.3. Inclusion and Exclusion Criteria 

To ensure relevance, consistency, and methodological quality, a set of inclusion and exclusion 

criteria was defined a priori, based on the research questions, established guidelines for systematic 

reviews, and prior studies in robotics and control. 

The review focused exclusively on peer-reviewed articles that applied intelligent control 

techniques to rigid-link manipulators (RLMs) with sufficient technical detail and evaluation. Grey 

literature, editorials, and non-English studies were excluded to maintain academic rigor and 

reproducibility. Two independent reviewers applied these criteria during title and abstract screening, 

with disagreements resolved through discussion and consensus to minimize selection bias.   The 

detailed inclusion and exclusion criteria applied in this review are summarized in Table 1. These 

criteria were strictly applied during the screening phase. Only studies fulfilling all inclusion criteria 
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and none of the exclusion criteria were retained for full-text review and data extraction. The PRISMA 

flow diagram (Section 3) summarizes the number of studies excluded at each stage. 

Table 1.  Inclusion and exclusion criteria used in the systematic review 

Criterion Type Description 

Inclusion 

- Peer-reviewed articles published between 2016 and 2024 

Focus on intelligent control of rigid link robotic manipulators (RLMs) 

3. Written in English 

Use of methods such as Fuzzy Logic, ANN, SMC, GA, RL, or hybrid 

techniques 
Include simulation or experimental results 

Exclusion 

Editorials, opinion papers, or non-peer-reviewed sources; 

Duplicate studies or conference abstracts without full text; 

Studies addressing non-rigid/flexible manipulator or soft robotics; 
Articles in languages other than English. 

2.4. Study Selection Process 

The study selection process followed the PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) guidelines to ensure transparency and reproducibility in article 

inclusion. The process comprised four main stages: identification, screening, eligibility assessment, 

and final inclusion, as illustrated in the PRISMA flow diagram. 

• Identification: An initial total of 5,907 records were retrieved from the selected databases using 

the search strategy described in Section 2.2. 

• Screening: After removing 1,124 duplicate entries, the remaining 4,783 articles were screened 

based on titles and abstracts. Studies that were clearly irrelevant or failed to meet the inclusion 

criteria were excluded at this stage. 

• Eligibility Assessment: A total of 1,202 full-text articles were reviewed in detail to assess their 

relevance and methodological quality. During this phase, 1,122 studies were excluded for 

reasons such as lack of technical contribution, focus on non-rigid robots, or incomplete/full-text 

inaccessibility. 

• Final Inclusion: Ultimately, 80 studies were selected for inclusion in the systematic review. The 

screening and selection process was independently conducted by two reviewers, and 

disagreements were resolved through discussion and consensus. 

The overall workflow and quantitative outcomes of the selection process are summarized in the 

PRISMA flow diagram shown in Fig. 2. 

 
Fig. 2. PRISMA flow diagram–quantitative summary of the study selection process 
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2.5. Data Extraction and Coding 

Following the final selection of eligible studies, a structured data extraction process was 

implemented to capture key information aligned with the review’s research questions. A standardized 

data extraction form was developed using spreadsheet software to ensure consistency and facilitate 

comparative analysis. The predefined data fields used for coding are summarized in Table 2. 

This form was piloted on a subset of 10 studies to ensure clarity and consistency in data entry 

across reviewers. Each included study was coded based on the following predefined data fields: 

Table 2.  Data extraction fields and descriptions 

Field Description 

Author(s), Year Full citation details of the study 

Control Method 
Type of intelligent control applied (PID, FLC, ANN, SMC, GA, RL, or hybrid 

approach) 

Application Domain Task context: e.g., trajectory tracking, vibration suppression, real- time control 
Validation Type Type of evaluation used: Simulation-only, experimental, or both 

Performance Metrics 
Quantitative indicators such as RMSE, settling time, overshoot, robustness, control 

effort 

Reported Strengths / 
Limitations 

Claimed advantages and acknowledged limitations of the control method as stated 
by the authors 

Citation Count Number of citations (if available), used to estimate academic impact 

Publisher and Source Type Journal or conference, and publisher (IEEE, Elsevier, etc.) 

 

Data extraction was independently conducted by two reviewers. Disagreements in interpretation 

were resolved through discussion and consensus. No automation tools were employed during this 

phase. Manual extraction was preferred to preserve contextual accuracy, especially in interpreting 

control methods, performance metrics, and limitations described in natural language. The final dataset 

served as the foundation for both the quantitative (e.g., frequency distributions, trend graphs) and 

qualitative (e.g., thematic synthesis) analyses presented in the Results and Discussion sections. 

2.6. Quality Assessment 

To ensure the reliability and validity of the included studies, a structured methodological 

assessmen was performed using a structured rubric adapted from previous systematic reviews in the 

field of control systems and robotics [14].  

The rubric design was based on commonly used evaluation criteria in PRISMA-aligned 

engineering reviews and adjusted to emphasize control methodology, validation type, and quantitative 

reporting. Each of the 80 selected studies was evaluated based on the following four criteria: 

1. Clarity of Control Methodology - Is the proposed control algorithm clearly described and 

justified? 

2. Experimental Validation - Is the method evaluated using real hardware or only through 

simulation? 

3. Completeness of Results - Are quantitative performance metrics provided (e.g., RMSE, settling 

time, robustness)? 

4. Relevance to RLMs - Is the application domain directly related to rigid link robotic 

manipulators? 

Each criterion was scored on a 3-point scale (0–2) as described in Table 3: 

Two reviewers independently rated all studies. Inter-rater reliability was calculated using 

Cohen’s kappa and found to be 0.82, indicating strong agreement. Discrepancies were resolved 

through discussion and consensus. Two independent reviewers conducted the scoring process, and 

any discrepancies were resolved by consensus. The results of the assessment are summarized in Table 

4, which presents the distribution of studies across the three quality categories. 
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Table 3.  Quality assessment rubric for included studies 

Scoring Scale (0–2) Description Criterion 
Not addressed = 0, Partially = 1, Fully = 2 Clear, justified algorithm with 

references 

Clarity of Control 

Methodology 

None = 0, Simulation only = 1 
hardware validated= 2 

Simulation vs. real hardware Experimental Validation 

Not reported = 0, Incomplete = 1, 

Detailed = 2 

RMSE, settling time, etc. reported Completeness of Results 

Not applicable = 0, Indirect = 1, Direct = 
2 

Direct application to rigid link 
manipulators 

Relevance to RLMs 

Table 4.  Summary of study quality levels 

Description Percentage 
Number of 

Studies 

Score 

Range 

Quality 

Category 

Clear methodology, experimental validation, and 

complete performance reporting 
33.75 % 27 8-7 High Quality 

Reasonably described but lacking full 
experimental support 

43.75 % 35 6-5 
Moderate 
Quality 

Limited validation or incomplete results; mostly 

Among the reviewed studies -only 
22.5 % 18 4-0 Low Quality 

 

This structured quality assessment ensured that the synthesis of findings in the Results and 

Discussion sections was grounded in studies with transparent methodologies and adequate validation. 

2.7. Risk of Bias Assessment 

Although this review incorporates a structured quality assessment, it is equally important to 

consider potential sources of methodological bias that may affect the reliability and generalizability 

of the included studies. Due to the high heterogeneity in control architectures, validation types, and 

reporting styles across studies, a formal risk of bias tool such as RoB 2.0 was deemed inappropriate 

for direct application. 

Instead, a qualitative bias analysis was employed using adapted criteria from prior robotics and 

intelligent control reviews [19], focusing on commonly observed sources of bias in engineering 

studies. The indicators considered in this review are summarized in Table 5. 

Table 5.  Indicators used for risk of bias evaluation 

Risk Level Definition Bias Indicator 

High Study lacks experimental hardware testing Simulation-Only Validation 

Medium Only favorable metrics reported; others omitted Selective Reporting 

Medium No comparison to classical or benchmark controllers No Baseline Comparison 
Medium Missing values or insufficient metric reporting Incomplete Data 

Low to Medium Control tested on simple tasks or narrow scenarios Limited Scope 

 

Each of the 80 included studies was reviewed for these risk indicators. The analysis revealed that: 

• 52% of studies relied exclusively on simulation, with no hardware validation; 

• 41% selectively reported performance metrics such as RMSE or settling time without 

comparative baselines; 

• 36% lacked full reporting of system parameters or omitted key evaluation details. 

These findings highlight the potential for performance overestimation and reduced external 

validity in a substantial portion of the literature. Such risks were considered during the synthesis and 

interpretation of results, especially in the Discussion section when weighing claims and identifying 

areas needing more robust validation. Together, the quality assessment (Section 2.6) and bias analysis 
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provide a balanced lens for interpreting findings, ensuring that both methodological rigor and potential 

overestimation risks are explicitly addressed. 

2.8. Data Synthesis and Analysis 

The extracted data from the 80 included studies were synthesized using a mixed-method approach 

combining qualitative thematic analysis and quantitative trend aggregation, in alignment with the 

review’s objectives and research questions. 

2.8.1. Qualitative Synthesis 

Studies were first grouped by the type of intelligent control method used (e.g., FLC, ANN, RL, 

hybrid). Within each group, key themes were identified such as: 

• Application domains (e.g., trajectory tracking, vibration suppression, real-time control); 

• Challenges addressed (e.g., system uncertainties, actuator saturation, noise rejection); 

• Innovative features (e.g., hybridization, adaptive tuning, learning-based adaptation). 

This thematic synthesis allowed for identification of conceptual patterns, performance trade-offs, 

and methodological gaps across control strategies. Recurring challenges, such as lack of benchmark 

comparison or incomplete validation, were cross-referenced with the bias and quality indicators from 

Section 2.6 and Section 2.7 to ensure consistency between methodological evaluation and interpretive 

synthesis. 

2.8.2. Quantitative Analysis 

In parallel, numerical aggregation of metadata was conducted to identify trends and patterns 

across the literature: 

• Year-wise distribution of publications (2016–2024); 

• Source type analysis: journal vs. conference; 

• Publisher-wise breakdown (IEEE, Elsevier, Springer, etc.); 

• Citation-based influence analysis using a bubble chart; 

• Comparative performance table for 25 representative studies including metrics like RMSE, 

settling time, and robustness; 

• Frequency analysis of control methods used. 

The quantitative data were analyzed using Microsoft Excel for initial tabulation, and Python-

based tools (Pandas, Matplotlib, and Seaborn) for visualization and statistical summaries. Where 

applicable, study quality levels (see Section 2.6) were used to assign interpretive weights to the results, 

ensuring that high-quality studies had greater impact on the overall synthesis. Visual representations 

(e.g., trend graphs, heat maps) were used to enhance interpretability of complex patterns. This dual 

synthesis approach ensured that the review not only captured macro-level trends but also provided a 

micro-level evaluation of the effectiveness and limitations of each intelligent control method. In 

summary, the methodological framework adopted in this review ensured rigorous identification, 

evaluation, and synthesis of relevant studies on intelligent control for rigid-link manipulators. The 

integration of structured quality assessment, risk of bias analysis, and dual-mode synthesis (qualitative 

and quantitative) provides a transparent and reproducible basis for the results presented in Section 3. 

3. Results 

3.1. Publication Trends 

To analyze the evolution of research activity in intelligent control of rigid link manipulators 

(RLMs), the 80 selected studies were examined by publication year. As illustrated in Fig. 3., there has 
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been a consistent upward trajectory in the number of relevant publications over the period from 2016 

to 2024, with a noticeable acceleration after 2019. This upward trend reflects the growing academic 

and industrial interest in applying intelligent control strategies - such as fuzzy logic, neural networks, 

and reinforcement learning - to robotics applications requiring high adaptability, precision, and 

robustness. 

The year 2022 marked the highest number of publications [15], followed by 2023 and 2021, 

indicating a peak in scholarly output during this period. This surge may be attributed to increased 

access to computing power, the proliferation of open-source robotic platforms, and the growing 

integration of AI into real-time robotic systems. 

This publication pattern aligns with the observed methodological diversification reported in 

Section 3.3 and Section 3.4, where hybrid and learning-based approaches gained increasing 

representation. 

 

Fig. 3. Year-wise distribution of included papers 

3.2. Source Type and Publisher Distribution 

To better understand the dissemination channels of research on intelligent control of rigid link 

manipulators (RLMs), the selected studies were categorized by source type (journal vs. conference) 

and publisher (e.g., IEEE, Elsevier, Springer, MDPI). This classification provides insights into the 

scholarly ecosystems most engaged in this domain and helps identify where impactful research is 

typically disseminated. 

3.2.1. Source Type Analysis 

Out of the 80 included studies: 

• 57 papers (71.25%) were published in peer-reviewed journals 

• 23 papers (28.75%) were presented in conference proceedings 

Journals tended to provide more detailed methodological explanations, performance metrics, and 

experimental validations, often reflecting mature or extensively validated work.  In contrast, 

conference papers typically focused on conceptual innovation, preliminary validation, or proof-of-

concept demonstrations, which is common in rapidly evolving fields like intelligent robotic control.  

This distribution suggests that while foundational and validated research is predominantly published 

in journals, conferences play a key role in accelerating the dissemination of emerging techniques. 

3.2.2. Publisher Distribution 

The distribution of studies across major publishers is shown in Fig. 4. The most prominent 

publishers were: 
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• IEEE: 26 papers (32.5%) 

• Elsevier: 21 papers (26.2%) 

• Springer: 13 papers (16.2%) 

• MDPI: 9 papers (11.2%) 

• Others (e.g., Taylor & Francis, Wiley): 11 papers (13.8%) 

These results indicate that the field is widely represented across leading scientific platforms, 

demonstrating a healthy diversity in publication sources. Notably, open-access publishers like MDPI 

are also gaining traction, which may reflect a growing interest in accessible dissemination of robotic 

control research.  This trend may support faster citation uptake and broader academic reach.  Fig. 4. 

illustrates the dominance of IEEE and Elsevier, while also highlighting the growing role of open-

access publishers such as MDPI in disseminating robotic control research. 

 

Fig. 4. Publisher distribution of included studies 

3.3. Distribution of Control Methods 

As shown in Fig. 5., the reviewed studies employed a range of intelligent control strategies. Fuzzy 

Logic Control (FLC) was the most prevalent, implemented in 18 studies (22.5%), due to its simplicity, 

robustness, and ability to handle uncertain environments [20]-[23] . These include approaches ranging 

from basic type-1 FLC to more advanced versions such as type-2 [24], type-3 fuzzy control [8], and 

fractional-order fuzzy PID [25]. 

Artificial Neural Networks (ANNs) were applied in 16 studies (20%), primarily for nonlinear 

dynamics modeling, system identification, and adaptive motion control [4], [26], [27], [9]. These 

methods include feedforward networks, radial basis function neural networks [28], and recurrent 

neural networks, often trained using reinforcement learning or gradient-based optimization. 

Classical Proportional-Integral-Derivative (PID)-based intelligent controllers were employed in 

10 studies (12.5%). These approaches often incorporated fuzzy logic or neural adaptation to improve 

tuning and overcome limitations of conventional PID control in nonlinear and time-varying robotic 

systems. 

Reinforcement Learning (RL) was adopted in 8 studies (10%), demonstrating potential for high-

dimensional trajectory optimization, policy adaptation, and sim-to-real transfer. Notably, Deep RL 

was used in tasks such as grasping, obstacle avoidance, and industrial pick-and-place operations, 

despite the limited number of studies. This reflects its emerging role in robotic control. 
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Sliding Mode Control (SMC) appeared in 14 studies (17.5%), recognized for its robustness in 

handling modeling uncertainties and external disturbances [29], [30]. Variants such as adaptive, fixed-

time, and nonsingular SMC were explored [31], [32]. 

A total of 8 studies (10%) used hybrid strategies that combine two or more control techniques. 

Common hybridizations included FLC-ANN, ANN-SMC, RL-FLC, and metaheuristic-optimized 

fuzzy or PID controllers [33]-[36]. These combinations were designed to enhance fault tolerance, 

improve generalization to unseen conditions, and exploit complementary advantages of individual 

techniques. Overall, the distribution indicates that while classical intelligent methods (FLC, ANN, 

SMC) remain dominant, there is a clear shift toward hybrid and learning-based approaches to meet 

the increasing complexity of robotic applications. 

 

Fig. 5. Frequency distribution of control methods 

3.4. Comparative Summary of Representative Studies 

To provide a more in-depth understanding of how different intelligent control strategies have 

been applied to rigid link manipulators (RLMs), a set of 25 representative studies was selected and 

analyzed in detail. These studies were chosen based on their methodological clarity, citation impact, 

relevance to intelligent control, and diversity in control techniques. 

Table 6 presents a comparative summary that includes the authors, year of publication, control 

method used, target application, validation environment (simulation or experimental), key 

performance metrics, and reported strengths or limitations. This structured overview facilitates a 

cross-study comparison, allowing the reader to directly observe how different techniques perform 

under varying conditions. 

The comparative analysis reveals that hybrid controllers (e.g., FLC+ANN, SMC+GA) 

consistently outperform individual methods in terms of adaptability and robustness, particularly when 

applied in dynamic or uncertain environments. In several cases, the integration of neural networks 

with optimization algorithms enhanced trajectory tracking, reduced RMSE, and improved real-time 

performance. 

Nevertheless, limitations remain. A number of studies lacked experimental validation, relying 

solely on simulations, while others failed to report complete performance indicators such as control 

effort, computational cost, or settling time. These omissions highlight an ongoing challenge in the 

field: balancing algorithmic sophistication with practical implementability. 
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Overall, the comparative insights derived from Table 6 not only identify the most impactful 

strategies but also expose recurring gaps across the literature. These findings further informed the 

subsequent performance and bias analyses discussed in the following sections. 

Table 6.  Comparative summary of 25 key studies on intelligent control of RLMs 

No. Reference 
Control 

Technique 

Application 

Domain 

Performance 

Metrics 
Key Strengths Key Limitations 

1. [37] 

Disturbance-

Observer-
Based Fuzzy 

Control 

Human-in-

the-loop 

trajectory 
control under 

uncertain 

dynamics 

Precise tracking 

with small 

position errors 
during EMG-

driven reaching 

tasks 

Robust to 

unmodeled 
disturbances; 

adapts to human 

input via EMG 

Requires EMG 

calibration and 
accurate model; no 

hardware validation 

2. [38] 

Adaptive Bias 

RBF Neural 

Network 
Control 

Trajectory 

tracking for 

flexible-joint 

manipulator 
with 

uncertainties 

Guaranteed small 

steady-state error 

under payload 
changes 

Model-free 

adaptation 

handles 

uncertainties; 
bias term 

eliminates offset 

High computational 

load; simulation 

only, no physical 
implementation 

3. [39] 

Non-Singular 
Terminal 

Sliding Mode 

Control 

Joint-space 

trajectory 
tracking with 

uncertainties 

and 

disturbance 

Fast finite-time 

error 
convergence, 

reduced 

chattering 

Robust against 

large 
disturbances; 

avoids 

singularities 

Requires careful gain 
tuning; simulation-

based results only 

4. [40] 
PSO-Tuned 

Fuzzy–PID 

Point-to-point 

positioning 

with 

disturbances 
and noise 

16% faster rise 

time, 31% 

overshoot 

reduction, 65% 
shorter settling 

time vs. PID 

High accuracy 

and robustness 

via adaptive 

tuning; suitable 
for noisy 

environments 

PSO tuning may be 

computationally 

intensive; not 

validated on physical 
robot 

5. [41] 

Fractional-

Order Fuzzy 

PID 

Trajectory 
tracking with 

payload 

variation 

Zero overshoot; 
very low ITSE; 

error <0.03 rad 

under load 

changes 

Strong 

adaptability and 
precision 

through 

fractional 

dynamics and 
fuzzy logic 

Design complexity 

increases with 
fractional 

parameters; requires 

careful initialization; 

tested only in 
simulation 

6. [42] 

Deep 

Reinforcement 
Learning 

(PPO & SAC) 

Grasping 

tasks with 
sim-to-real 

transfer 

100% grasp 

success after 1h 
fine-tuning; 

generalized to 

varied shapes 

Model-free 

learning; 

adaptable; 
minimal tuning 

for hardware 

transfer 

High training time; 

sensitive to reward 
shaping; tested on a 

single robot type 

7. [43] 

Sine-Cosine 

Algorithm 

Tuned FOPID 

Adaptive 

control of 

payload-

varying 

manipulators 

Shorter settling 

time; stable with 

high payloads 

Handles 

nonlinearities 

effectively; 

global 

optimization 

Lacks online 
adaptation; tuning 

phase done offline 

only; no 

experimental 

validation 

8. [44] 

Finite-Time 
SMC + Neural 

Friction 

Compensation 

Trajectory 

tracking 
under joint 

friction and 

without 

velocity 
sensors 

Endpoint error 
<1% of motion 

range; chattering 

significantly 

reduced 

Robust under 

varying load and 
joint friction; 

sensor less 

velocity 

estimation 

Neural friction model 

increases 

computational 
burden; residual 

chattering still 

present; simulation-

based verification 
only 

10. [45] 

Time-Delay 

Control + 
Adaptive 

Fuzzy 

Tracking with 

friction and 
disturbance 

Error < ±0.5°; 

minimal 
overshoot 

Real-time 

estimation; 
friction 

Delay assumptions 

may not hold under 

fast dynamics; not 
robust to high-

frequency input noise 
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11. [46] 
Type-3 Fuzzy 
Logic Control 

Trajectory 

tracking 

under noise 
and 

disturbances 

50%+ lower 

RMSE than 

T1/T2 FLC; 
stable tracking 

with minimal 

error 

Model-free 

adaptability; 
robust to noise; 

no chattering 

Does not include 

actuator constraints; 
energy efficiency not 

analyzed 

12. [47] 

PID 

Optimized 

with Artificial 

Bee Colony 

3-DOF 
manipulator 

trajectory 

tracking 

under 
disturbances 

lower IAE/ITAE 

20–50%; robust 

to ±20% payload 

variation 

Improved 
convergence via 

enhanced ABC; 

robust and 

vibration-free 
response 

Optimization phase 

is offline only; lacks 

real-time tuning; no 

experimental results 

13. [48] 

Adaptive 

NTSMC with 
Contour Error 

Compensation 

Contour 

tracking in 

Cartesian 
space under 

uncertainties 

and faults 

improvement in 

contour accuracy 
~61%; finite-time 

convergence 

High-precision 

contour tracking; 
fault-tolerant 

adaptation 

Optimization phase 

is offline only; lacks 
real-time tuning; no 

experimental results 

14. [49] 
Neural 

Adaptive PID 

Task-space 
control of 6-

DOF 

manipulator 

with 
disturbances 

and 

singularities 

Near-zero 

position error; 

stable control 

through 
singularity; fast 

rejection 

Adaptive online 

gain tuning; 

neural 

compensation of 
nonlinearity 

No hardware 

experiments; 

computational 

requirements not 
addressed 

15. [50] 

Time-Delay 
Control + 

Adaptive 

Fuzzy 

Tracking with 

friction and 

disturbance 

Error < ±0.5°; 

minimal 

overshoot 

Real-time 

estimation; 

friction 

Repeated study; 
limited novelty; 

delay model 

assumptions not 

validated in hardware 

16. [51] 

Nonlinear 

Active 

Disturbance 

Rejection 
Control 

(NADRC) 

Robust 

trajectory 

tracking with 

matched and 
mismatched 

disturbances 

RMSE < 0.02; 

stable error 

dynamics under 
30% load change 

Strong 

disturbance 

rejection; 

stability ensured 
via extended 

state observer 

Requires precise 

model tuning; lacks 

application to high-
speed or complex 

trajectories 

17. [52] 

 

NADRC + 

Chaotic PSO 

 
2-DOF with 

dead-zones & 

sat. 

 

less error ~50% 

vs. PD 

Real-time robust 

rejection; hybrid 
tuning of ESO 

and PSO 

improves 

adaptability 

Observer tuning is 
complex; lacks 

scalability validation 

to high DOF systems 

18. [53] 

Fast Terminal 

SMC + 

Nonlinear 
Disturbance 

Observer 

High-speed 3-

DOF tracking 

with external 
disturbances 

accuracy gain 

~55% vs. 

baseline; 45% 
faster response 

Combines finite-

time 

convergence 

with robust 
disturbance 

rejection 

Design and tuning 

complexity; lacks 

validation on 
hardware platform 

19. [54] 

Adaptive 

ANN + 

Disturbance 

Observer 

Joint tracking 

under 

unknown 

dynamics 

Steady joint error 
≈ 0; low control 

effort 

Learns dynamics 

online; observer 

improves 

robustness 

Simulation only; 

ANN design 

increases system 

complexity 

20. [55] 

ANN-

Enhanced 
Hybrid 

Force/Position 

PID 

Fiber 
placement 

with force 

regulation 

force/position 
<5% RMSE; 

smooth trajectory 

Stable force 
response and 

accurate hybrid 

control 

Application-specific 
design; lacks test 

under external 

disturbances or faults 

21. [56] 

NN–

PID/FOPID + 

Zebra 

Optimization 

2-DOF 

tracking 

under 

uncertainty 

Lowest ITSE; 

robust to 

load/perturbation 

Combines 

intelligent tuning 

with NN 

adaptation and 
optimization 

Evaluation based on 

multiple controller 

versions; lacks 

experimental proof 
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22. [57] 
NADRC + 

Chaotic PSO 

Tracking with 
saturation and 

dead-zones 

lower error 50% 

than PD; faster 

Real-time 

disturbance 
rejection; global 

PSO enhances 

tuning 

Sensitive to sensor 
noise; optimization 

performed offline 

23. [58] 

Multi-Task 

Reinforcement 

Learning 
(SAC) 

Multi-skill 

robotic 

manipulation 

(Meta-World 
benchmark) 

higher ~20% 

success rate on 

MT10 suite; 

efficient policy 
transfer 

Learns multiple 
skills 

simultaneously; 

better 

generalization 
than single-task 

RL 

Simulation only; 

lacks validation in 

physical and vision-
based environments 

24. [59] 

RL-Enhanced 

Fault-Tolerant 

Terminal 

SMC 

Joint-space 
control of 6-

DOF 

manipulator 

under actuator 
faults 

Maintained 
stability and 

bounded error 

despite sudden 

50% torque loss 

Combines RL 

adaptability with 

finite-time 

robustness 

High training 

complexity; safety 

during training not 

addressed 

25. [60] 

Deep 

Reinforcement 

Learning 
(simulation-

efficient 

training) 

Trajectory 

planning for 
robotic 

manipulator 

High success 

rate; reduced 
training time 

Efficient 

learning via 

simulation 
optimization; 

good 

generalization 

No hardware testing; 

method not verified 
on real-world 

uncertainties 

3.5. Performance Metrics Analysis 

Performance metrics are fundamental to assessing both the effectiveness and the practical 

feasibility of intelligent control strategies for rigid link manipulators (RLMs). Across the reviewed 

literature, a range of quantitative indicators were employed to evaluate aspects such as tracking 

accuracy, dynamic response, stability, robustness, and computational efficiency. This section 

synthesizes the most frequently reported metrics and discusses their implications for comparative 

evaluation. Key Metrics Identified Across Studies: 

• Root Mean Square Error (RMSE): Reported in 67% of studies, RMSE was the dominant metric 

for quantifying trajectory tracking accuracy. Its prevalence underscores the central role of 

precision in manipulator applications; 

• Settling Time: Documented in 43% of studies, this metric evaluates transient response and is 

especially critical in high-speed or repetitive tasks; 

• Overshoot: Observed in 31% of papers, overshoot reflects control stability and is particularly 

significant in domains such as medical or cooperative robotics, where safety and precision are 

paramount; 

• Control Effort / Energy Consumption: Reported in 26% of studies, this metric provides insights 

into actuator efficiency and long-term sustainability, yet remains underutilized despite its 

importance in mobile and industrial applications; 

• Robustness and Noise Rejection: Commonly described qualitatively, robustness reflects 

resilience to modeling errors, parameter variations, and external disturbances. The lack of 

standardized quantitative measures remains a limitation; 

• Computation Time / Real-Time Feasibility: Explicitly reported in fewer than 20% of studies, 

this omission highlights a critical gap, as real-time implementation is essential for practical 

robotic systems. 

Observations and Critical Insights: 

• The dominance of RMSE and settling time indicates a strong emphasis on accuracy and speed, 

but the absence of standardized benchmarks reduces the comparability of results across studies; 

• Hybrid controllers consistently demonstrated improved RMSE values and shorter settling times 
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compared to standalone methods, suggesting that methodological integration enhances both 

accuracy and responsiveness; 

• Very few studies reported on computational cost or control effort, limiting the assessment of 

real-time feasibility and hardware efficiency. This gap highlights the need for future work to 

systematically integrate these underreported metrics to strengthen claims of practical 

applicability. 

3.6. Quality Assessment Results 

As described in Section 2.6, each of the 80 included studies was evaluated using a structured 

quality assessment rubric based on four criteria: clarity of control methodology, experimental 

validation, completeness of reported results, and relevance to rigid link manipulators (RLMs). The 

studies were then classified into three quality categories: high, moderate, and low, as summarized in 

Table 4. The distribution of studies across these categories is as follows: 

• High Quality (Score 7–8): 27 studies (33.8%). 

• Moderate Quality (Score 5–6): 35 studies (43.8%). 

• Low Quality (Score ≤4): 18 studies (22.5%). 

A pie chart in Fig. 6. was generated to visually illustrate the proportion of studies in each quality 

tier, providing a clear overview of methodological rigor across the reviewed literature. 

These results indicate that while a substantial portion of the literature demonstrates 

methodological rigor, a majority of studies still fall into the moderate or low-quality range. The most 

common shortcomings observed in lower-scoring studies included: 

• Lack of experimental validation (simulation-only); 

• Incomplete performance metric reporting; 

• Absence of baseline comparisons or real-time analysis. 

Conversely, high-quality studies tended to provide well-formulated control algorithms, validated 

results on physical robotic systems, and complete quantitative reporting. These studies were also more 

likely to propose hybrid approaches or integrate learning-based components. 

For instance, study [42] was rated as high quality due to its use of deep reinforcement learning, 

experimental validation, and comprehensive metric analysis including real-time performance. 

Furthermore, the quality classification was not merely descriptive, but served as a weighting factor in 

the overall synthesis. Specifically, greater emphasis was placed on conclusions drawn from high-

quality studies in trend analysis, performance comparisons, and thematic mapping. This approach 

helped reduce the influence of biased or incomplete studies on the final insights. Additionally, an 

informal cross-tabulation indicated that high-quality studies were more frequently associated with 

application domains such as real-time control and precision robotics, suggesting a link between 

research depth and practical implementation focus. This quality assessment provided a robust 

foundation for the subsequent risk of bias and gap analyses, ensuring that the review's conclusions 

reflect both the quantity and reliability of the existing evidence. 

3.7. Risk of Bias Summary 

In addition to quality assessment, a risk of bias analysis was performed to evaluate the 

methodological transparency and reporting reliability of the included studies. As explained in Section 

2.7, this analysis focused on five qualitative indicators known to influence the credibility of control 

system research: simulation-only validation, selective reporting, lack of baseline comparison, 

incomplete data, and limited application scope. 

The distribution of these bias indicators across the 80 included studies is summarized in Table 5, 

with findings outlined: 
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• Simulation-Only Validation: A total of 52% of studies did not include any experimental 

validation and relied solely on simulation, raising concerns about real-world applicability. 

• Selective Reporting: 41% of studies reported only favorable metrics (e.g., RMSE), omitting 

others such as control effort, overshoot, or robustness. This limits objective performance 

comparison. 

• Lack of Baseline Comparison: 36% of studies failed to benchmark their proposed approach 

against conventional methods (e.g., PID or SMC), reducing the interpretability of performance 

claims. 

• Incomplete Data Reporting: Around 26% of the studies did not provide complete quantitative 

results, making replication or validation difficult. 

• Limited Application Scope: 15% of the papers tested their methods only in narrow or idealized 

scenarios, without addressing realistic tasks or disturbances. 

 

Fig. 6. Quality classification distribution of the 80 included studies 

A visual summary of the distribution of these bias indicators is presented in Fig. 7., providing a 

quick comparative overview of how frequently each issue occurred across the reviewed literature. 

These findings highlight common weaknesses that may undermine the generalizability or 

credibility of the results. While several high-quality studies addressed all five indicators, a notable 

portion exhibited moderate to high bias in one or more dimensions. 

Notably, a cross-comparison with the quality assessment scores revealed a strong overlap 

between studies with high bias and those categorized as low quality, further validating the impact of 

these indicators on the overall credibility of the research. 

In particular, the lack of hardware validation and absence of baseline comparisons were the most 

recurring limitations, especially in studies relying on advanced neural or metaheuristic approaches. 

Overall, the bias assessment reinforces the need for future research to adopt standardized reporting 

practices, include experimental validation, and compare performance with well-established control 

baselines to ensure reproducibility and practical relevance. 

3.8. Identified Research Gaps 

Through the systematic review and synthesis of 80 studies on intelligent control of rigid link 

manipulators (RLMs), several recurring research gaps and limitations have been identified. These 

gaps hinder the full deployment of intelligent controllers in real-world robotic systems and highlight 

key directions for future investigation. These findings are summarized in Table 7. 
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Fig. 7. Distribution of risk of bias indicators across reviewed studies 

Table 7.  Comparative summary of 25 key studies on intelligent control of RLMs 

Research Gap Description 
Representative 

Studies 

 

Limited 
Experimental 

Validation 

 

Despite the proliferation of intelligent control methods, over 

half of the studies relied solely on simulation without 
hardware testing. This raises concerns about real-world 

applicability, particularly in environments involving 

uncertainty, noise, or physical constraints.  Addressing this is 

essential for practical deployment. 

[5], [61], [8], [62], [63] 

 

Incomplete 

Performance 

Reporting 
 

Many studies reported only RMSE or trajectory accuracy, 

neglecting critical performance dimensions such as control 

effort, robustness under disturbances, or execution time. This 

lack of standardized and complete reporting makes objective 
comparison and benchmarking difficult.  Future work should 

adopt a more comprehensive evaluation. 

[64], [53], [61], [27] 

 

Lack of 
Comparative 

Analysis 

 

A significant number of studies did not compare their methods 

to conventional baselines (e.g., PID, SMC), making it difficult 
to assess relative advantages or trade-offs. Without such 

comparisons, novel approaches risk overstating their 

contributions. Benchmark-based validation is needed. 

[11], [55], [65]-[67], [44] 

 
Underexplored Use 

of Learning-Based 

and Hybrid 

Techniques 
 

While interest in hybrid (e.g., ANN+FLC) and learning-based 
(e.g., RL) methods is growing, their implementation remains 

limited in experimental settings, due to concerns over 

computational cost, training time, and safety. These 

approaches warrant further hardware validation and 
optimization for real-time use. 

[58], [59], [68], [69] 

 

Absence of 

Benchmark Tasks 
or Datasets 

 

The field lacks standardized benchmark scenarios or datasets 

for evaluating intelligent controllers on RLMs. This creates 

fragmentation and reduces the reproducibility of results across 
different research groups. Collaborative benchmarking efforts 

are needed. 

[49], [14] 

 

Scarce Attention to 
Explainability and 

Safety 

 

Few studies addressed explainable AI (XAI) in control 

decisions or integrated safety-aware mechanisms, which are 
essential for industrial, surgical, or collaborative applications. 

Integrating explainability and safety constraints is critical in 

safety-critical environments. 

[70]-[72] 

 

Collectively, these gaps point to a need for more rigorous, standardized, and experimental 

research—particularly in real-time applications where safety, adaptability, and interpretability are 
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critical. Addressing these challenges will be essential for transitioning intelligent control methods 

from theory to practice in robotic manipulators. 

4. Discussion 

The findings of this systematic review provide important insights into the evolution, current state, 

and limitations of intelligent control techniques applied to rigid link manipulators (RLMs). By 

analyzing 80 peer-reviewed studies published between 2016 and 2024, several trends and critical 

observations emerge that inform both theory and practice. 

4.1. Shifts in Control Strategy Preferences 

A clear trend was observed in the transition from classical control strategies—such as PID and 

SMC—towards more adaptive and learning-based techniques like FLC, ANN, and RL. This shift 

reflects the increasing need for robustness and flexibility in handling nonlinear dynamics and 

unmodeled disturbances [4], [23], [73], [74]. This transition also aligns with broader advancements in 

AI and the growing demand for flexible robotic systems capable of operating in unstructured or 

dynamic environments. Despite this evolution, the continued reliance on PID and SMC (used in over 

25% of reviewed studies) indicates their practical appeal in terms of simplicity and real-time 

feasibility, especially in industrial settings [30]. 

4.2. The Promise and Pitfalls of Hybrid Control 

Hybrid controllers (e.g., ANN-FLC, RL-GA) were shown to outperform individual methods in 

simulation environments by combining the strengths of different paradigms [75]-[77]. However, their 

limited real-world deployment, due to complexity and computational burden, underscores the need 

for optimization and hardware-oriented adaptation [78], [68]. For example, recent studies [59], [69] 

have begun to explore real-time RL-FLC implementations, suggesting the feasibility of such 

integration with proper tuning. These techniques hold great promise but require deeper integration 

into experimental platforms to realize their full potential. 

4.3. Experimental Validation Remains a Bottleneck 

More than 50% of the reviewed studies relied solely on simulation, which limits external validity 

[15]. Studies that incorporated physical hardware validation often reported discrepancies between 

simulated and real-world behavior—particularly under fast motion or external perturbations [79]. This 

gap must be addressed to facilitate trustworthy deployment of intelligent control systems [80]. Future 

work should prioritize low-cost, reproducible hardware implementation frameworks to facilitate 

broader experimental testing and result validation. 

4.4. Reporting Practices and Benchmarking Deficiencies 

The heterogeneity in reporting performance metrics—especially the lack of data on energy 

consumption, control effort, or execution time—complicates objective comparison across studies 

[14]. Furthermore, the absence of standardized tasks or benchmark datasets prevents cumulative 

progress [69], [81]. Introducing open-source benchmark scenarios (e.g., Meta-World, OpenAI Gym, 

ROS-based tasks) could enable fair comparison and accelerate development in the field. Establishing 

unified reporting protocols would enhance reproducibility and comparability in the field. 

4.5. Implications for Research and Industry 

For researchers, the findings highlight several unexplored opportunities: applying reinforcement 

learning in hardware [82], integrating explainability in AI-based control [83], and designing 

benchmark-driven evaluations [84]. For practitioners, the analysis shows that while classical 

controllers remain viable, intelligent and hybrid strategies offer performance gains if tailored to 

hardware constraints [85], [86].  Collaboration between academia and industry is essential to ensure 

the safe and certified deployment of intelligent control in mission-critical robotic systems. 
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Overall, the current body of literature demonstrates significant theoretical innovation but is still 

maturing in terms of practical deployment, standardization, and reproducibility. Closing this gap is 

essential to enabling intelligent control systems that are not only high-performing but also safe, 

reliable, and deployable in real-world robotic applications, particularly in safety-critical domains 

such as collaborative robots, surgical systems, and autonomous manufacturing [87]-[94].   

5. Conclusions and Future Work 

This systematic review analyzed a total of 80 peer-reviewed studies published between 2016 and 

2024 on the application of intelligent control strategies to rigid link manipulators (RLMs). The study 

revealed a notable shift from conventional controllers-such as PID and SMC-toward more adaptive, 

hybrid, and learning-based approaches, including fuzzy logic control (FLC), artificial neural networks 

(ANN), and reinforcement learning (RL). While these intelligent methods offer promising 

improvements in robustness, precision, and adaptability, their widespread deployment in real-world 

systems remains limited due to simulation-only validation, computational demands, and non-

standardized performance reporting. 

The quality assessment showed that only 33.8% of the studies met high methodological 

standards, while over half lacked experimental validation. In addition, the risk of bias analysis further 

underscored common weaknesses such as selective reporting and absence of baseline comparisons. 

These findings highlight a need for more rigorous design, reproducibility, and real-time evaluation in 

future work. Based on these findings, the following research directions are recommended to advance 

the field: 

• Real-Time Hardware Validation: Future work should focus on deploying learning-based 

controllers on physical robots, incorporating safe and efficient training strategies to bridge the 

simulation-to-reality gap. 

• Explainable AI (XAI): Incorporating interpretability into control logic is critical for trust, 

debugging, and human–robot interaction in safety-critical systems. 

• Standardized Benchmarks and Datasets: Community-wide efforts are needed to define 

benchmark tasks, shared datasets, and unified reporting protocols for performance metrics. 

• Energy-Aware and Multi-Objective Control: Optimizing for both performance and energy 

efficiency is still underexplored and essential for mobile and embedded robotic platforms. 

• Context-Aware Hybrid Controllers: Future systems should dynamically switch or blend control 

modes based on task type, environmental uncertainty, or system state. 

• Safety and Fault Resilience: Emphasizing collision avoidance, safe learning, and robust fault 

recovery mechanisms is essential for real-world deployment, particularly in unstructured or 

human-centric environments. 

In conclusion, while the field of intelligent control for RLMs is advancing rapidly in algorithmic 

development, it remains in the early stages of practical maturity. Addressing the identified challenges 

will pave the way for robust, interpretable, and real-time control systems applicable to advanced 

robotics across industrial, medical, and service domains. 
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Appendix 

No Abbreviation Description 

1 DOF Degree of Freedom 

2 RLM Rigid Link Manipulator 

3 PID Proportional–Integral–Derivative 

4 FLC Fuzzy Logic Control 

5 ANN Artificial Neural Network 
6 

7 

8 

9 
10 

SMC 

RL 

GA 

RMSE 
IAE 

Sliding Mode Control 

Reinforcement Learning 

Genetic Algorithm 

Root Mean Square Error 
Integral of Absolute Error 

12 

13 
14 

15 

16 

PRISMA 

XAI 
AI 

ML 

X 

Preferred Reporting Items for Systematic Reviews 

Explainable Artificial Intelligence 
Artificial Intelligence 

Machine Learning 

Cartesian X-coordinate (used in spatial analysis) 

17 CPU Central Processing Unit 
18 IEEE Institute of Electrical and Electronics Engineers 

19 MDPI Multidisciplinary Digital Publishing Institute 
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