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1. Introduction 

Warehouses play an important role in various industrial sectors as centers for in inventory 

management and goods distribution [1]-[3]. Efficiency in warehouse management directly affects the 

operational success of the supply chain [4]-[6]. However, increasing volumes and the complexity of 

inventory management make manual monitoring inefficient and prone to error [7]-[9]. In addition, 

workplace hazards such as high storage racks [10]-[12], the use of heavy machinery [13], and the need 

to monitor large warehouse areas increase the risk to workers [14]-[16]. This challenge underscores the 

importance of automation technology in improving warehouse safety and operational efficiency [17], 

[18]. 
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 Growing demand for warehouse automation requires Unmanned Aerial 

Vehicles (UAVs), particularly quadcopters, to operate autonomously with 

a high level of precision and reliability. However, indoor localization poses 

unique challenges due to the absence of Global Positioning System (GPS) 

signals, making alternative sensors and robust control strategies essential. 

This study proposes an indoor UAV navigation system that integrates 

camera and LiDAR sensors with Fuzzy–Sliding Mode Control (Fuzzy-

SMC) to enhance stability and reduce the chattering effects commonly 

associated with Sliding Mode Control. In the proposed method, the camera 

provides better accuracy for real-time position tracking compared to 

LiDAR, while fuzzy logic adaptively adjusts the Sliding Mode Control 

parameters, which serve as the main controller for stabilizing the 

quadcopter’s nonlinear dynamics. Research methodology includes 

mathematical modeling of the UAV quadcopter, the design of the Fuzzy-

SMC controller, and simulation-based testing for trajectory tracking in 

indoor environments. Results show that the developed system achieves 

high accuracy, with error values ranging from 0 to 4.044%, remaining 

below the acceptable threshold of 5%. These findings demonstrate that 

integration of a camera with Fuzzy-SMC provides an effective and reliable 

solution for indoor quadcopter UAV navigation, while future research will 

focus on optimizing the fuzzy rule base and conducting hardware 

validation in real warehouse scenarios. 
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Unmanned Aerial Vehicles (UAVs), particularly quadcopters, have emerged as a promising 

solution for warehouse automation due to their high maneuverability, reliable performance, and 

flexibility to operate in confined spaces [19]. This technology enables various applications such as 

stock monitoring [20], inventory inspection [21], and even automated delivery [22], which were 

previously carried out using manual methods. With autonomous systems, quadcopters can operate 

independently without direct control from an operator, thereby not only improving work efficiency but 

also reducing human involvement in high-risk areas [23]. The autopilot function in quadcopters 

supports stable and pre-programmed movements, making them highly suitable for the needs of modern 

warehouses that demand speed and accuracy [24]. In addition, these systems can reduce the risk of 

workplace accidents, especially in areas that are difficult to access or hazardous for workers. Another 

advantage is the quadcopter’s ability to adapt to dynamic environments, such as avoiding obstacles or 

automatically adjusting its flight path [25]. Nevertheless, the implementation of quadcopters indoors 

faces significant challenges, particularly in navigation and localization [26]. This is mainly due to the 

limitations of Global Positioning System (GPS) signals, which are either unavailable or inaccurate in 

enclosed spaces, thus requiring alternative and more reliable approaches [27], [28]. This challenge has 

motivated the advancement of control systems and sensor-based localization methods, such as LiDAR 

and cameras, to enable quadcopters to operate effectively within warehouse environments [29], [30]. 

Accordingly, the application of quadcopters in indoor settings should not be regarded merely as a 

substitute for manual processes, but rather as a critical component of the digital transformation toward 

smarter and safer warehouse management systems [31], [32]. To address the limitations of GPS in 

enclosed environments, alternative sensing technologies such as LiDAR and cameras have been 

introduced [33], [34]. LiDAR provides the capability to reconstruct three-dimensional maps of the 

surroundings, whereas cameras offer real-time visual information to facilitate position tracking and 

spatial reconstruction [35], [36]. Nevertheless, sensor-based localization alone remains insufficient, as 

quadcopters inherently require robust control algorithms to ensure trajectory stability and reliable 

autonomous navigation. Recent studies have proposed a variety of indoor localization approaches that 

integrate sensors with advanced control algorithms, including visual odometry, sensor fusion, and the 

deployment of external camera systems [37]-[39]. However, these approaches continue to encounter 

several limitations, such as high implementation costs, restricted operational coverage, and reduced 

effectiveness in coping with uncertainties in dynamic warehouse environments [40]-[42].  

The success of indoor quadcopter navigation is not determined solely by sensors, but is highly 

dependent on the control system employed [43], [44]. Control algorithms play a crucial role in 

maintaining quadcopter stability, regulating trajectory tracking, and ensuring autonomous operation 

within complex warehouse environments [45]. Therefore, research on indoor localization cannot be 

separated from the development of control methods that are both adaptive and robust against 

disturbances and environmental uncertainties. The indoor localization system integrating an Inertial 

Measurement Unit (IMU) and Ultra-Wideband (UWB) sensors is developed using the Extended 

Kalman Filter control method. Experimental results demonstrate its effectiveness in achieving accurate 

3D positioning and yaw estimation [46]. A model-based reinforcement learning (RL) approach is 

proposed to enable UAVs to navigate and make autonomous decisions in environments without GNSS 

and with limited visibility. The proposed architecture integrates onboard sensors, including a thermal 

camera to detect trapped victims (targets), a 2D LiDAR, and an IMU for localization. Experimental 

results demonstrate high success rates in target detection as well as robust performance in obstacle 

avoidance and navigation, despite uncertainties in pose estimation and detection [47]. The UAV system 

has a complex model and the Sliding Mode Control (SMC) method is known for its robustness against 

model inaccuracies and external disturbances [48]-[50]. The study employs Sliding Mode Control 

(SMC) combined with disturbance observers across the six degrees of freedom of the quadcopter to 

effectively reject external disturbances. While ensuring stability conditions, all control parameters were 

automatically initialized and tuned using a simulation-based offline Particle Swarm Optimization 

(PSO) algorithm, followed by onboard manual fine-tuning [51].  

However, SMC still has a fundamental drawback in the form of the chattering phenomenon, which 

refers to high-frequency oscillations arising from the switching mechanism in the control law [52]. This 

effect not only degrades system performance but also has the potential to cause instability, excessive 



2036 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 3, 2025, pp. 2034-2052 

 

 

Purwadi Agus Darwito (Indoor Quadcopter Localization Using Fuzzy-Sliding Mode Control for Robust Navigation) 

 

energy consumption, and premature actuator wear. Several methods have been proposed to mitigate 

the chattering phenomenon, introduces a chattering-free terminal sliding mode control approach for 

chaotic systems with unknown uncertainties. The method combines SMC with adaptive control to 

address the upper bound of model uncertainties without increasing control gains, by employing an 

adaptive continuous barrier function [53]. A boundary logic-based hybrid scheme that combines SMC 

and Proportional Integral Derivative (PID) controllers is proposed for underactuated nonlinear systems. 

While PID is effective for linear systems, it lacks robustness over a wide operating range, whereas 

SMC offers high robustness but suffers from chattering issues and practical implementation challenges. 

To address these limitations, a boundary-based adaptive exponential reaching law is developed to 

enhance the effectiveness of SMC [54]. Fuzzy Logic Control (FLC) has begun to be widely combined 

with SMC to adaptively adjust control parameters. FLC provides nonlinear decision-making 

capabilities that can reduce chattering effects while maintaining system robustness [55]-[57]. However, 

research integrating Fuzzy–SMC for quadcopter navigation and localization within warehouses or 

indoor remains limited. Previous studies have largely relied on camera-based localization systems, 

which are expensive and impractical for large-scale warehouses, or have focused solely on basic 

stabilization without considering the challenges of indoor navigation.The contributions of this research 

are as follows:  

• Developing a quadcopter navigation control system for indoor localization in warehouses using 

Fuzzy–SMC to reduce chattering and improve system robustness;  

• Conducting a comparative evaluation between LiDAR and camera sensors for indoor localization 

accuracy, thereby providing insight into their effectiveness in warehouse environments.  

2. Material and Control Design 

2.1. Quadcopter Mathematical Model 

The quadcopter mission profile represents the flight stages designed to test and optimize the 

performance of the quadcopter's control system and stability [58]. Based on Fig. 1, this study involves 

a quadcopter flight mission that includes taking off, hovering, cruising, hovering again, and finally 

landing. Before take-off, the quadcopter is stationary with all four rotors inactive. During take-off, all 

four rotors spin at the same speed, generating upward lift and causing the quadcopter to ascend. Once 

it reaches a pre-determined altitude, the four rotors will rotate at a constant speed. When the quadcopter 

performs cruising, the two rotors at the front of the quadcopter will decrease their speed, while the two 

rear rotors will increase their speed, generating forward thrust. Once it reaches the designated point, 

the quadcopter must enter a hovering state, where the speed of all four rotors is maintained at a constant 

level. Afterward, the quadcopter will gradually reduce the speed of its rotors, thereby decreasing the 

lift generated by the rotor rotation, allowing the quadcopter to descend back to the ground. Once it 

reaches the ground, all four rotors will stop, and the quadcopter will have successfully landed at the 

designated point. 

The implementation in Fig. 1 an autonomous system on a quadcopter enhances the effectiveness 

and efficiency of its predetermined flight path before the flight mission. Although it has 6 equations 

of motion, the quadcopter is a dynamic system with 4 inputs (𝑧, 𝜙, 𝜃, 𝜓), as there are 4 motors driving 

the quadcopter, as shown in Fig. 2. 

The relationship between rotational motion and translational motion in the body frame is 

expressed in R matrix [59]. 

 

R = [

cos 𝜓 cos 𝜃 cos 𝜓 sin 𝜃 sin 𝜙 − sin 𝜓 cos 𝜙 cos 𝜓 sin 𝜃 cos 𝜙 + sin 𝜓 sin 𝜙
sin 𝜓 cos 𝜃 sin 𝜓 sin 𝜃 sin 𝜙 + sin 𝜓 cos 𝜙 sin 𝜓 sin 𝜃 cos 𝜙 − cos 𝜓 sin 𝜙

− sin 𝜃 cos 𝜃 sin 𝜙 cos 𝜃 cos 𝜙
] (1) 

The most commonly used mathematical model to represent the dynamics of a quadcopter is the 

Euler-Newton model, which is based on Newton's and Euler's laws. This model takes into account 
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velocity, acceleration, moment of inertia, aerodynamic forces, and the torque applied to the 

quadcopter. The external forces acting on each axis are represented in (2). 

 

Fig. 1. Flowchart of quadcopter flight mission 

 

Fig. 2. Force on quadcopter 
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 𝐹𝑥 = 𝑚(𝑤 − 𝑟𝑣 + 𝑢̇) 

𝐹𝑦 = 𝑚(−(𝑝𝑤 − 𝑟𝑢) + 𝑣̇) 

𝐹𝑧 = 𝑚(𝑝𝑣 − 𝑞𝑢 + 𝑤̇) 

(2) 

Because the propellers rotate in opposite directions, the quadcopter will remain stable, and the 

torque or moment will be balanced. Since the aerodynamic and gyroscopic torques cancel each other 

out when the UAV quadcopter is flying in a static condition, the moment of the quadcopter (M) in 

the x, y, and z directions can be derived, and the mathematical model is expressed as shown in (3). 

 
𝜙̈ =

𝑙

𝐼𝑥
𝑈2 +

𝐼𝑦

𝐼𝑥
𝜃̇𝜓̇ −

𝐼𝑧

𝐼𝑥
𝜃̇𝜓̇ 

𝜃̈ =
𝑙

𝐼𝑦
𝑈3 +

𝐼𝑧

𝐼𝑦
𝜙̇𝜓̇ −

𝐼𝑥

𝐼𝑦
𝜙̇𝜓̇ 

𝜓̈ =
𝑙

𝐼𝑧
𝑈4 +

𝐼𝑥

𝐼𝑧
𝜙̇𝜃̇ −

𝐼𝑦

𝐼𝑧
𝜙̇𝜃̇ 

𝑥̈ =
𝑈1

𝑚
(cos 𝜓 sin 𝜃 cos 𝜙 + sin 𝜓 sin 𝜙) 

𝑦̈ =
𝑈1

𝑚
(sin 𝜓 sin 𝜃 cos 𝜙 − cos 𝜓 sin 𝜙) 

𝑧̈ = 𝑔 +
𝑈1

𝑚
(cos 𝜃 cos 𝜙) 

(3) 

The information regarding the relationship between the control signals and the angular velocity 

of the four rotors is presented in (4). 

 
ω1

2 =
𝑈1 

4𝑏
−

𝑈2 

2𝑏𝑙
−

𝑈4 

4𝑑
 

ω2
2 =

𝑈1 

4𝑏
−

𝑈3 

2𝑏𝑙
+

𝑈4 

4𝑑
 

ω3
2 =

𝑈1 

4𝑏
+

𝑈2 

2𝑏𝑙
−

𝑈4 

4𝑑
 

ω4
2 =

𝑈1 

4𝑏
+

𝑈3

2𝑏𝑙
+

𝑈4 

4𝑑
 

(4) 

2.2. Control System 

SMC consists of two different parts, namely the sliding surface and the control law. The sliding 

surface is the part that deals with designing the sliding conditions to produce characteristics that are 

suitable for design. In addition, this part also represents a numerical function that produces 

characteristics suitable for design [60]. The mathematical equation for SMC is generally written in 

(5). 

 σ =  f(e, e, . . . , 𝑒𝑘) 

𝜎 =  𝑒𝑘 + ∑ 𝐶𝑖 +

𝑘−1

𝑖=0

𝑒𝑖 

𝜎 = (
𝑑

𝑑𝑡
+ 𝑝)𝑘𝑒 

(5) 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

2039 
Vol. 5, No. 3, 2025, pp. 2034-2052 

  

 

Purwadi Agus Darwito (Indoor Quadcopter Localization Using Fuzzy-Sliding Mode Control for Robust Navigation) 

 

Control law is the part to decide the control law that will be applied to the system later, the 

equation is written in (6). 

 𝜇 =  −𝑈 ∗ 𝑠𝑔𝑛(𝜎) (6) 

In the Sliding Mode Control (SMC) control system, it is necessary to determine the sliding 

surface in equation (7) to control the quadcopter. Here is the sliding surface that will be applied to 

the quadcopter [61]. 

 𝑠𝑥 = 𝑒̇𝑥 + 𝜆𝑥𝑒𝑥 

𝑠𝑦 = 𝑒̇𝑦 + 𝜆𝑦𝑒𝑦 

𝑠𝑧 = 𝑒̇𝑧 + 𝜆𝑧𝑒𝑧 

𝑠𝜙 = 𝑒̇𝜙 + 𝜆𝜙𝑒𝜙 

𝑠𝜃 = 𝑒̇𝜃 + 𝜆𝜃𝑒𝜃 

𝑠𝜓 = 𝑒̇𝜓 + 𝜆𝜓𝑒𝜓 

(7) 

To ensure the stability of the system,  𝑉̇𝑥 < 0, so the sliding mode condition applied is written in (8). 

 𝑠̇𝑥 = −𝑘1𝑥
𝑠𝑖𝑔𝑛(𝑠𝑥) − 𝑘2𝑥

𝑠𝑥 (8) 

However, if the determination of the sliding surface value is not appropriate, it will cause a 

chattering effect. The chattering effect occurs when there are oscillations on the sliding surface, so 

that it will produce a discontinuous trajectory [62]. 

2.2.1. Fuzzy Controller 

In the design of the Fuzzy control system, Fuzzy logic functions as a tuning mechanism for the 

SMC parameters, thereby determining the values of 𝑘1𝑥
, 𝑘2𝑥

, 𝑘1𝑦
, 𝑘2𝑦

, 𝑘1𝑧
, 𝑘2𝑧

, 𝑘1𝜙
, 𝑘2𝜙

, 𝑘1𝜃
,

𝑘2𝜃
, 𝑘1𝜓

 , 𝑎𝑛𝑑 𝑘2𝜓
. The design of the Fuzzy control system begins with the construction of the 

membership functions and the rule base. In developing the membership functions, the input and 

output variables to be used must first be specified. 

The membership functions on each axis are defined according to Table 1 for the x-axis, Table 2 

for the y-axis and z-axis membership functions, along with the fuzzy sets and ranges for each input 

and output variable. Each fuzzy category is designed to correspond with the desired conditions. For 

instance, when the error value is very large, as shown in Table 1, the Negative High (NH) category 

corresponds to an error value of –90 and a delta error of –75, resulting in an output ranging from 

0.00825 to 0.0115. This output is then mapped to the rule base presented in Table 6. Specifically, 

when the error value falls under the NH (Negative High) category and the delta error also belongs to 

the NH (Negative High) category, the system produces a PH (Positive High) output. Table 3 presents 

the membership functions for the 𝜙 axis, including the fuzzy sets and the ranges for each input and 

output variable. The membership function for the input variable of the 𝜃 position error is shown in 

Table 4. For the 𝜓 axis fuzzy system, the membership function domains are derived from Table 5. 

Then, after determining the membership function ranges for both input and output variables, the 

next step is to define the system rule base for gain determination, as presented in Table 6. In the 

actual implementation for example on the x-axis, the input variables are the position error in x and 

the delta x error, which represent the difference between the desired and actual quadcopter positions. 

Meanwhile, the output variable 𝑘𝑥 corresponds to the SMC gain value, which ultimately affects the 

rotor speed. The use of Fuzzy categories such as NH, NM, NL, Z, PL, PM, and PH facilitates 

smoother and more flexible mapping of input values to outputs compared to traditional control 

methods. The membership functions shown in the figure illustrate how the Fuzzy inference system 

maps numerical input values into Fuzzy categories. This is crucial to ensure that every flight 

condition can be properly detected and handled. For instance, the “NH” category for highly negative 
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“X” values indicates a condition that requires rapid corrective action to avoid instability. In this case, 

Sliding Mode Control will be implemented in parallel with Fuzzy logic to tune the SMC gain 

parameters. 

Table 1.  Membership function domain of the X axis 

No Membership Function 
Input Variables Output Variables 

Error x(m) Error rate x(m/s) Throttle 

1 Negative High (NH) [-90 -55 -45 -30] [-75 -60 -45 -30] 
[0.0001 0.0005 0.0015 

0.00275] 

2 Negative Medium (NM) [-45 -30 -15] [-45 -30 -15] [0.0015 0.00275 0.004] 

3 Negative Low (NL) [-30 -15 0] [-30 -15 0] [0.00275 0.004 0.00525] 

4 Zero (Z) [-5 0 5] [-10 0 10] 
[0.00475 0.0055 

0.00625] 

5 Positive Low (PL) [0 15 30] [0 15 30] [0.00575 0.007 0.00825] 

6 Positive Medium (PM) [15 30 45] [15 30 45] [0.007 0.00825 0.0095] 

7 Positive High (PH) [30 45 55 90] [30 45 60 75] 
[0.00825 0.0095 0.0105 

0.0115] 

Table 2.  Membership function domain of the Y and Z axis 

No Membership Function 
Input Variables Output Variables 

Error x(m) Error rate x(m/s) Throttle 

1 Negative High (NH) [-90 -60 -45 -30] [-75 -60 -45 -30] 
[0.0001 0.0005 0.0015 

0.00275] 

2 Negative Medium (NM) [-45 -30 -15] [-45 -30 -15] [0.0015 0.00275 0.004] 

3 Negative Low (NL) [-30 -15 0] [-30 -15 0] [0.00275 0.004 0.00525] 

4 Zero (Z) [-10 0 10] [-5 0 5] 
[0.00475 0.0055 

0.00625] 

5 Positive Low (PL) [0 15 30] [0 15 30] [0.00575 0.007 0.00825] 

6 Positive Medium (PM) [15 30 45] [15 30 45] [0.007 0.00825 0.0095] 

7 Positive High (PH) [30 45 60 90] [30 45 60 75] 
[0.00825 0.0095 0.0105 

0.0115] 

Table 3.  Membership function domain of the 𝜙 axis 

No Membership Function 
Input Variables Output Variables 

Error x(m) Error rate x(m/s) Throttle 

1 Negative High (NH) 
[-70.25 -60.25 -40.25 -

30.25] 
[-20 -15 5 10] 

[0.0001 0.0005 0.0015 

0.00275] 

2 Negative Medium (NM) [-40.25 -30.25 -20.25] [5 10 15] [0.0015 0.00275 0.004] 

3 Negative Low (NL) [-30.25 -20.25 -10.25] [10 15 20] [0.00275 0.004 0.00525] 

4 Zero (Z) [-10.25 0 10.25] [20 24 28] 
[0.00475 0.0055 

0.00625] 

5 Positive Low (PL) [10.25 20.25 30.25] [28 33 38] [0.00575 0.007 0.00825] 

6 Positive Medium (PM) [20.2 30.2 40.2] [33 38 43] [0.007 0.00825 0.0095] 

7 Positive High (PH) 
[30.25 40.25 60.25 

70.25] 
[38 43 63 68] 

[0.00825 0.0095 0.0105 

0.0115] 

Table 4.   Membership function domain of the 𝜃 axis 

No Membership Function 
Input Variables Output Variables 

Error x(m) Error rate x(m/s) Throttle 

1 Negative High (NH) 
[-70.25 -60.25 -40.25 -

30.25] 
[-5 -2 2 5] 

[0.0001 0.0005 0.0015 

0.00275] 

2 Negative Medium (NM) [-40.25 -30.25 -20.25] [2 5 8] [0.0015 0.00275 0.004] 

3 Negative Low (NL) [-30.25 -20.25 -10.25] [5 8 11] [0.00275 0.004 0.00525] 

4 Zero (Z) [-10.25 0 10.25] [11 15.5 20] 
[0.00475 0.0055 

0.00625] 

5 Positive Low (PL) [10.25 20.25 30.25] [20 23 26] [0.00575 0.007 0.00825] 

6 Positive Medium (PM) [20.2 30.2 40.2] [23 26 29] [0.007 0.00825 0.0095] 

7 Positive High (PH) 
[30.25 40.25 60.25 

70.25] 
[26 29 33 36] 

[0.00825 0.0095 0.0105 

0.0115] 
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Table 5.  Membership function domain of the  𝜓 axis 

No Membership Function 
Input Variables Output Variables 

Error x(m) Error rate x(m/s) Throttle 

1 Negative High (NH) [-120 -100 -80 -60] [-5 -2 2 5] 
[0.0001 0.0005 0.0015 

0.00275] 

2 Negative Medium (NM) [-80 -60 -40] [2 5 8] [0.0015 0.00275 0.004] 

3 Negative Low (NL) [-60 -40 -20] [5 8 11] [0.00275 0.004 0.00525] 

4 Zero (Z) [-20 0 20] [11 15.5 20] 
[0.00475 0.0055 

0.00625] 

5 Positive Low (PL) [20 40 60] [20 23 26] [0.00575 0.007 0.00825] 

6 Positive Medium (PM) [40 60 80] [23 26 29] [0.007 0.00825 0.0095] 

7 Positive High (PH) [60 80 100 120] [26 29 33 36] 
[0.00825 0.0095 0.0105 

0.0115] 

Table 6.  Rule base of the controller 

Error 
Error derivatif 

NH NM NL Z PL PM PH 

NH PH PH PH PH PM PL Z 

NM PH PH PH PM PL Z NL 

NL PH PH PM PL Z NL NL 

Z PH PM PL Z NL NL NM 

PL PM PL Z NL NL NM NH 

PM PL Z NL NL NM NM NH 

PH Z NL NL NM NM NH NH 

 

In this research, based on Fig. 3, Fuzzy Logic is used to tune the SMC gain according to the 

desired conditions. The use of Fuzzy Logic will change the SMC gain value according to the 

changing conditions that occur. Thus, the quadcopter remains in the sliding surface condition and 

does not experience the chattering effect. The combination of these two methods will allow the 

quadcopter to fly in a stable and accurate condition when flying missions. Thus, the use of Fuzzy and 

SMC will help to provide stability in the movement of the quadcopter. The autonomous control 

system on the quadcopter is implemented by using a trajectory equation that is set in such a way that 

it can run according to the desired flying mission. In performing indoor localization, the quadcopter 

will run according to the specified trajectory. However, to validate the position of the quadcopter, 

sensors are required. In this research, two sensors are used to compare their performance in reading 

the position accurately. First, a LiDAR sensor is used and the second is a camera. Tests were carried 

out by performing two variations of the trajectory equation: 

• Trajectory  IA 

 

𝑥𝑑(𝑡) = {

0, 0 ≤ 𝑡 < 10
1

6
(𝑡 − 10), 10 ≤ 𝑡 < 40

5, 40 ≤ 𝑡 ≤ 100

 

𝑦𝑑(𝑡) = {

0, 0 ≤ 𝑡 < 10
0, 10 ≤ 𝑡 < 40

1

6
(𝑡 − 40), 40 ≤ 𝑡 ≤ 100

 

𝑧𝑑(𝑡) = {
0.15𝑡, 0 ≤ 𝑡 < 10

1.5, 10 ≤ 𝑡 < 40
1.5, 40 ≤ 𝑡 ≤ 100

 

(9) 

• Trajectory  IB 

 

𝑥𝑑(𝑡) = {

0, 0 ≤ 𝑡 < 18
5

26
(𝑡 − 18), 18 ≤ 𝑡 < 44

5, 44 ≤ 𝑡 ≤ 100

 (10) 
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𝑦𝑑(𝑡) = {

0, 0 ≤ 𝑡 < 18
0, 18 ≤ 𝑡 < 44

5

28
(𝑡 − 44), 44 ≤ 𝑡 ≤ 100

 

𝑧𝑑(𝑡) = {
0.25𝑡, 0 ≤ 𝑡 < 18

4.5, 18 ≤ 𝑡 < 44
4.5, 44 ≤ 𝑡 ≤ 100

 

2.2.2. Design Converter 

At a certain altitude, the quadcopter performs altitude sensing, resulting in a z-position error, 

which is then fed back to the altitude control. As a result, the altitude control equation is represented 

as shown in (4). 

 
𝑧̈ = 𝑔 +

𝑈1

𝑚
 

𝑈1 = 𝑚 (𝑧̈ + 𝑔) 

(11) 

Value of  𝑈1 represents the lift force generated by the throttle for altitude control. Additionally, 

modeling is also performed to determine the input in terms of x and y positions. In this case, the 

angles that have an effect are the roll and pitch angles. 

 
[
𝜙𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑
] =

𝑚

𝑈1
[
cos 𝜓 sin 𝜓
sin 𝜓 − cos 𝜓

] [
𝑥̈
𝑦̈

] (12) 

The 𝜙𝑑𝑒𝑠𝑖𝑟𝑒𝑑 value is the desired value of the angular position 𝜙 due to the desired value of the 

𝑥 axis position. While the  𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 value is the desired value of the angular position 𝜃 due to the 

desired value of the 𝑦 axis position [59]. 

 

Fig. 3. Block diagram of control system 

3. Results and Discussion 

Determination of the path to be used will be assisted by camera sensor readings that will localize 

the indoor environment so that the path to be used will be mapped and the specified point can be 

reached by choosing the closest path to save time. At this stage, path planning is carried out in 

determining the destination point based on Fig. 4. 

At first, the quadcopter is at one point which we consider as point (0,0) or the starting point. 

Then the quadcopter goes to the point to detect the cabinets to be addressed, so that recognition is 

carried out one by one at points A, B, C, and so on. 3D warehouse indoor environment design using 

Sketchup Pro 2020 software in the research that has been done according to Fig. 4. Fig. 5 is a 3D 

warehouse design with designed warehouse dimensions measuring 50 meters × 50 meters × 10 
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meters with a warehouse containing goods storage shelves. Thus, the quadcopter is simulated with 

conditions such as in real conditions. 

The parameter values of the quadcopter used in the design are presented in Table 7. 

Subsequently, the quadcopter navigation system is obtained from the formulation of the trajectory 

equations (9) and (10). For the first result, it discusses the test simulation based on the dynamic 

modeling of the quadcopter system using Fuzzy-SMC control by providing feedback so that the 

RMSE plot can be carried out using MATLAB software. 

 

Fig. 4. Path planning of quadcopter 

 

Fig. 5. 3D warehouse environment design 

Table 7.  Physical parameters of the quadcopter 

No Spesifikasi Parameter Unit Value 
1 Quadcopter mass m kg 1.75 

2 Arm length to center of mass l m 0.25 

3 Thrust coefficient b Ns2 0.0107 

4 Drag coefficient k Nms2 0.78264 ×  10−3 

5 Roll moment of inertia Ixx kgm2 0.0133 

6 Pitch moment of inertia Iyy kgm2 0.0133 

7 Yaw moment of inertia Izz kgm2 0.0214 

8 Rotor moment of inertia J kgm2 0.1021 ×  10−6 

 

In Fig. 6 (a), the input is given in the form of the LiDAR sensor reading value, namely the x-

position, then x-des as the input of the trajectory that the quadcopter will aim for. Thus, the reading 
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error is obtained. The error and delta error values obtained will be used as Fuzzy input for auto-

tuning the Sliding Mode Control gain, as well as getting the sliding surface value in the form of 𝑆𝑥. 
Thus, from these inputs will get the x-axis position control marked with 𝑈𝑥. For the SMC gain value 

used depends on the delta error obtained from the feedback. Therefore, Fuzzy can provide output in 

the form of a gain value that matches the input in each condition, so that the chattering effect can be 

reduced. Then, modeling is also done for y-axis position control with input in the form of sensor 

readings, namely the y-axis. Thus, producing an output in the form of a 𝑈𝑦 value using the control 

block in Fig. 6 (b). Then, in Fig. 6 (c), modeling is also done for z-axis position control with inputs 

in the form of z position reading values, desired values based on trajectory, and 𝜆𝑧 values. Thus, 

producing an output in the form of  𝑈1 value.  

  
(a) (b) 

 
(c) 

Fig. 6. Position Control Block (a) x-Axis (b) y-Axis (c) z-Axis 

First, a simulation was carried out using an SMC controller with constant gain values from the 

beginning to the end of the simulation. Based on the optimal tuning results, the values were obtained 

as 𝑘1 = 42.01 and 𝑘2 = 0.001. These tuned values were then implemented in the Simulink block, 

resulting in the test data presented in Fig. 7. 

Subsequently, a simulation was conducted using parallel Fuzzy–Sliding Mode Control. Based 

on the position error readings, initialization was performed using Fuzzy logic, which acts as a tuner 

for the SMC parameters. The output of the Fuzzy system generates the gain values for the SMC. The 

resulting trajectory is shown in Fig. 7. using equation (9), a plot is made with the starting point [0 0 

0], then moves on the z-axis or performs a flying mission with a height of 1.5 meters. Then proceed 

to move on the x-axis by 5 meters, and finally move on the y-axis by 10 meters. So, the quadcopter 

goes to the final destination point which is [5 10 1.5] according to Fig. 8. In trajectory variation A is 

a variation with a destination point of level 1 height on the warehouse shelf. Where, the determination 

of the height of the quadcopter is based on the midpoint of the height of the level 1 warehouse shelf. 

Based on Fig. 8, the Fuzzy–Sliding Mode Control follows the predefined trajectory. However, 

in altitude control, an error is observed where the quadcopter does not reach the desired setpoint but 

remains below it. This occurs because, during the quadcopter’s movement along the z-axis or take-

off, a transition takes place from motion along the x-axis to motion along the z-axis, causing a change 
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in the gain value. Just as the gain value is about to be updated, the trajectory provides a control input 

to move along the x-axis. As a result Fig. 9, the quadcopter proceeds along the x-axis without 

reaching the desired altitude point. Consequently, the altitude is maintained at a constant level of 

1.45 meters. 

 

Fig. 7. Track test position data results 𝐼𝐴 with SMC control 

The average steady-state error values for LiDAR and camera sensor readings are presented in 

Table 8. The steady-state error is calculated once the quadcopter receives a constant input on the 

trajectory, indicating that it has reached the desired point. In this case, the error calculation is used 

to compare the performance of LiDAR and camera readings. Along the x-axis, the average steady-

state error from the LiDAR sensor is higher than that of the camera, with values of 0.555% and 

0.372%, respectively. For the y-axis, the error value cannot be calculated in this study because the 

simulation ended as the trajectory reached the desired point, resulting in no steady-state condition 

along the y-axis. Meanwhile, the average steady-state error on the z-axis shows 2.221% for LiDAR 

and 1.555% for the camera. 

 

Fig. 8. 3D results of closed loop test trajectory 𝐼𝐴 
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Fig. 9. Test position data results for trajectory 𝐼𝐴 with Fuzzy–SMC 

Table 8.  Error value of 𝐼𝐴 trajectory position after hovering 

Average value of LiDAR Error (%) Average value of Camera Error (%) 
x y z x y z 

0.555 0 2.221 0.372 0 1.555 

 

Simulation results for the closed loop test on the 𝐼𝐵 trajectory variation based on equation (10), 

plotting with the starting point [0 0 0], then moving on the z-axis or performing a flying mission with 

a height of 4.5 meters. Then proceed to move on the x-axis by 5 meters, and finally move on the y-

axis by 10 meters. Thus, the quadcopter goes to the final destination point, namely [5 10 4.5]. In 

trajectory variation A is a variation with a destination point of level 2 height on the warehouse shelf. 

Based on Fig. 10, Fuzzy-SMC moves according to a predetermined trajectory. However, the height 

control shows an error, where the quadcopter does not touch the desired height, but less than the 

desired set point. This is because when the quadcopter moves on the z-axis or takes-off, in the 

transition condition from movement on the x-axis to movement towards the x-axis there is a change 

in the gain value. However, just as it is about to change its gain value, the trajectory provides control 

input to move on the x-axis. This causes the quadcopter to move on the x-axis without passing the 

desired altitude point. Therefore, the altitude is kept constant at 4.45 meters. Thus, the error data is 

obtained as in Table 9. 

If we review the position based on time, as in Fig. 9 and Fig. 11, we can observe that at the 

beginning of the z-axis movement, there is a significant spike. However, when the quadcopter has 

not reached a height of 1.5 meters, the quadcopter is already moving in the x-axis. This is expected 

from the delay in providing control, and is thought to be caused by Fuzzy being too late to update 

the SMC gain value generated from fuzzification. The delay in changing the SMC gain value is due 

to the computation on the mamdani type Fuzzy which requires a longer computation time. This is 

because the rule base that is initiated is 7×7, where it will take longer to detect the input, output, and 

rule base values that are suitable for the current conditions. 

Table 9.  Error value of 𝐼𝐵 trajectory position after hovering 

 Average value of LiDAR Error (%) Average value of Camera Error (%) 
x y z x y z 

0.8 0 4.044 0.4 0 3.822 
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Fig. 10. 3D results of closed loop test of trajectory 𝐼𝐵 

 

Fig. 11. Test track position data results for 𝐼𝐵 with Fuzzy-SMC control 

Table 9 shows the average value of steady state error for lidar and camera sensor readings when 

the quadcopter runs the mission on the 𝐼𝐵 trajectory. The steady state error is calculated when the 

quadcopter has received constant input on the trajectory because it has reached its desired point. In 

this case, the error calculation is used to compare the lidar and camera readings. Based on the data 

in Table 9, for the x-axis, the average value of the lidar sensor reading error has a higher value than 

the camera, which is 0.8%, while the camera has an average error value of 0.4%. Then for the y-axis 

in this study, the error value cannot be calculated, this is because when the trajectory reaches the 

desired point, the simulation time ends, so the steady state on the y-axis does not exist. As for the 

average steady state error on the z-axis for lidar has an error of 4.044%, while the camera is 3.822%. 

Based on the results in Table 8 and Table 9, it can be seen that the camera shows better accuracy 

compared to lidar. This is expected from the camera's ability to utilize more detailed visuals with 

pixel calculations in the initial condition compared to a certain condition very accurately. While lidar, 

has a lower performance because the simulation settings do not pay attention to factors such as laser 

reflection on uneven surfaces, material from obstacles in the form of cabinets that do not know 
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whether they absorb light or can affect the reflection of the rays emitted by LiDAR. In addition, the 

weather conditions are set to normal so that this position measurement should not be affected by 

weather conditions. Based on the results obtained, the difference between the lidar and camera sensor 

readings is 1-2 cm. When reviewing the location of the sensor mounting on the quadcopter, both are 

at the point [0 0 0], which is at the center of the body of the quadcopter 

4. Conclusion 

The indoor localization system was successfully developed by utilizing camera and LiDAR 

sensors to detect the quadcopter’s position, where the camera demonstrated higher accuracy 

compared to LiDAR. The Fuzzy–SMC proved effective in maintaining stability and positional 

accuracy, as indicated by the average error on the X and Z axes ranging from 0 to 4.044% (below 

5%), although the error value on the Y axis could not be calculated because the simulation stopped 

once the quadcopter reached its target point, preventing steady-state conditions from being observed. 

The main contribution of this study lies in the implementation of Fuzzy-SMC as an adaptive control 

approach capable of mitigating chattering effects while remaining robust against disturbances, 

making it relevant for supporting warehouse automation and similar industrial applications. Moving 

forward, simplifying the fuzzy rule base (e.g., 5×5 or 3×3) could be explored to reduce computational 

load, hardware-based implementation is needed to validate simulation results in real environments, 

and specific evaluation of the Y axis with longer simulation times is important to enable a more 

comprehensive analysis of system performance. 
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