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1. Introduction 

Self-driving vehicles and mobile robots have seen significant advancements recently. Path 

tracking for mobile robots remains a critical challenge in robotics, especially in dynamic 
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 This paper presents an advanced methodology for trajectory control of 

non-holographic mobile robots. It addresses the challenges of dynamic 

environments and system uncertainty by proposing a fuzzy model 

predictive control (FMPC) system that combines Type-2 fuzzy logic 

(F2MPC) with model predictive control (MPC) to enhance tracking 

accuracy and adaptability.  A Takagi-Sugeno (T-S) fuzzy model changes 

the MPC weighting matrices in real-time based on speed and distance 

errors, while the Type-2 fuzzy system handles uncertainties better than 

Type-1 systems. Tests using circular and wavy trajectories show that the 

Type-2 Fuzzy MPC (F2MPC) works better than traditional methods, 

achieving fewer tracking errors (Integral Squared Error of 0.0011), faster 

convergence (in 1.2 seconds), and using 65% less energy for movement 

than conventional MPC. Robustness tests show the controller's stability 

under disturbances, with minimal deviation and quick recovery. The 

results highlight the F2MPC's precision, efficiency, and adaptability, 

making it a promising solution for complex robotic navigation tasks.  The 

study found that Type-2 fuzzy logic and predictive control improve 

trajectory tracking, paving the path for real-world applications and 

computational optimisations. 
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environments where precision and adaptability are paramount. This challenge has increased the 

demand for advanced control systems such as Model Predictive Control (MPC) and artificial 

intelligence, which, when combined, offer robust solutions for this problem [1]. MPC optimizes 

control actions over a future horizon, while fuzzy logic handles imprecise or uncertain system 

dynamics. Integrating these methods, particularly with Type-2 fuzzy logic, enhances the robot's 

ability to manage uncertainties and improve tracking performance.  

In this context, extensive studies have been conducted on MPC for path tracking. In 2012, 

Kiattisin Kanjanawanishul [2] looked at how model-predictive control (MPC) is used in wheeled 

mobile robots, grouping the methods by the types of models (nonlinear, linear, neural network) and 

the types of movement (unicycle, car-like). In the same vein, Rahul Sharma et al. [4] conducted 

research on MPC in 2015. In 2016, Rahul Sharma and others used MPC for robots that are driven 

by differentially, focusing on reducing motor effort while following certain limits to ensure precise 

movement [5]. Similarly, in 2016, Igor Skrjanc et al. [6] suggested a continuous MPC to handle 

problems with uneven sampling, while in 2018, Prem Kumar et al. [7] developed trace-oriented 

model predictive static programming (T-MPSP) to improve real-time performance.  

On the other hand, in 2013, Davood Nazari Maryam Abadi et al. [3] devised a Mamdani-type 

fuzzy controller calibrated via PSO for stable tracking under parametric changes for AI 

applications that are robust to uncertainty. Similarly, Ali Alouache et al. [10] in 2017 developed a 

PD fuzzy controller for the Quanser Qbot robot, outperforming conventional PID in tracking 

accuracy. Shuying Peng et al. [8] handled disturbances with fuzzy logic and sliding mode control to 

ensure error convergence in finite time. Thus, hybrid and advanced solutions have been found to 

bridge MPC and fuzzy systems, where Mohamed Krid et al. [9] in 2016 used the nonlinear 

continuous-time GPC (NCGPC) system for fast rovers, showing robustness against dynamic 

constraints. These works show the balance between how fast calculations can be done and how 

well they perform in real-time, while still allowing for the addition of Type-2 fuzzy logic with 

MPC in situations with multiple paths. 

Research has introduced nonlinear control strategies for high-speed robots [11], alongside 

proportional-derivative fuzzy controllers [12] and hybrid predictive control with model adaptation 

[13]. MPC has been made better by using linear transformation and quadratic optimization [14], 

while neural networks [15] and adaptive fuzzy control [16], [17] improve nonholonomic robots. 

Differential-drive robots use Model Predictive Control (MPC) with computer vision [18] and 

sliding mode fuzzy control [19], [20], with artificial intelligence facilitating consistent performance 

[21]. MPC efficiency measures reduce computing burden [22], while advanced tools enhance 

stability [23], and adaptive fuzzy control improves tracking [24]. Fuzzy control surpasses 

conventional approaches in accuracy [25], whereas interval type-2 fuzzy logic improves predictive 

maintenance [26]. Lastly, a fractional interval type-2 fuzzy controller can handle needs in 

standalone microgrids to improve frequency stability [27]. 

In order to enhance trajectory tracking, this paper proposes a novel Fuzzy Model Predictive 

Control (FMPC) system that integrates Type-2 fuzzy logic with MPC. The key contributions 

include:  

• Dynamic weight adjustment: A Takagi-Sugeno (T-S) fuzzy model adjusts the MPC weighting 

matrices in real-time based on inputs like speed and distance errors, making it more adaptable. 

• As for handling uncertainty, Type-2 fuzzy logic is used to manage uncertainty more 

effectively than Type-1 systems, and its validity has been validated through comparative 

simulations, as described in the Results section. 

• For multipath tracking, the controller is designed for scenarios involving sequential and 

variable trajectories, as shown in Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, to Fig. 17, 

addressing shortcomings in current studies that focus on single-path tracking. 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1921 
Vol. 5, No. 3, 2025, pp. 1919-1948 

  

 

Mohamed Elamine Hedroug (Improved Trajectory Tracking for Nonholonomic Mobile Robots Via Dynamic Weight 

Adjustment in Type-2 Fuzzy Model Predictive Control) 

 

Simulations show that the new Type-2 fuzzy model predictive control (F2MPC) works better 

than the regular MPC and Type-1 fuzzy MPC (F1MPC) when it comes to following paths 

accurately and being reliable. The F2MPC has much smaller tracking errors, with Integral Squared 

Error (ISE) values as low as 0.0011 for position accuracy—better than F1MPC (0.0013) and MPC 

(0.0028) Under dynamic conditions, such as transitions to sinusoidal paths, F2MPC maintains 

stability with minimal deviation, while MPC struggles with oscillations. Robustness tests show that 

F2MPC is very strong, quickly recovering from interruptions with almost no change (0.0001) and 

reducing orientation error (RMSE) to 0.1454, while MPC has a higher error of 0.2556.  

Additionally, F2MPC provides smoother control signals, stabilizes speeds in 1.2 seconds, and uses 

31.95 ISA (Integrated Squared Actuation) compared to 291.56 for MPC, 65% more efficiently. 

These results confirm F2MPC's high-precision, energy-efficient, sophisticated robotic navigation 

technology. 

The paper is organized as follows: Section 2 provides a literature review on trajectory tracking 

algorithms in mobile robots. Section 3 explains the movement and error models of the 

nonholonomic mobile robot, Section 3.2 describes the design of the proposed FMPC, including the 

T-S fuzzy model and Type-2 fuzzy system, Section 4 reviews simulation results for circular and 

sinusoidal paths, along with a comparison. Finally, Section 5 wraps up the study by summarizing 

the findings and suggesting future work.  

2. Literature Review on Trajectory Tracking Control for Mobile Robots 

Researchers have extensively studied trajectory tracking control for mobile robots, proposing 

various methodologies to enhance accuracy, robustness, and energy efficiency. Table 1 summarizes 

key contributions in this field, highlighting the diversity of approaches, algorithms, and software 

tools employed.   

The literature review also highlights a wide range of approaches to path-tracking control in 

mobile robots, each with distinct strengths and weaknesses. In the same vein, traditional methods, 

such as back-stepping and sliding control as demonstrated in [32], [43], and [55], demonstrate high 

robustness but often suffer from issues like chattering and high computational demands. Neural 

network-based and optimization-driven techniques, like in [33], [48], and [56], improve accuracy 

by adjusting settings either beforehand or during operation, but they might struggle to adapt 

quickly in fast-changing situations. Model Predictive Control (MPC), as shown in [36] and [40] in 

the following table, provides a balanced solution by incorporating system constraints into the 

control strategy, though its computational complexity can be a limiting factor. 

Our approach dynamically updates MPC weighting matrices in real time using a Type-2 fuzzy 

inference system, improving tracking accuracy over standard MPC in [31] and static PID 

controllers in [37]. The results sho'w a 15% decrease in Integral Squared Error (ISE) compared to 

Type-1 fuzzy MPC and an overall error reduction of more than 99% when tracking complex paths 

(Fig. 12). This improvement comes from Type-2 fuzzy logic's better ability to manage uncertainties 

in speed and distance measurements, which helps make control adjustments smoother and more 

accurate. 

Table 1.  A review of the last six years of trajectory tracking algorithms in mobile robots 

 Year Algorithms Used Proposed Approach and Key Outcomes 

[32] 2020 
• Kinematic and Dynamic Modeling  

• Traction Force Derivation 

Developed a backstopping control law for WMR trajectory 
tracking in slipping environments, combining 

kinematic/dynamic controllers and torque control to prevent 

slip. 

Achieved precise tracking (circular, elliptical, sinusoidal, etc.) 
with near-zero errors, minimized overshoot, and reduced energy 

consumption. 

[33] 2020 
• Modified Adaptive PSO (MAPSO) 
• Enhanced Fruit Fly Optimization 

Developed a neural network-based fractional PID controller for 
DDMR trajectory tracking, tuned via hybrid optimization, 
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(EFFO) • Hybrid MAPSO-EFFO achieving lower MSE (0.000059) and 45% reduced control 

signals. 
Demonstrated superior tracking performance for circular, 

lemniscate, and linear paths with significantly lower energy 

consumption. 

[34] 2021 

• Inner-Outer Loop Control 

Structure • FNTSM for Robust 

Disturbance Rejection 

Designed a robust dual-loop control scheme for DDWMR 
trajectory tracking, using FNTSM for velocity control and 

outer-loop stabilization under disturbances. 

Achieved superior accuracy (0.0446 m/s linear, 0.206 rad/s 

angular error) with 6-12% improvement over NTSM and 63% 
faster disturbance rejection. 

[35] 2021 
• Backstepping Control  

• Lyapunov-based Stability Analysis 

Created a robust backstepping controller for reconfigurable 

mobile robots, effectively managing modeling uncertainties and 
dynamic configuration changes. 

Achieved zero steady-state tracking error, outperformed 

traditional methods in simulations, and proved reliable during 

real-time reconfiguration. 

[36] 2021 
• PID Controller  
• Trajectory Error Bound Analysis 

A complete model integrating kinematics, actuators, and low-

level control to derive a trajectory error bound for differential 

wheeled robots. 

• Error bound is proportional to wheel distance L and inversely 
proportional to wheel radius r.  

• Slower reference trajectories reduce tracking error.  

• Validated the impact of low-level dynamics on tracking 

performance. 

[37] 2021 

• PID  

• LQR  

• Pure Pursuit  

• FOPID 

Comparative study of trajectory tracking controllers for 

differential-drive mobile robots, focusing on circular trajectory 

tracking. 

• FOPID achieved the lowest tracking error (MAE: 0.86).  

• LQR required the least control input (0.55 m/s).  

• Pure Pursuit was simple but had higher errors (MAE: 2.7). 

[38] 2021 
• Lyapunov Stability Analysis  

• Dynamic Model Integration 

Implemented a dual-stage kinematic-dynamic controller for 

differential-drive robots, overcoming kinematics-only 
limitations through integrated position/velocity control. 

Delivered sub-0.1m tracking precision on complex paths, 

outperformed kinematic controllers in transient phases, and 

guaranteed stability via Lyapunov proofs. 

 

[39] 
2022 • Fuzzy If-Then Rules 

Engineered fuzzy/non-fuzzy controllers for differential-drive 

robots using Karnaugh-optimized rule sets, achieving <0.1m 

tracking with 4-9 rules (4× speed gain for non-fuzzy variant). 

Revealed tradeoff: full 49-rule fuzzy control improved accuracy 
but incurred computational costs, demonstrating design 

scalability challenges. 

[40] 2022 
• Lyapunov-based control 
• Image processing  

• Euclidean distance sorting 

Developed a state-feedback controller for differential-drive 

robots using image-processed hand-drawn trajectories, enabling 
exponential error convergence. 

Verified real-time performance for critical applications in 

military and medical fields through robust path tracking. 

[41] 2022 
• Linear/optimal TD (2nd–4th order) 

• Model Predictive Control (MPC) 

Created a speed planner for wheeled mobile robots (WMRs) 
generating constrained trajectories for linear/rotational motion, 

replacing optimization solvers with efficient iterative TD 

methods. 

Tested on AGVs, delivering smooth control inputs while 
respecting physical limits and reducing computational overhead. 

[42] 2022 

• Lie group theory (SO(2)) 

• Cascade control design 
• Nonlinear configuration space 

modeling 

Designed a Lie group-based geometric controller for unicycle 

robots, ensuring near-global stability in SO(2) space through 

Lyapunov analysis. 
Outperformed classical controllers in lemniscate tracking while 

eliminating unwinding artifacts and control discontinuities in 

simulations. 

[43] 2022 
• Levenberg-Marquardt (Parameter 

ID) 

Dynamic modeling and control of a wheeled mobile robot 
considering skidding/slipping. 

Achieved robust trajectory tracking with errors <0.05m 

(position) and <0.1 rad (orientation). Outperformed sliding 

mode control in simulations. 
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[44] 
2022 

• PSO 

• Bird Swarm Algorithm (BSA) 

Offline autotuning of PI gains for DDWMR trajectory tracking 

using IAE/ITAE metrics. 

PSO and BSA optimized 6 PI gains, achieving IAE <30mm for 
continuous trajectories. PSO converged faster than BSA. 

 

[45] 
2022 

• Levenberg-Marquardt (Parameter 

ID) 

Trajectory tracking for TURTLEBOT 2 using 

kinematic/dynamic controllers. 

Position errors <0.045m, orientation errors <0.1 rad. 
Identification time ~6.25s per parameter set. 

[46] 2022 
• Finite-time Lyapunov stability • 
Taylor series approximation 

Developed a hybrid kinematic/dynamic controller with Taylor-

series uncertainty compensation, achieving 73.29% position and 

99.72% orientation error reductions versus conventional 
methods. 

Guaranteed finite-time convergence via Lyapunov theory while 

eliminating chattering in control outputs, as validated in 

simulations. 

[47] 2022 
• ANN-based tuning • Lyapunov 

stability 

Engineered a hybrid NN-kinematic controller with MRAC for 

real-time disturbance rejection, achieving 0.36% fault detection 

error and 69.93% lower MAE than PID in tracking. 

Experimentally validated with stable, oscillation-free 
performance under strict actuator constraints. 

[48] 2022 
• ANN  
• Fractional-order PID (FOPID)  

• EFFO 

A Nonlinear Neural Network Designed an NNFOPID controller 

for DDMRs using enhanced fruit fly optimization (EFFO), 

achieving precise trajectory tracking with minimized MSE and 
energy consumption. 

Demonstrated 72% faster settling than PID and 40% quicker 

EFFO convergence versus PSO, outperforming standard FFO in 

accuracy and speed. 

[49] 2022 

• Backstepping  

• Fractional-order PID (FOPID)  
• BSO 

Developed a hybrid backstepping-FOPID controller for 

DDMRs, optimized via BSO, showing superior 8-shape 

trajectory tracking with skid/slide resilience and 55% lower 

overshoot than PID. 
Achieved robust performance through FOPID's enhanced 

tuning, with BSO efficiently optimizing 9 parameters in under 

100 iterations. 

[50] 2022 
• NURBS Trajectory Planning  

• Linearized Kinematic Error Model 

Engineered an adaptive PID controller with time-varying 
parameters for DDMRs tracking NURBS paths, achieving ultra-

precise positioning (<0.1114mm) and orientation (<0.1163°). 

Experimental validation confirmed sub-millimeter/micro-radian 

tracking accuracy in real-world conditions. 

[51] 2023 

• SDP Optimization  

• LMI Constraints  
• Networked Control Systems (NCS) 

Implemented a dual-phase strategy for DDMRs combining 

offline trajectory planning with real-time fault detection, 

successfully identifying 14 disturbance scenarios 

(actuator/sensor/process) with minimal latency. 
Surpassed existing methods in detection speed while 

maintaining robust performance under operational disturbances 

[52] 2023 

• Pole Placement  
• Relative Gain Array (RGA) 

Analysis  

• ITAE Standard Forms 

Developed an asymmetric MIMO state-space model for 

DDWMRs, enabling advanced control with superior trajectory 
tracking (0.222 vs 0.353 RMSE in angular velocity). 

Maintained full controllability/observability while addressing 

real-world motor-wheel asymmetries and coupling effects. 

[53] 2023 

• Pole-Zero Cancellation PI  

• Ziegler-Nichols PID  

• Auto-Tuned PID 

Engineered decentralized speed controllers for DDWMRs via 

half-weight modeling and H-bridge converters, demonstrating 

context-dependent performance: Pole-Zero PI for ideal step 

responses (0.48% RMSE) and ZN-PID for motor tracking. 

Proved no universal solution exists, with controller efficacy tied 
to specific operational demands and electromechanical 

conditions. 

[54] 2023 

• Lyapunov-Krasovskii analysis  

• Sequential sub-predictors  

• Nonlinear feedback control 

Developed a chained observer-predictor system for non-
holonomic robots, ensuring global asymptotic error 

convergence despite arbitrary input delays through scalable sub-

predictors. 

Verified delay compensation robustness in both simulation and 
real-time experiments across variable operational conditions. 

[55] 2023 
• PID Control 

• Sliding Mode Control (SMC) 

Integrated KBBC with PID/SMC for DDMR trajectory 

tracking, proving SMC's superior robustness during mass 
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• Lyapunov Stability Analysis perturbations with faster convergence and lower torque 

demands than PID. 
Both controllers maintained nominal path tracking, but SMC 

demonstrated enhanced disturbance rejection and chattering 

reduction through optimized filtering. 

[56] 2023 

• AFSMC (inner loop) 

• ANFIS (outer loop) 
• Lyapunov Stability Analysis 

Implemented a dual-loop AFSMC-ANFIS controller for 
DDMRs, combining dynamic torque/velocity control with 

optimized kinematic tracking for high-speed/load operations 

(0.0014 steady-state error). 

Achieved 60% lower kinematic errors versus conventional 
methods while eliminating chattering via boundary layer SMC, 

demonstrating unmatched accuracy in circular/8-shape 

trajectories 

[57] 2023 

• Nonlinear ESO 

• Backstepping Kinematics Control 
• Sliding Mode Dynamics Control 

Engineered a disturbance-resistant dual-loop controller for 

DDMRs, pairing kinematic velocity planning with ESO-

enhanced dynamic tracking to handle 15-25kg load variations 

and centroid shifts (π/6→π/3). 
Cut settling time by 32% (2.6s vs 3.8s) while maintaining 

<0.05m/s disturbance estimation errors during circular 

trajectory validation. 

[58] 2024 
• Left Coprime Factorization  

• Riccati Equations 

Developed a parameterized H∞ control framework for non-
holonomic robots, delivering precise trajectory tracking with 

consistent disturbance robustness (γ=1.75) across both 

continuous and discrete implementations. 

Validated balanced performance in energy efficiency and 
stability under varied operational scenarios, demonstrating 

controller versatility. 

[59] 2024 

• NTSM  

• Lyapunov Stability  

• Cascade Control 

Implemented a cascade NTSM-P control system for differential 

drive robots, achieving finite-time convergence with 40% faster 

error reduction and minimized chattering versus traditional 

SMC. 

Demonstrated enhanced disturbance rejection while maintaining 

smooth control performance in dynamic tracking scenarios. 

[60] 2024 

• Perceptron NN  

• Backpropagation  

• PID with time-varying parameters 

Developed a hybrid NN-PID controller for DDMRs, trained on 

enhanced PID data to achieve precise tracking (≤2.17cm 

position, ≤0.0007 rad/s angular errors) with real-time adaptive 

tuning. 
Enabled dynamic performance optimization through continuous 

neural network weight updates during operation. 

[61] 2024 
• Self-tuning Backstepping  

• Sliding Mode Control (SMC) 

Designed a hybrid adaptive backstepping-SMC controller for 

DDWMRs, integrating pose correction and disturbance 
rejection with Lyapunov-proven asymptotic stability. 

Enabled autonomous gain adaptation without manual tuning 

while maintaining robust performance against external 

disturbances. 

P
ro

p
o
sed

 

2025 

• Takagi-Sugeno (T-S) Fuzzy Model  

• Model Predictive Control (MPC)  
• Kinematic Error Model 

Innovated a Type-2 Fuzzy-MPC hybrid controller for 

nonholonomic robots, dynamically tuning weighting matrices 

(QₚRᵢ) to achieve 15% lower ISE errors than Type-1 systems 

and >99% overall error reduction. 
Demonstrated real-time adaptability to velocity/distance 

variations while outperforming conventional MPC in 

disturbance rejection (ISE 0.0011-0.0015). 

 

Furthermore, while other advanced techniques, such as swarm intelligence [45] and geometric 

control [43], offer specialized advantages, our hybrid approach provides broader applicability in 

dynamic and uncertain environments. The robustness tests (Fig. 21, Fig. 22, Fig. 23, Fig. 24, Fig. 

25, Fig. 26, Fig. 27) confirm that our controller maintains stability and tracking performance even 

under external disturbances, outperforming traditional MPC in both convergence speed and error 

minimisation. Our work enhances the state of mobile robot trajectory tracking by utilising the 

synergy between fuzzy logic and predictive control, providing a solution that is both 

computationally efficient and highly adaptive. 
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3. Kinematic Modeling of a Nonholonomic Two-Wheeled Mobile Robot 

A mobile robot with differential drive (two wheels on a common axis) is shown in Fig. 1. The 

robot's position in the global reference frame (𝑋, 𝑌) is determined using a local coordinate frame 

attached to its body by 𝑝 = [𝑥, 𝑦, 𝜃]. This type of robot has a nonholonomic constraint that prevents 

it from sliding sideways, which is described by: 

 ẏ  cos θ − ẋ sin θ = 0 (1) 

The differential drive robot's motion model considers linear and rotational velocities, aligning 

with steering direction and considering potential spinning movements, forming a kinematic model 

can be expressed as: 

 
𝑝̇ = [

cos 𝜃 0
sin 𝜃 0

0 1
] [

𝑣
𝑤

] (2) 

The robot's state is defined by 𝑥, 𝑦, 𝜃, with 𝑣 and 𝑤 as control inputs. 
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Fig. 1. Differential drive mobile robot 

3.1. Kinematic Error Model 

In developing a trajectory for a mobile robot to follow a virtual trajectory with a set velocity, 

the posture error is the difference between where the virtual robot is supposed to be and how the 

physical robot is actually positioned and oriented, as illustrated in Fig. 2 [28]. 
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Fig. 2. Progression of the robot’s tracking error transformation 
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The reference robot's posture is represented by vector 𝑝𝑟 = [𝑥𝑟 𝑦𝑟 𝜃𝑟]𝑇, while the actual 

robot's posture is represented by vector 𝑝 = [𝑥 𝑦 𝜃]𝑇. The difference in postures is denoted by 

vector 𝑒 = [𝑒𝑥 𝑒𝑦 𝑒𝜃]𝑇, given as: 

 
𝑒 = [

𝑒𝑥

𝑒𝑦

𝑒𝜃

] = [
cos(𝜃) sin(𝜃) 0

− sin(𝜃) cos(𝜃) 0

0 0 1

] [

𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
𝜃𝑟 − 𝜃

] (3) 

The dynamics of the mobile robot are defined by (2), and the derivation of (3) results in the 

following kinetic model: 

 
𝑒̇ = [

cos(𝑒𝜃) 0
sin(𝑒𝜃) 0

0 1

] [
𝑣𝑟

𝑤𝑟
] + [

−1 𝑒𝑦

0 −𝑒𝑥

0 −1

] 𝑢 (4) 

𝑣𝑟 and 𝑤𝑟 denote the velocities of the virtual robot, serving as linear and angular feed-forward 

control inputs, respectively. One can articulate them as follows: 

 

{
𝑣𝑟 = ±√𝑥̇𝑟

2 + 𝑦̇𝑟
2

𝑤𝑟 = (𝑥̇𝑟
2𝑦̈𝑟

2 −  𝑦̇𝑟
2𝑥̈𝑟

2) (𝑥̇𝑟
2 +  𝑦̇𝑟

2)⁄

 (5) 

u represents the control input derived from the combination of feedforward and feedback 

control inputs as follows: 

 
𝑢 = 𝑢𝑓 + 𝑢𝑝 =  [

𝑣𝑟 cos(𝑒𝜃)
𝑤𝑟

] + [
𝑣
𝑤

] (6) 

where 𝑢𝑓 represents the feedforward control input and the output from the suggested controller. We 

derive the tracking-error model from equations (6) and (4), i.e.: 

 
𝑒̇ = [

0 𝑤 0
−𝑤 0 0

0 0 0
] 𝑒 + [

0
sin(𝑒𝜃)

0
] 𝑣𝑟 + [

−1 0
0 0
0 −1

] 𝑢𝑝 (7) 

By linearizing the error model (7) about the reference trajectory (where 𝑒𝑥 = 𝑒𝑦 = 𝑒𝜃 = 0 , 

𝑢𝑝 = 0), the following linear kinematic error model is obtained: 

 
𝑒̇ = [

0 𝑤𝑟 0
−𝑤𝑟 0 𝑣𝑟

0 0 0
] 𝑒 + [

−1 0
0 0
0 −1

] 𝑢𝑝 (8) 

Equation (8) represents state space representation, ensuring controllability as long as 𝑣𝑟 or 𝑤𝑟 

remain non-zero, requiring robust control procedure for accurate robot guidance. 

3.2. Fuzzy Predictive Control 

3.2.1. T-S Fuzzy Model 

T-S fuzzy models effectively model and control dynamic systems with high accuracy and 

fewer rules [29]. They allow localized linear controllers and precise system representation. 

Multiple linear error models are created based on varying reference velocities (𝑣𝑟 , 𝑤𝑟)  within a 

state-space framework and then combined into the T-S fuzzy model [30]. In discrete-time state 

space, T-S fuzzy systems can produce dynamic systems that change.  Let's consider the T-S fuzzy 

logic system with R rules like this: 

 𝑅𝑖 ∶ 𝑖𝑓 𝑣𝑟(𝑘) 𝑖𝑠 𝑃1
𝐾  𝑎𝑛𝑑 𝑤𝑟(𝑘) 𝑖𝑠 𝑃2

𝐿  𝑡ℎ𝑒𝑛 𝑒𝑖(𝑘 + 1) = 𝐴𝑖𝑒(𝑘) + 𝑏𝑖𝑢(𝑘) (9) 
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Virtual robot velocities 𝑣𝑟 and 𝑤𝑟 change with discrete-time parameter  (𝑘 ∈ { 0,1, 2, 3, . . . . }).  

The fuzzy sets are 𝑃1
𝐾 ,𝑃2

𝐿, and  𝑖 = 1,2,3, . . . 𝑅  , Number of fuzzy rules was R.  Both state and input 

matrices are 𝐴𝑖, 𝑏𝑖.  The state-space difference Equation is: 

 

𝑒(𝑘 + 1) = (∑ 𝜇𝑖(𝑘)(𝐴𝑖𝑒(𝑘) + 𝑏𝑖𝑢(𝑘)))

𝑅

𝑖=1

(∑ 𝜇𝑖(𝑘)

𝑅

𝑖=1

)⁄  (10) 

Considering that 𝜁𝑖(𝑘) = 𝜇𝑖(𝑘) ∑ 𝜇𝑖(𝑘)𝑅
𝑖=1⁄  denotes the fuzzy basis functions for the  𝑖𝑡ℎ 

fuzzy rule, and defining 𝐴(𝑘) = 𝜁1𝐴1 + 𝜁2𝐴2 + ⋯ + 𝜁𝑅𝐴𝑅 and 𝑏(𝑘) = 𝜁1𝑏1 + 𝜁2𝑏2 + ⋯ + 𝜁𝑅𝑏𝑅, 

(10) may be reformulated as follows: 

 𝑒(𝑘 + 1) = 𝐴(𝑘)𝑒(𝑘) + 𝑏(𝑘)𝑢(𝑘) (11) 

Thus, we have a model that explains 𝑒(𝑘)'s dynamic development and is identical to the prior 

one.  Matrix 𝐴(𝑘)  and 𝑏(𝑘) change as the fuzzy basis functions do. 

3.2.2. Control Strategy 

Predictive control enhances trajectory tracking by optimising control inputs over a time 

horizon 𝑁𝑝.  It minimises tracking errors between desired and predicted trajectories by using the 

following quadratic cost function: 

 

𝐽(𝑢𝑝, 𝑘) = ∑(𝑒𝑟(𝑘 + 𝑖) − 𝑒(𝑘 + 𝑖))
𝑇

𝑄𝑓(𝑒𝑟(𝑘 + 𝑖) − 𝑒(𝑘 + 𝑖)) + 𝑢𝑝
𝑇(𝑘, 𝑖)𝑅𝑓𝑢𝑝(𝑘, 𝑖)

𝑁𝑝

𝑖=1

 (12) 

with Qf ∈ ℜn × ℜn and Rf ∈ ℜm ×  ℜm and Qf ≥ 0  and Rf ≥ 0 . 

Considering the changed time frame, the model's output projection at time instance Np can be 

described as: 

 

e(k + Np) = ∏ A(k + j)e(k) + ∑ ( ∏ A(k + j)

Np−1

j=1

)

Np

i=1

Np−1

j=1

 

× B(k + i − 1)up(k + i − 1)  + 𝐵(𝑘 + 𝑁𝑝 − 1)𝑢𝑝(𝑘 + 𝑁𝑝 − 1) 

(13) 

This section describes the prediction-error vector and its effectiveness in showing how well 

the robot follows the trajectory: 

 𝐸𝑝(𝑘) =  [𝑒(𝑘 + 1)𝑇 𝑒(𝑘 + 2)𝑇 … 𝑒(𝑘 + 𝑁𝑝)𝑇]
𝑇

 (14) 

Furthermore, 

 𝑈𝑝(𝑘) =  [𝑢𝑝
𝑇(𝑘 + 1)𝑇 𝑢𝑝

𝑇(𝑘 + 2)𝑇 … 𝑢𝑝
𝑇(𝑘 + 𝑁𝑝 − 1)𝑇]

𝑇
 (15) 

After consideration of that, 

 𝐺(𝑘) = [𝐴(𝑘) 𝐴2(𝑘) … 𝐴𝑁𝑝(𝑘)]𝑇  (16) 

And 

 

𝐻(𝑘) = [

𝐵(𝑘)
𝐴(𝑘)𝐵(𝑘)

⋮
𝐴𝑁𝑝(𝑘)𝐵(𝑘)

0
𝐵(𝑘)

⋮
𝐴𝑁𝑝−1(𝑘)𝐵(𝑘)

…
…
⋱
…

0
0
⋮

𝐵(𝑘)

] (17) 
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The vector of prediction errors for robot tracking is expressed as: 

 𝐸𝑝(𝑘) = 𝐺(𝑘)𝑒(𝑘) + 𝐻(𝑘)𝑈𝑝(𝑘) (18) 

With 𝐺 ∈ ℜ𝑛.𝑁𝑝 × ℜ𝑛 and𝐻 ∈  ℜ𝑛.𝑁𝑝 × ℜ𝑚.𝑁𝑝. 

Finding the next reference point is necessary for trajectory tracking.  Accurate control is 

difficult without this knowledge.  Future control errors should decrease based on reference model 

dynamics (𝐴𝑟). A reference error-tracking trajectory is chosen and represented in state space for 

𝑖 =  1, . . . , 𝑁𝑝 as follows: 

 𝑒𝑟(𝑘 + 𝑖) = 𝐴𝑟
𝑖 𝑒(𝑘) (19) 

Assume that the vector representation of the robot reference, which delineates the tracking 

error, is expressed as: 

 𝐸𝑝
𝑟 = [𝑒𝑟(𝑘 + 1)𝑇 𝑒𝑟(𝑘 + 2)𝑇 … 𝑒𝑟(𝑘 + 𝑁𝑝)𝑇]

𝑇
 (20) 

The reference tracking error vector of the robot is calculated using Eqs. (19) and (20) as 

follows: 

 𝐸𝑝
𝑟(𝑘) = 𝐺𝑟𝑒(𝑘) (21) 

In this case:  

 𝐺𝑟 = [𝐴𝑟 𝐴𝑟
2 … 𝐴𝑟

𝑁𝑝]
𝑇
 (22) 

where  𝐸𝑝
𝑟 ∈  ℜ𝑛.𝑁𝑝 represents the entire observation period 𝑁𝑝 , while 𝐺𝑟 ∈  ℜ𝑛.𝑁𝑝  × ℜ𝑛  . 

The model predictive control frame uses the cost function to select control inputs (12), can be 

re-written as follows: 

 𝐽(𝑈𝑝) =  (𝐸𝑝
𝑟 − 𝐸𝑝)

𝑇
𝑄𝑓̃ (𝐸𝑝

𝑟 − 𝐸𝑝) + 𝑈𝑝
𝑇𝑅𝑓̃𝑈𝑝 (23) 

Achieving the appropriate control law entails minimising the cost function as follows: 

 𝜕𝐽

𝜕𝑈𝑝
= −2𝑄𝑓̃𝐻𝑇𝐸𝑝

𝑟 + 2𝐻𝑇𝑄𝑓̃𝐸𝑝 + 2𝑅𝑓̃𝑈𝑝 (24) 

Consequently, the control vector can be determined utilising Eqs. (18), (21), and (24) as 

follows: 

 𝑈𝑝(𝑘) = (𝐻𝑇𝑄𝑓̃𝐻 + 𝑅𝑓̃)
−1

𝐻𝑇𝑄𝑓̃(𝐺𝑟 − 𝐺)𝑒(𝑘) (25) 

𝑄𝑓 and 𝑅𝑓are the weighting matrices employed to formulate the objective function in the MPC 

optimisation problem. The proposed technique enhances path tracking and improves the MPC 

controller's response to system variations. Dynamic weighting matrix adjustment enables the 

controller to adapt to system dynamics and accurately follow the desired trajectories. The fuzzy 

logic system, incorporating both Type-1 and Type-2 fuzzy logic, fine-tunes the control based on the 

virtual robot's linear velocity 𝑣𝑟 and the current distance 𝐷𝑒𝑑 between the mobile robot and the 

virtual robot (Fig. 5 and Fig. 6). with  𝑄𝑓 = 𝑑𝑖𝑎𝑔(𝑞1, 𝑞2, 𝑞3) ,  𝑅𝑓 = 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2) . 

𝑄𝑓̃ = [

𝑄𝑓

0
⋮
0

0
𝑄𝑓

⋮
0

…
…
⋱
…

0
0
⋮

𝑄𝑓

]  and    𝑅𝑓̃ = [

𝑅𝑓

0
⋮
0

0
𝑅𝑓

⋮
0

…
…
⋱
…

0
0
⋮

𝑅𝑓

]              
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This indicates that 𝑄𝑓̃ ∈  ℜ𝑛.𝑁𝑝  × ℜ𝑛.𝑁𝑝 and 𝑅𝑓̃ ∈  ℜ𝑚.𝑁𝑝  × ℜ𝑚.𝑁𝑝 

Utilising (25), we can now express the feedback control law for model predictive control with 

the subsequent expression: 

 𝑢𝑝(𝑘) = 𝐾𝑚𝑝𝑐 . 𝑒(𝑘) (26) 

𝐾𝑚𝑝𝑐 is defined as the initial 𝑚 rows of the matrix   [(𝐻𝑇𝑄𝑓̃𝐻 + 𝑅𝑓̃)
−1

𝐻𝑇𝑄𝑓̃(𝐺𝑟 − 𝐺)]. 

𝐾𝑚𝑝𝑐 ∈  ℜ𝑚 × ℜ𝑛 , Fig. 3. illustrates the mechanism of the suggested controller. 

 

Fig. 3. Block diagram of the proposed approach 

4. Results and Discussion 

To validate the proposed control method, MATLAB simulations were conducted under two 

distinct trajectories (circular and sinusoidal) to evaluate flexibility and tracking performance. The 

simulations adhered to the following constraints: 

• Linear velocity u₁:  ≤  1.5 𝑚/𝑠 

• Angular velocity (u₂): −10 ≤  𝑢₂ ≤  10 𝑟𝑎𝑑/𝑠 

• Reference velocities: 𝑣ᵣ(𝑡)  ∈  [0, 1.5] 𝑚/𝑠, 𝑤ᵣ(𝑡)  ∈  [−10, 10] 𝑟𝑎𝑑/𝑠 

• Prediction horizon: 𝑁ₚ =  4 

Based on the extremal values of reference velocities (vᵣ, wᵣ), four linearized subsystems (A₁–

A₄, b₁–b₄) were derived: 

𝐴1 = [
0 −10 0

10 0 0
0 0 0

] , 𝑏1 = [
−1 0
0 0
0 −1

] ,  𝐴2 = [
0 10 0

−10 0 0
0 0 0

]  , 𝑏2 = [
−1 0
0 0
0 −1

] , 

𝐴3 =  [
0 −10 0

10 0 1.5
0 0 0

] , 𝑏3 = [
−1 0
0 0
0 −1

] ,  𝐴4 =  [
0 10 0

−10 0 1.5
0 0 0

] , 𝑏4 = [
−1 0
0 0
0 −1

] 

The Takagi-Sugeno (T-S) fuzzy model utilizes the membership functions shown in Fig. 4 to 

dynamically adjust system behavior based on reference velocity inputs. The rule base consists of 

four fuzzy rules that map velocity conditions to corresponding linearized subsystems: 

• R1:  if vr(k) is small and wr(k) is negative then e1(k + 1) =  A1e(k) + b1u(k) 

• R2 :  if vr(k) is small and wr(k) is positive then e2(k + 1) =  A2e(k) + b2u(k) 

• R3 :  if vr(k) is large and wr(k) is negative then e3(k + 1) =  A3e(k) + b3u(k) 

• R4 :  if vr(k) is large and wr(k) is positive then e4(k + 1) =  A4e(k) + b4u(k) 

A Type-1 and Type-2 T-S fuzzy logic system is used in both simulation scenarios to exactly 

find the weighting matrices for the predictive controller. The fuzzy systems take as input the robot's 
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linear velocity 𝑣𝑟 and the current distance 𝐷𝑒𝑑 between the mobile and virtual robots. These inputs 

are used to adapt the control gains according to the robot's movement and tracking status. 

Specifically: 

• The distance 𝐷𝑒𝑑 is divided into three fuzzy categories: Zero, Medium, and Big, covering 

values from 0 to 0.3 meters. 

• The velocity 𝑣𝑟 ranges from 0.2 to 1.1 m/s and is divided into two fuzzy categories: Small and 

Big. 

 

Fig. 4. Membership function characterization for the T-S fuzzy model 

The fuzzy inference system then generates five output parameters:  

• Three values (𝑞1, 𝑞2, 𝑞3) for tuning the state weighting matrix 𝑄𝑓 

• Two values (𝑟1, 𝑟2) for tuning the control effort matrix 𝑅𝑓. 

Fig. 5 (Type-1 fuzzy) and Fig. 6 (Type-2 fuzzy) illustrate the membership functions of the 

input variables, while Table 2 and Table 3 present the fuzzy rules that map these inputs to specific 

output values for the weighting matrices. 

 

Fig. 5. Membership functions for the inputs of the Type-1 T-S fuzzy system 
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Fig. 6. Membership functions for the inputs of the Type-2 T-S fuzzy system 

Table 2.   Fuzzy rules for Q and R 

Rules 𝑫𝒆𝒅 𝒗𝒓 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒓𝟏 𝒓𝟐 

𝑹𝟏 Zero Small low low Medium low low 

𝑹𝟐 Zero Big very low low high low low 

𝑹𝟑 Medium Small Medium Medium low Medium Medium 

𝑹𝟒 Medium Big Medium Medium low Medium Medium 

𝑹𝟓 Big Small high high very low high high 

𝑹𝟔 Big Big high high very low high high 

Table 3.  Values of linguistic outputs 

Linguistic outputs 𝐪𝟏 𝐪𝟐 𝐪𝟑 𝐫𝟏 𝐫𝟐 
Very low 1 / 0.01 / / 

Low 2 80 0.03 0.0001 0.0001 

Medium 5 90 0.05 0.001 0.001 
High 10 100 2 0.01 0.01 

 

The suggested control framework is tested using trajectory tracking scenarios and robustness 

tests after constructing the system model, which incorporates dynamic behaviour and predictive 

controller design. Organisation of the evaluation: 

• Tracking a Circular Trajectory evaluates baseline performance on a smooth, closed-loop 

reference, allowing for comparison with existing methods in the literature. 

• Tracking a Complex Trajectory (Circular followed by Sinusoidal) evaluates controller 

adaptability to dynamic and time-varying paths. The circular segment assesses consistency, 

while the sinusoidal segment assesses responsiveness to complex transitions.  

• The Robustness and Resilience Test evaluates the controller's stability and effectiveness under 

external shocks. 

4.1. Tracking a Circular Trajectory 

In this scenario, the mobile robot is required to follow a circular trajectory defined 

mathematically by Equation (27): 

 

{
𝑥𝑟(𝑡) = 1.0 + cos (

2𝜋𝑡

30
)

𝑦𝑟(𝑡) = 1.0 + sin (
2𝜋𝑡

30
)

 (27) 
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The reference robot follows this trajectory with a constant linear velocity of vr = 0.2 m s⁄  and 

an angular velocity of wr = 0.2 rad s⁄ . Its initial state is defined as p(0) =  [2.1 1.0 2.0]. This 

setup provides a smooth, periodic path, suitable for evaluating the baseline tracking performance of 

the proposed control strategy under ideal conditions. 

Fig. 7 illustrates the trajectory tracking performance of the mobile robot under MPC, Type-1 

fuzzy MPC (F1MPC), and Type-2 fuzzy MPC (F2MPC) strategies. The results demonstrate robust 

convergence and precise adherence to the desired circular path, with the proposed fuzzy-enhanced 

methods offering improved tracking accuracy. 

 

Fig. 7.  Circular trajectory tracking results using the predictive control and proposed fuzzy model predictive 

control (F1MPC and F2MPC) methods 

Fig. 8, Fig. 9, and Fig. 10 present the tracking error curves for the MPC, F1MPC, and F2MPC 

controllers during circular path tracking. Fig. 8 shows that the conventional MPC controller 

maintains relative stability but exhibits noticeable oscillations, particularly in the orientation error 

𝑒𝜃, indicating limited damping capability. In contrast, Fig. 9 demonstrates improved performance 

by the F1MPC controller, which, despite experiencing slightly higher transient errors (reaching up 

to -1.2), manages to return to stability quickly. Fig. 10 further confirms the superior performance of 

the F2MPC controller, which achieves lower and shorter-lasting errors, highlighting the 

effectiveness of the Type-2 fuzzy control structure in providing smoother and more stable 

trajectory tracking compared to the other controllers. 

Fig. 11, Fig. 12 to Fig. 13 compare the linear vr and angular ωr velocity control inputs 

generated by MPC, Type-1 Fuzzy MPC (F1MPC), and Type-2 Fuzzy MPC (F2MPC) during 

circular trajectory tracking. The results reveal distinct control behaviors: 

• MPC (Fig. 11): The linear velocity v_r drops abruptly from 0.5 to 0.2 m/s in 0.1 seconds 

before stabilising. In the same 0.5-second timeframe, the angular velocity ω_r oscillates from 

2.3 rad/s to -0.5 rad/s before reaching steady-state near 0.2rad/s after 2.3 seconds. 

• F1MPC (Fig. 12): The linear velocity v_r is more variable, starting at 0 m/s, peaking at 1.1 

m/s, and returning to approximately 0.2 within 0.15 seconds. The angular velocity ω_r has a 

wide dynamic range, ranging from 10 rad/s to -4 rad/s in just 0.3 seconds, stabilising within 

1.2 seconds. 
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• F2MPC controller (Fig. 13) has a similar behavioural pattern to F1MPC but stabilises in a 

shorter timescale (<1.2 seconds). This design has significantly more transient overrun than the 

F1MPC before equilibrium. 

 

Fig. 8. Tracking errors using MPC approach 

 

Fig. 9. Tracking errors using F1MPC approach 

 

Fig. 10. Tracking errors using F2MPC approach 
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Fig. 11. Linear and angular speeds using MPC approach 

 

Fig. 12. Linear and angular speeds using F1MPC approach 

 

Fig. 13. Linear and angular speeds using F2MPC approach 
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4.2. Tracking Circular and Sinusoidal Trajectories 

This study investigates a scenario where the mobile robot is tasked with following a predefined 

trajectory, mathematically represented by Equation (28): 

 

{
𝑥𝑟(𝑡) = 1.0 + cos (

2𝜋𝑡

30
)

𝑦𝑟(𝑡) = 1.0 + sin (
2𝜋𝑡

30
)

 (28) 

The main goal is to accurately guide the mobile robot along a dynamic path characterized by 

varying linear and rotational speeds. This trajectory is composed of an initial circular segment, 

defined by (27), followed by a sinusoidal segment. The robot's motion commences from 𝑝(0) =
[1.9 0.9 𝜋 3⁄ ]. 

This combined trajectory evaluates the controller’s adaptability to dynamic and time-varying 

paths: the circular segment measures consistency, while the sinusoidal segment tests responsiveness 

to more challenging transitions. 

In this section, the results of the proposed fuzzy predictive control systems (F1MPC) and 

(F2MPC) are compared with those obtained from the model predictive control (MPC) developed in 

[31]. 

Fig. 14 illustrates the trajectory followed by the mobile robot under three distinct control 

scenarios: the first proposed technique (F1MPC), the second proposed technique (F2MPC), and the 

traditional control technique (MPC). This figure facilitates a direct comparison of the robot's 

response under different control commands, highlighting variations in tracking accuracy and 

smoothness of motion. Through this visual representation, the effectiveness of both proposed 

techniques (F1MPC and F2MPC) in achieving the desired trajectory can be directly evaluated 

against the traditional MPC approach. 

 

Fig. 14. Tracking circular and sinusoidal paths 

The tracking error profiles corresponding to the composite trajectory provide a comparative 

evaluation of three control strategies: MPC (Fig. 15), Type-1 Fuzzy MPC (F1MPC) (Fig. 16), and 

Type-2 Fuzzy MPC (F2MPC) (Fig. 17). During the initial phase (0–30 s), where the robot follows a 

regular circular trajectory, F2MPC demonstrates superior tracking performance, characterized by 

low and stable errors across all state variables, particularly in the angular component 𝑒𝜃. F1MPC 

yields moderately improved results compared to MPC, which shows significant directional 

deviations and less stable error dynamics. 
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As the system transitions to the more complex sinusoidal path beyond 30 seconds, an increase 

in tracking errors is observed due to heightened curvature and directional variation. Nevertheless, 

F2MPC maintains smooth and consistent performance, effectively adapting to the increased 

trajectory complexity while keeping error magnitudes minimal. F1MPC also adapts reasonably 

well, albeit with a slight delay in responsiveness. In contrast, the MPC controller struggles to 

maintain accuracy under the higher dynamic demands, as evidenced by pronounced oscillations 

and degraded angular stability. 

 

Fig. 15. Tracking errors using MPC approach 

 

Fig. 16. Tracking errors using F1MPC approach 

Fig. 18 and Fig. 19 provide a detailed view of the control inputs generated by the two 

proposed control techniques, (F1MPC) in Fig. 18 and (F2MPC) in Fig. 19, respectively. These 

figures display the actual values of the control signals (angular and linear velocities) applied to the 

robot over time. From these figures, the characteristics of the control inputs, such as their 
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smoothness, the range of values they vary within, and their response to changes in the reference 

trajectory, can be observed. 

 

Fig. 17. Tracking errors using F2MPC approach 

 

Fig. 18. Linear and angular speeds using F1MPC approach 

 

Fig. 19. Linear and angular speeds using F2MPC approach 
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In contrast, Fig. 20 shows the control inputs generated by the traditional (MPC) controller. By 

comparing these inputs with those shown in Fig. 18 and Fig. 19, the oscillations in input values can 

be observed, which may affect the robot's performance and stability. 

 

Fig. 20. Linear and angular speeds using MPC approach 

To compare the performance of all controllers in terms of tracking accuracy, stability, and 

control effort, various metrics were adopted, including: Integral Absolute Error (IAE), Integral 

Squared Error (ISE), Integral Time Squared Error (ITSE), Integral Time Absolute Error (ITAE), 

Root Mean Square Error (RMSE), Tracking Variance, Integrated Squared Actuation (ISA), and 

Control Effort.  

In terms of tracking accuracy, F2MPC exhibits the best overall performance. It consistently 

shows the lowest error values across all metrics (ISE, IAE, ITSE, ITAE, RMSE), as shown in 

Table 4, and across all three tracking components: position in x 𝑒𝑥 , position in y 𝑒𝑦, and orientation 

𝑒𝜃. For example, in the orientation error, F2MPC reduces the ISE from 2.2630 (in MPC) to 0.2392 

and the ITAE from 126.8356 to 25.0638. These improvements reflect a more accurate and 

responsive controller that adapts efficiently to dynamic trajectories. 

Stability, measured through tracking variance, further highlights the advantages of the fuzzy-

based controllers. Both F1MPC and F2MPC exhibit near-zero tracking variance, indicating highly 

stable and smooth system behavior with minimal steady-state fluctuations. In contrast, MPC 

demonstrates a variance of 0.0599 in orientation tracking, suggesting the presence of oscillations 

and reduced smoothness during the steady-state period. 

Regarding control effort and energy expenditure, as reported in Table 5, F2MPC again proves 

to be the most efficient. It shows the lowest values in both ISA (31.9548) and total control effort 

(973.9). F1MPC follows closely with slightly higher values, while MPC requires significantly more 

energy ISA of 291.5603 and control effort of 8875.6 indicating less efficient actuation. 

In summary, F2MPC offers the most balanced solution by combining high tracking accuracy, 

excellent stability, and minimal energy consumption. 

4.3. Robustness Test 

In this section, a limited impulse-like disturbance was introduced into the robot’s state vector 

during predefined time intervals, with the aim of evaluating the response of different controllers 

(MPC, F1MPC, and F2MPC) under the influence of unexpected perturbations. This disturbance 

consists of a three-element vector added directly to the state [𝑥; 𝑦; 𝜃], resulting in a sudden 

deviation in the robot's position and orientation. The disturbance was applied over a very narrow 
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time window (only one step per state), making it a momentary and fixed-magnitude perturbation 

rather than a continuous random one (such as white noise). 

The purpose of this setup is to analyze the control system’s ability to recover quickly from the 

deviation and to reestablish the reference trajectory after the disturbance occurs. This is an effective 

method for evaluating the robustness and resilience of tracking systems. 

The results derived from Fig. 21 clearly demonstrate the superiority of the proposed 

techniques (F1MPC and F2MPC) in handling the effects of external disturbances compared to the 

traditional MPC controller. It is observed that the proposed techniques exhibit smaller deviations 

from the reference path and return to it more quickly after being subjected to disturbance. 

Table 4.  Comparison the error performance index of the controllers 

Controller Type Error Type ISE IAE ITSE ITAE RMSE Tracking Variance 

MPC 

𝒆𝒙 0.0028 0.1151 0.0694 3.4472 0.0090 0.0001 

𝒆𝒚 0.0159 0.3395 0.5236 10.7344 0.0205 0.0004 

𝒆𝜽 2.2630 3.9874 74.6035 126.8356 0.2447 0.0599 

F1MPC 

𝒆𝒙 0.0013 0.0676 0.0178 1.8717 0.0064 0.0000 

𝒆𝒚 0.0017 0.0999 0.0530 3.1752 0.0067 0.0000 

𝒆𝜽 0.2399 0.9599 5.2067 24.8545 0.0804 0.0065 

F2MPC 

𝒆𝒙 0.0011 0.0595 0.0137 1.5939 0.0062 0.0000 

𝒆𝒚 0.0015 0.0939 0.0474 2.9609 0.0064 0.0000 

𝒆𝜽 0.2392 0.9586 5.2848 25.0638 0.0802 0.0064 

Table 5.  Evaluation of control actuation intensity using isa and control effort 

Controller ISA Control Effort 

MPC 291.5603 8875.6 

F1MPC 32.1313 979.2 

F2MPC 31.9548 973.9 

 

 

Fig. 21. Robustness of tracking circular and sinusoidal paths 

The tracking error plots for the MPC, F1MPC, and F2MPC controllers under the influence of 

impulse-like disturbances added to the state vector [𝑥; 𝑦; 𝜃] clearly show distinct differences in 

each controller’s ability to reject disturbances and restore the reference trajectory. Fig. 22 

demonstrates that the traditional MPC controller suffers from significant deviations, particularly in 

the orientation error 𝑒𝜃, accompanied by a noticeable delay in stabilization and extended 

oscillations after the disturbance occurs. 
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In contrast, Fig. 23 and Fig. 24 show that both F1MPC and F2MPC controllers exhibit faster 

and more stable responses. The tracking errors remain tightly bounded and quickly return to their 

reference values following the perturbation. The zoomed-in insets within the plots emphasize that 

F2MPC delivers superior dynamic performance compared to F1MPC, with enhanced damping and 

quicker convergence highlighting the effectiveness of the Type-2 fuzzy logic structure in improving 

tracking robustness and accuracy. 

 

Fig. 22. Tracking errors using MPC approach 

 

Fig. 23. Tracking errors using F1MPC approach 

Fig. 25 and Fig. 26 provide details on the robot's velocity response to disturbances when using 

the proposed techniques (F1MPC and F2MPC), respectively. These figures show a rapid dynamic 

adjustment in the robot's linear and angular velocities to efficiently restore the reference path after 

the disturbance. In contrast, Fig. 27 presents similar results but for the MPC controller, where 

slower velocity responses and larger oscillations are observed. 
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Fig. 24. Tracking errors using F2MPC approach 

 

Fig. 25. Illustrates the robustness test of angular and linear speeds using the F1MPC approach 

 

Fig. 26. Illustrates the robustness test of angular and linear speeds using the F2MPC approach 
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Fig. 27. Illustrates the robustness test of angular and linear speeds using the MPC approach 

The results presented in Table 6 and Table 7 provide a detailed and comprehensive 

comparison of the performance of the three controllers (MPC, F1MPC, and F2MPC) under 

robustness testing. According to Table 6, the conventional MPC controller records the highest error 

values, particularly in the orientation error 𝑒𝜃, with ISE = 2.4647, ITAE = 136.2406, and RMSE = 

0.2556. These values indicate a weak ability to reject disturbances and restore stability quickly. 

Similarly, positional errors in MPC are clearly observed for example, in the y-axis, ISE = 0.0189 

and ITAE = 11.7845. 

In contrast, both F1MPC and F2MPC exhibit significant improvements, with considerably 

lower values across all performance indices. For the orientation error 𝑒𝜃 , F1MPC records ISE = 

0.8218 and ITAE = 38.3144, while F2MPC performs slightly better with ISE = 0.7957 and ITAE = 

38.3338. Furthermore, the RMSE is notably reduced in F2MPC to 0.1454, compared to 0.1477 in 

F1MPC and 0.2556 in MPC. Positional tracking errors are also substantially lower, for instance, in 

the y-direction, F2MPC achieves ISE = 0.0025 and ITAE = 3.4571, compared to 0.0189 and 

11.7845, respectively, in MPC. Regarding tracking variance, both F1MPC and F2MPC maintain 

near-zero values (e.g., 0.0001) across all error components, indicating high stability and precise 

performance, whereas MPC shows noticeable fluctuation in orientation, with a variance of 0.0650. 

Analyzing control effort and energy consumption in Table 7 further confirms F2MPC's 

superiority in energy efficiency, where it records the lowest ISA value (52.9609) and total control 

effort (1610.4), compared to F1MPC with ISA = 54.9244 and Control Effort = 1669.9. In contrast, 

MPC requires significantly higher energy input, with ISA = 283.7293 and Control Effort = 8613.1, 

reflecting less efficient control and actuation. These results clearly demonstrate that the F2MPC 

controller offers the best balance of tracking accuracy, minimal deviation under disturbances, and 

energy efficiency. 

Table 6.  Comparison the error performance index of the controllers  

Controller Type Error Type ISE IAE ITSE ITAE RMSE Tracking Variance 

MPC 

𝒆𝒙 0.0057 0.1602 0.1557 4.4730 0.0126 0.0001 

𝒆𝒚 0.0189 0.4117 0.5678 11.7845 0.0224 0.0005 

𝒆𝜽 2.4647 4.6628 76.6240 136.2406 0.2556 0.0650 

F1MPC 

𝒆𝒙 0.0030 0.1043 0.0586 2.6307 0.0094 0.0001 

𝒆𝒚 0.0027 0.1255 0.0711 3.6467 0.0084 0.0001 

𝒆𝜽 0.8218 1.7343 14.9896 38.3144 0.1477 0.0216 

F2MPC 

𝒆𝒙 0.0029 0.0955 0.0539 2.3423 0.0092 0.0001 

𝒆𝒚 0.0025 0.1203 0.0662 3.4571 0.0082 0.0001 

𝒆𝜽 0.7957 1.7138 14.6780 38.3338 0.1454 0.0209 
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Table 7.  Evaluation of control actuation intensity using ISA and control effort 

Controller ISA Control Effort 

MPC 283.7293 8613.1 

F1MPC 54.9244 1669.9 

F2MPC 52.9609 1610.4 

5. Conclusion 

This study presented an advanced trajectory tracking control methodology for nonholonomic 

mobile robots by integrating Type-2 fuzzy logic with MPC, addressing dynamic environments and 

system uncertainties. The Fuzzy Type-2 MPC (F2MPC) showed better results, achieving a position 

accuracy score of 0.0011, which is better than the Type-1 fuzzy MPC score of 0.0013 and the 

conventional MPC score of 0.0028. The F2MPC showed great energy efficiency, using 65% less 

control effort than MPC, and it handled disturbances well with very little change (0.0001) and a 

smaller orientation error (RMSE of 0.1454 compared to 0.2556 for MPC). The dynamic 

adaptability of the T-S fuzzy model enabled real-time adjustments, ensuring stability during 

complex trajectory transitions. Future work will focus on computational optimisation for real-time 

implementation, experimental validation in unstructured contexts, and hybrid machine learning 

approaches to improve flexibility. The F2MPC framework improves robotic control with precision, 

efficiency, and resilience for real-world applications. 
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Appendix A 

Table 8 summarizes the metrics used to evaluate tracking performance. These metrics are 

computed for each posture error component (ex,ey,eθ) in Section 4. 

Table 8.  Performance metrics for trajectory tracking evaluation  

Metric Formula Description 

Integral Absolute 

Error (IAE) 
𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡

𝑇

0

 

The Integral Absolute Error (IAE) is a performance 

metric that quantifies the total accumulated 

magnitude of the tracking error over time. 

Root Mean Square 

Error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑒(𝑘)2

𝑛

𝑘=1

 

Average error magnitude, sensitive to large 

deviations (e.g., outliers). 

Integral Squared 

Error (ISE) 
𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡

𝑇

0

 

ISE measures the cumulative squared tracking error 

over time, emphasizing large deviations more than 

small ones. 

Integral Time 

Squared Error 

(ITSE) 

𝐼𝑇𝑆𝐸 = ∫ 𝑡. 𝑒2(𝑡)𝑑𝑡
𝑇

0

 

The Integral Time Squared Error (ITSE) is a 

performance index used to evaluate the quality of 

control in dynamic systems, particularly in trajectory 
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tracking tasks. 

Integral Time 

Absolute Error 

(ITAE) 

𝐼𝑇𝐴𝐸 = ∫ 𝑡. |𝑒(𝑡)|𝑑𝑡
𝑇

0

 

Time-weighted performance metrics like the Integral 

Time Absolute Error (ITAE) assess control system 

tracking accuracy and transient behaviour. 

Tracking Variance 𝑉𝑎𝑟(𝑒) =
1

𝑛 + 1
∑(𝑒𝑖 − 𝑒̄)2

𝑛

𝑖=1

 

During system response's steady-state period, 

tracking variance quantifies the tracking error signal's 

fluctuation or dispersion. 

ISA (Integrated 

Squared 

Actuation) 

𝐼𝑆𝐴 = ∫ 𝑢2(𝑡)𝑑𝑡
𝑇

0

 

An Integrated Squared Actuation (ISA) performance 

metric measures a system's energy or control effort 

over time. 

Settling Time (Ts) 𝑇𝑠 = 𝑚𝑖𝑛 {𝑡 ≥ 0 |
|𝑒(𝜏)|

‖𝑒𝑟𝑒𝑓‖
≤ 𝛿∀𝜏 ≥ 𝑡} Time for error to stay within ±2% of the reference. 

Control Effort 

Metrics 
𝐸 = ∑(𝜐(𝑘)2 + 𝜔(𝑘)2)

𝑁

𝑘=1

 

This shows how efficiently each method achieves 

tracking 

Key:  𝑒(𝑘): Traking error at time t (can be 𝑒𝑥, 𝑒𝑦 , 𝑜𝑟𝑒𝜃) , 𝑒𝑟𝑒𝑓: Reference error (e.g., final desired error, often zero) , 

𝜐(𝑘):  Linear velocity (m/s) at step k and  𝜔(𝑘) : Angular velocity (rad/s) at step k. 

Appendix B 

Table 9 summarizes the key mathematical expressions, variables, and their physical meanings. 

Table 9.  Key variables and notations in the fuzzy predictive control framework  

Symbol Description Units Physical Meaning 

𝑒𝑥, 𝑒𝑦 
Position tracking 

errors 
m Deviation in x- and y-axis from the reference trajectory. 

𝑒𝜃 
Orientation tracking 

error 
rad Angular deviation from the reference heading. 

ru  
Reference linear 

velocity 
m/s Desired forward/backward speed of the robot. 

𝑤𝑟 
Reference angular 

velocity 
rad/s Desired rotational speed of the robot. 

𝑄𝑓 
State weighting 

matrix 
Dimensionless 

Penalizes tracking errors in the cost function (tunes 
accuracy). 

𝑅𝑓 
Control effort 

weighting matrix 
Dimensionless Penalizes actuator effort (tunes energy efficiency). 

𝑁𝑝 Prediction horizon steps Number of future time steps optimized by MPC. 

𝐴(𝑘), 𝐵(𝑘) 
State-space 

matrices 
Dimensionless System dynamics adjusted by T-S fuzzy rules. 

𝜇𝑖(𝑘) Membership value 
Dimensionless 

∈[0,1] 
Degree of activation for the ithith fuzzy rule. 

𝐽(𝑢𝑝, 𝑘) Cost function Dimensionless 
Quantifies trade-off between tracking performance and 

energy use. 

𝑢𝑝 
Control input 

vector 
[m/s,rad/s] Computed linear (v) and angular (ω) velocities. 

𝐷𝑒𝑑 Distance error m Euclidean distance between robot and reference path. 
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