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1. Introduction  

Achieving full autonomy in vehicles requires overcoming significant technological hurdles [1], 

broadly categorized into perception [2]-[13], localization [14]-[16], path planning [17]-[19], and 

controls [21]-[24]. Among these, precise and reliable localization is paramount for safe operation. 

This involves accurately determining the vehicle's position and orientation (pose) [13], [25]-[28] 

within a reference map, often requiring centimeter-level accuracy [14], [15] under diverse and 

dynamic conditions. This high precision enables the vehicle to understand its environment, including 

the road network, objects, and lane boundaries [16], which is crucial for essential functions like lane-

keeping, navigating complex intersections [25], and safe interaction with the environment [13]. 

However, maintaining this accuracy consistently, especially in challenging urban settings or adverse 

weather, remains a significant technological challenge [26]. This paper introduces a robust, real-time 

localization methodology, termed Real-Time Monte Carlo Localization (RTMCL), designed 
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 This study introduces a robust and accurate method for estimating 

autonomous vehicle position, facilitating safe navigation in urban and 

highway settings. The proposed technique employs a probabilistic particle 

filter framework, which, unlike approaches constrained by Gaussian 
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flexible position estimation. A key innovation lies in integrating a finely 

tuned Unscented Kalman Filter (UKF) to fuse radar and lidar data 

specifically for robust detection of pole-like static landmarks, whose 

positions and associated uncertainties are probabilistically modeled within 
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map to refine the vehicle's pose. Broad simulation tests validate the 

method's effectiveness, achieving a mean localization error of 
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Furthermore, the system demonstrates robustness, maintaining localization 

accuracy below 30 cm even with landmark position uncertainties up to 2 

meters, and confirms real-time capability exceeding 100 Hz. These 

findings establish the approach as a reliable and precise solution for 

autonomous vehicle localization across various scenarios. 
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specifically to address these challenges for autonomous driving using probabilistic sensor fusion and 

mapping techniques [28]-[32]. 

Various localization strategies exist, often relying on a suite of sensors including IMU, GPS, 

lidar, radar, cameras, and odometry [26]. Satellite-based systems like Real-Time Kinematic GPS 

(RTK-GPS) [33] or Differential GPS (DGPS) [34] can offer high precision but suffer from signal 

blockage in urban canyons [35], [36] and inherent latency issues [37], [38], limiting their reliability 

as a standalone solution [20]. Simultaneous Localization and Mapping (SLAM) techniques build maps 

dynamically [39], [52], avoiding reliance on pre-built ones [30], but often face challenges with 

computational cost, long-term drift, and meeting the strict real-time accuracy demands of autonomous 

driving [40], [53]. Consequently, map-based localization, which matches sensor data to a pre-existing 

map [27], is widely used. While dense High-Definition (HD) maps constructed from point clouds, 

grid maps, or polygon meshes [29], [41]-[44] provide rich environmental detail, their creation, storage 

(requiring massive memory [45]), and maintenance pose significant burdens. As a result, approaches 

using sparse 'landmark maps,' which encode only a restricted number of highly identifiable features 

extracted from sensor data [14], [46], offer a more scalable and computationally efficient alternative. 

This study focuses on enhancing localization performance using such landmark maps, specifically 

targeting pole-like features which are common and relatively stable in many road environments. 

Many existing landmark-based localization methods, particularly those utilizing pole-like 

features, rely heavily on lidar sensors due to their high spatial resolution [47]-[49]. However, while 

lidar excels in high-resolution mapping, its performance is known to degrade significantly in adverse 

weather conditions such as fog, heavy rain, or snow, and its effective range can be limited compared 

to other sensors [31]. This sensitivity poses a critical risk to localization robustness. In contrast, radar 

offers longer range and remains largely unaffected by weather, although with lower resolution [32]. 

To overcome these individual sensor limitations, a key contribution of this work is the use of dynamic 

sensor fusion, specifically integrating lidar and radar data via a carefully tuned Unscented Kalman 

Filter (UKF) [related to general fusion concept in 26]. This approach leverages radar's superior range 

and all-weather capabilities [32] to complement lidar's precision [31], enabling more reliable and 

consistent detection and state estimation of landmarks across a wider range of operating conditions, 

thereby enhancing the input to the localization filter. While advancements in lidar alternatives like 

camera-based localization or ground-penetrating radar exist [39], [40], fusing lidar and radar offers a 

compelling balance for landmark detection currently. 

Furthermore, detected landmark positions derived from any sensor data inherently contain 

measurement noise and uncertainty. Simply matching observed landmarks to deterministic map 

locations can lead to inaccuracies, especially when sensor noise is significant or map imperfections 

exist. Addressing this, another core contribution of this research lies in explicitly modeling and 

representing the uncertainty associated with landmark locations probabilistically within the reference 

map. This probabilistic map, generated offline, encodes not just the mean position but also the 

expected variance of each landmark. This richer map information is then integrated within a Monte 

Carlo localization framework implemented using a Particle Filter (PF) [27]. Particle filters are well-

suited for this, maintaining a set of potential poses (particles) and updating them based on 

measurements and motion models [27], naturally incorporating these probabilistic landmark 

observations alongside vehicle motion data (odometry) [26]. This probabilistic approach effectively 

handles uncertainties and allows for non-Gaussian pose estimations, enhancing overall localization 

accuracy and robustness compared to methods relying on simpler error models or deterministic maps. 

The proposed RTMCL pipeline utilizes supporting techniques [50]-[54] such as clustering 

algorithms (specifically, GB-DBSCAN [62], based on DBSCAN concepts]) to extract landmark 

candidates from the fused UKF sensor output and the Iterative Closest Point (ICP) algorithm [55] for 

efficient data association between observed landmarks and the probabilistic map. While prior research 

has explored pole-based localization using lidar point clouds [47], [49], incorporating additional 

geometric features like building facades or lane lines [46], or employing specific pole detection 

algorithms based on lidar properties [51], this study distinguishes itself through the synergistic 

combination of robust multi-modal sensor fusion (Radar-Lidar via UKF) for enhanced landmark 
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detection resilience and the explicit probabilistic modeling of landmark uncertainties within the map, 

integrated into a real-time capable particle filter framework for superior localization performance. 

The remainder of this paper is structured as follows: Section 2 details the proposed Real-Time 

Monte Carlo Localization (RTMCL) methodology, including the UKF sensor fusion, probabilistic 

landmark mapping, data association, and particle filter implementation. Section 3 describes the 

simulation setup and presents the experimental results evaluating the system's accuracy, robustness, 

and real-time performance. Section 4 discusses these results in the context of related work, and Section 

5 provides concluding remarks and directions for future work. 

2. The Method 

The RTMCL technique depicted in Fig. 1 and detailed here distinguishes itself from prior 

landmark-based localization methods [e.g., 47, 49] by employing UKF-based radar-lidar fusion for 

enhanced landmark detection robustness in varied conditions and integrating these observations with 

a probabilistic landmark map within a particle filter framework to explicitly handle uncertainties. The 

RTMCL algorithm requires four categories of input information: 

1. Global Position Information: Primarily derived from GPS data, this information can be 

augmented by integrating signals from an IMU unit if available. The fusion of GPS and IMU 

signals corrects accumulated errors during periods of dead reckoning when GPS data is 

unavailable [54]. This fused output, providing an initial pose of the vehicle, is subsequently used 

by the particle filter. 

2. Odometry Measurements: The algorithm utilizes the vehicle's speed readings and steering angle 

(for calculating the yaw rate). These measurements, once filtered to reduce noise, are employed 

to update the state of the particle filter. 

3. Object-Detection Sensory Output: The primary sensory inputs include data from lidar and radar. 

While camera data is not used in this work, the lidar and radar inputs are fused using a tailored 

UKF. The output from this fusion process is then clustered using the GB-DBSCAN procedure to 

identify potential pole-like stationary objects. Additionally, measurements of speed (Doppler 

signals) from the radar support to filter out dynamic objects. 

4. Map of the Reference Landmarks: Such a map includes pole-like landmarks with complete 

coordinates, extracted offline from 3D point-cloud lidar data. During the localization process, 

these reference landmarks are associated with detected pole-like landmarks (identified by the 

GB-DBSCAN algorithm) through a “data association” procedure. The Iterative Closest Point 

(ICP) method is utilized for such a specific purpose, which is critical for accomplishing precise 

localization [55]. 

These classes of input measurements are processed using a tailored Particle Filter, which will be 

detailed later [56], to determine the most accurate pose of the vehicle. The particle filter is initialized 

via the fused GPS and IMU output and is further refined using the detected pole-like landmarks in 

addition to the reference map to produce a highly precise vehicle pose. 

2.1. Outline of the UKF  

The Kalman Filter (KF) is a widely used algorithm for state estimation in linear systems [57]. It 

operates through a cyclical process of prediction and update, aiming to minimize the estimated 

covariance of the error. For a given measurement 𝑧 ∈ 𝑅𝑚 of a discrete-time controlled process 

defined by a set of linear difference equations of stochastic nature, the KF predicts the state 𝑥 ∈ 𝑅𝑛. 

However, the KF's applicability is limited by its requirement for linear processes. Real-world 

sensor measurements, such as those from radar systems, often exhibit non-linear characteristics. The 

UKF addresses this limitation by providing a robust alternative for non-linear systems [58]. Unlike 

the Extended Kalman Filter (EKF) which relies on linearization techniques, the UKF adopts a 
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deterministic sampling approach that avoids derivatives [59]. Similar to the KF, the UKF employs a 

two-stage prediction and update process. However, the UKF incorporates additional steps like sigma-

point generation and prediction, as illustrated in Fig. 2. These additional steps enable the UKF to 

effectively handle non-linear system behavior. 

 

Fig. 1. The workflow of the RTMCL algorithm 

 

Fig. 2. Workflow of the UKF 
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In the UKF process, the state Gaussian distribution is represented by a small number of 

deterministically chosen sample points known as sigma points that are used to capture the mean and 

covariance of the state distribution. The number of these points are 𝑛𝑥 = 2𝑛 + 1. They are selected 

using the following formula: 

 𝑋𝑘 = [𝑥𝑘  𝑥𝑘 + √(𝜆 + 𝑛𝑥)𝑃𝑘   𝑥𝑘 − √(𝜆 + 𝑛𝑥)𝑃𝑘] (1) 

where 𝑃𝑘 is the covariance matrix of the KF process estimate,  𝑋𝑘 is the sigma-point matrix 

comprising  𝑛𝑥 sigma-point vectors, and 𝜆 is a design parameter that expresses the sigma points 

spread, regularly computed as 𝜆 = 3 − 𝑛𝑥. 

These sigma points are propagated through the non-linear system dynamics model by becoming 

input to the UKF's nonlinear process model, designated in Eq. (2), to construct the matrix of predicted 

sigma points �̂� with dimensions 𝑛 × 𝑛𝑥. This stage is known as the sigma-point prediction phase: 

 �̂�𝑘+1 = 𝑓(𝑋𝑘 , 𝜈𝑘) (2) 

where 𝜈𝑘 represents the process white noise, represented by a Gaussian distribution (𝒩) with zero 

mean and covariance matrix 𝑄𝑘. 

The predicted state has the mean and covariance matrices being calculated from the predicted 

sigma points exploiting Eq. (3): 

 
�̂�𝑘+1 = ∑𝑤𝑖�̂�𝑘+1,𝑖

𝑛𝑥

𝑖=0

 

�̂�𝑘+1 = ∑𝑤𝑖(�̂�𝑘+1,𝑖 − �̂�𝑘+1)

2𝑛𝑥

𝑖=0

(�̂�𝑘+1,𝑖 − �̂�𝑘+1)
𝑇
 

(3) 

where 𝑤𝑖′𝑠 are the sigma-point weights used to reverse the sigma-point spreading. These weights are 

calculated as in Eq. (4): 

 
𝑤𝑖 =

𝜆

𝜆 + 𝑛𝑥
, 𝑖 = 0 

𝑤𝑖 =
1

2(𝜆 + 𝑛𝑥)
, 𝑖 = 1…𝑛𝑥 

(4) 

Next, each sigma point is inserted into the nonlinear unscented Kalman filter measurement 

model, defined by Eq. (5), to construct the matrix of predicted measurement sigma points that has 

dimensions 𝑛 × 𝑛𝑥: 

 �̂�𝑘+1 = ℎ(�̂�𝑘+1) (5) 

Then, the predicted measurement has the mean and covariance matrices being calculated by the 

predicted sigma points and the measurement noise covariance matrix R, as shown in Eq. (6): 

 
�̂�𝑘+1 = ∑𝑤𝑖�̂�𝑘+1,𝑖

𝑛𝑥

𝑖=0

 

𝑆𝑘+1 = ∑𝑤𝑖(�̂�𝑘+1,𝑖 − �̂�𝑘+1)

2𝑛𝑥

𝑖=0

(�̂�𝑘+1,𝑖 − �̂�𝑘+1)
𝑇

+ 𝑅 

𝑅 = 𝐸{𝜔𝑘 . 𝜔𝑘
𝑇} 

(6) 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1353 
Vol. 5, No. 2, 2025, pp. 1348-1373 

  

Wael A. Farag (Real-Time Pose Estimation for Autonomous Vehicles Using Probabilistic Landmark Maps and Sensor 

Fusion) 

 

where 𝑤𝑖′𝑠 are the sigma-point weights computed in Eq. (4), 𝑆𝑘 is the measurement covariance 

matrix, and 𝐸{. } is the expected value of the measurement of white noise  𝜔𝑘, modeled as a Gaussian 

distribution (𝒩) with zero mean and covariance matrix 𝑅. 

The final stage of the UKF involves updating the state, where the gain matrix (𝐾) is computed 

using the estimated cross-correlation matrix  (𝑇) between the sigma points in the state space and the 

measurement space, as described in Eq. (7). The state vector (𝑥) and the state covariance matrix (𝑃) 

are using the gain matrix (𝐾): 

 

     𝑇𝑘+1 = ∑𝑤𝑖(�̂�𝑘+1,𝑖 − 𝑥𝑘+1)

2𝑛𝑥

𝑖=0

(�̂�𝑘+1,𝑖 − �̂�𝑘+1)
𝑇
 

𝐾𝑘+1 = 𝑇𝑘+1𝑆𝑘+1
−1  

𝑥𝑘+1 = 𝑥𝑘+1 + 𝐾𝑘+1(�̂�𝑘+1 − 𝑧𝑘+1) 

𝑃𝑘+1 = �̂�𝑘+1 − 𝐾𝑘+1𝑆𝑘+1𝐾𝑘+1
𝑇  

(7) 

2.2. The Road Object’s Model  

The UKF prediction step utilizes a standard constant turn rate and velocity (CTRV) motion 

model [60], whose non-linear difference equations describing the object's state evolution (position, 

velocity, yaw angle, yaw rate) are given by Eq. (8)-(12).  

In this model, any road object is characterized by 5 variables assembled into one vector called 

the state vector 𝑥. These variables include the object's location on the x and y axes 𝑝𝑥 and 𝑝𝑦, the 

magnitude of the object's velocity 𝑣, the yaw angle (ψ), and the yaw rate �̇�, as depicted in Fig. 3. 

The state vector is defined as follows in Eq. (8): 

 

𝑥 =

[
 
 
 
 
𝑝𝑥

𝑝𝑦

𝑣
𝜓

�̇� ]
 
 
 
 

, 𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2, 𝜓 = 𝑡𝑎𝑛−1
𝑣𝑦

𝑣𝑥
 (8) 

Founded on the state vector x, the nonlinear difference equation 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝜈𝑘) that embodies 

the object's motion model is created. The dynamic equations are provided in Eqs. (9), (10), and (11): 

 

𝑥𝑘+1 = 𝑥𝑘 +

[
 
 
 
 
 
 

𝑣𝑘

�̇�𝑘

(𝑠𝑖𝑛(𝜓𝑘 + �̇�𝑘Δ𝑡) − 𝑠𝑖𝑛(𝜓𝑘))

𝑣𝑘

�̇�𝑘

(−𝑐𝑜𝑠(𝜓𝑘 + �̇�𝑘𝛥𝑡) + 𝑐𝑜𝑠(𝜓𝑘))

0
Δ𝑡
0 ]

 
 
 
 
 
 

+ 𝜈𝑘 (9) 

 

𝜈𝑘 =

[
 
 
 
 
 
 
 
 
1

2
(Δ𝑡)2𝑐𝑜𝑠(𝜓𝑘). 𝜈𝑎,𝑘

1

2
(Δ𝑡)2𝑠𝑖𝑛(𝜓𝑘). 𝜈𝑎,𝑘

Δ𝑡. 𝜈𝑎,𝑘

1

2
(Δ𝑡)2. 𝜈𝜓,𝑘̈

Δ𝑡. 𝜈𝜓,𝑘̈ ]
 
 
 
 
 
 
 
 

 (10) 
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 Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘 (11) 

In these equations, 𝜈𝑎,𝑘~𝒩(0, 𝜎𝑎
2) represents the longitudinal acceleration noise at sample 𝑘 

with a standard deviation of 𝜎𝑎
2, and 𝜈�̈�,𝑘~𝒩(0, 𝜎�̈�

2) represents the noise of the yaw acceleration at 

sample 𝑘 with a standard deviation of 𝜎�̈�
2 . 

If �̇� is zero, to avoid division by zero in Eq. (9), a linear model approximation is used to predict 𝑝𝑥 and 

𝑝𝑦: 

 𝑝𝑥𝑘+1
= 𝑝𝑥𝑘

+ 𝑣𝑘𝑐𝑜𝑠(𝜓𝑘)Δ𝑡 

𝑝𝑦𝑘+1
= 𝑝𝑦𝑘

+ 𝑣𝑘𝑠𝑖𝑛(𝜓𝑘)Δ𝑡 
(12) 

 

Fig. 3. An arbitrary road object’s motion model 

2.3. Lidar and Radar Fusion Based on the UKF  

The lidar sensor measures the centroid of an object's position (whether stationary or moving) in 

Cartesian coordinates (𝑝𝑥 and 𝑝𝑦), as described in Eq. (13). Conversely, the radar sensor measures 

the same object's centroid position in polar coordinates (𝜌 and 𝜑) and also captures the object's 

velocity (�̇�), as outlined in Eq. (14). To standardize these measurements, a mapping function is 

employed to convert the lidar's Cartesian coordinates to the radar's polar form, as shown in Eq. (15). 

 
𝑧𝑙𝑖𝑑𝑎𝑟 = (

𝑝𝑥

𝑝𝑦
) , 𝑧𝑟𝑎𝑑𝑎𝑟 = (

𝜌
𝜑
�̇�
) (13) 

 

ℎ(𝑥) = (

𝜌
𝜑
�̇�
) =

(

 
 
 
 
 

√𝑝𝑥
2 + 𝑝𝑦

2

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑝𝑦

𝑝𝑥
)

𝑝𝑥𝑣𝑥 + 𝑝𝑦𝑣𝑦

√𝑝𝑥
2 + 𝑝𝑦

2

)

 
 
 
 
 

 (14) 
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 𝑝𝑥 = 𝜌𝑐𝑜𝑠(𝜑), 𝑝𝑦 = 𝜌𝑠𝑖𝑛(𝜑) (15) 

As illustrated in Fig. 4, the prediction step is performed simultaneously for both radar and lidar 

sensors. Nevertheless, the update step is sensor-specific, as each sensor has its unique measurement 

model on its own. Additionally, the belief update is carried out on the appearance of a freshly 

received sensor measurement, acknowledging that the sensors are not synchronized. 

Following initializing both the unscented Kalman filter and the radar and lidar measurement 

models, the time step (∆𝑡) is calculated, as presented in Fig. 4. Simultaneously, the sigma points (𝑋𝑘) 

are generated using Eq. (1). The predicted sigma points (�̂�𝑘+1) for the next time step are then 

computed by Eq. (2) and the object's model described using Eq. (9). The predicted state mean vector 

(𝑥𝑘+1) and its covariance matrix (�̂�𝑘+1) are obtained through the application of Eq. (3). 

In the update step of the fusion process, two branches are there: the lidar branch and the radar 

branch. The branch chosen depends on the most recently received measurement data. If radar data is 

obtained, the predicted measurement sigma points (�̂�𝑘+1) are calculated based on the model in Eq. 

(14) and from  �̂�𝑘+1 using Eq. (5). The predicted measurement mean ( �̂�𝑘+1), the covariance matrix 

(𝑆𝑘+1), and the noise covariance matrix (𝑅𝑟𝑎𝑑𝑎𝑟) are then computed using Eq. (6). The 𝑅𝑟𝑎𝑑𝑎𝑟 

covariance matrix is detailed in Eq. (16): 

 

𝑅𝑟𝑎𝑑𝑎𝑟 = [

𝜎𝜌
2 0 0

0 𝜎𝜑
2 0

0 0 𝜎�̇�
2

] (16) 

where 𝜎�̇�, 𝜎𝜑, and 𝜎𝜌 are the noise standard deviations (SDs) for the object's radial velocity, heading, 

and radial distance, respectively. 

The cross-correlation matrix (𝑇𝑘+1) is calculated using the state vectors 𝑥𝑘+1 and �̂�𝑘+1, along 

with their sigma points �̂�𝑘+1 and �̂�𝑘+1, using Eq. (7). This matrix is employed to calculate the 

unscented Kalman filter gain (𝐾𝑘+1), which is then employed to update the state vector (𝑥𝑘+1) and 

the covariance matrix (𝑃𝑘+1) as presented in Eq. (7). The updated state vector and covariance matrix 

are employed to generate updated sigma points (𝑋𝑘+1) for the next iteration. 

As an alternative, if lidar data is received, the predicted measurement sigma points (�̂�𝑘+1) are 

calculated based on the linear lidar measurement model (𝐻𝑙𝑖𝑑𝑎𝑟) in Eq. (17) and directly from �̂�𝑘+1. 

The predicted measurement mean (�̂�𝑘+1), the covariance matrix (𝑆𝑘+1), and the noise covariance 

matrix (𝑅𝑙𝑖𝑑𝑎𝑟) are then calculated using Eq. (6), with more details of 𝑅𝑙𝑖𝑑𝑎𝑟 provided in Eq. (17): 

 𝐻𝑙𝑖𝑑𝑎𝑟 = [
1 0 0 0 0
0 1 0 0 0

] 

𝑅𝑙𝑖𝑑𝑎𝑟 = 𝐸[𝜔.𝜔𝑇] = [
𝜎𝑝𝑥

2 0

0 𝜎𝑝𝑦
2 ] 

(17) 

where 𝜎𝑝𝑥
 and 𝜎𝑝𝑦

 are the noise SDs for the object's x and y positions, respectively. Similar to the 

radar branch, the cross-correlation matrix (𝑇𝑘+1), the UKF gain (𝐾𝑘+1), and the updated covariance 

matrix (𝑃𝑘+1) are calculated using Eq. (7). 

This fusion process assumes accurate time synchronization between the lidar and radar sensors, 

typically achieved through hardware triggers or precise software timestamping; significant timing 

errors could degrade fusion performance. The branching logic depicted in Fig. 3 inherently handles 

sensor asynchronicity, processing whichever sensor measurement (lidar or radar) arrives next. While 

fusion enhances robustness against conditions affecting one sensor (e.g., fog for lidar), extreme 

weather simultaneously degrading both radar (e.g., signal attenuation in torrential rain) and lidar 

(e.g., whiteout snow) could still negatively impact landmark detection quality and subsequent 

localization accuracy. 
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Fig. 4. The fusion workflow of the radar and lidar while employing the UKF 

2.4. Data Clustering and Association of the Point-Cloud 

The point cloud generated by the unscented Kalman filter fusion procedure, depicted in Fig. 4, 

provides detailed information regarding the objects surrounding the autonomous vehicle. To obtain 

the distinct object's information, including its pose and geometrical shape, clustering is applied to the 

unscented Kalman filter output data. This process reduces computational overhead and memory 

requirements by representing each object in a simplified source-point model. 

In this study, clustering is executed using the GB-DBSCAN process, which is a variation of the 

primary DBSCAN process [61]. DBSCAN is an unsupervised learning process that groups data 

points with high density into clusters. Two parameters, “ε” and “minPts,” are employed to tune 

DBSCAN and describe the density criteria. “ε” represents the allowable radial distance from the point 

under valuation (“p”), while “minPts” specifies the minimum number of points, including “p” itself, 

that must be within distance “ε” to form a cluster. The proper choice of “ε” and “minPts” determines 

the density of points to be clustered together.  

For road objects with varying topologies, the standard DBSCAN algorithm is insufficient. 

Dietmayer et al. [62] improved this by not using fixed parameters like “ε” and “minPts” in GB-

DBSCAN. As an alternative, they formed a polar grid that considers the sensor's angular and radial 

resolution. The search area becomes dynamic, adapting to the object's shape, making this algorithm 

particularly suitable for pole-like objects that generate a high density of revealing points compared 

to their neighborhood and prospective surroundings. 
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The GB-DBSCAN procedure initially performs coarse clustering of the unscented-Kalman-

filter fusion data. These clusters are then refined using the RANSAC algorithm, which proposes 

geometrical shapes for the clusters [48]. For pole-like landmarks, the circular shape is the most 

suitable and is formfitting to all points in each cluster. The RANSAC technique determines the 

parameters of each formfitted circle, specifically the radius (�̂�) and the centroid (𝑥𝑐 , �̂�𝑐), by 

optimizing the following formula: 

 

min {
1

𝑁
∑[√(𝑥𝑖 − 𝑥𝑐)

2 + (𝑦𝑖 − �̂�𝑐)
2 − �̂�]

2
𝑁

𝑖=1

} (18) 

After identifying the pole-like landmarks in the supplied fusion data from the unscented-

Kalman-filter, the data association step matches these landmarks with their counterparts in the 

reference map. This step is crucial for the Particle Filter (PF) to maintain precision. The Iterative 

Closest Point (ICP) algorithm [55] is used for this purpose. Unlike the standard ICP, which searches 

entire point clouds, this approach only considers centroids during the matching process, significantly 

reducing processing and memory demands. 

The ICP algorithm iteratively performs two phases until convergence. The first phase matches 

each point in the source set X (UKF data) with the closest point in the target set Y (point-cloud map). 

The second phase finds the optimal transform (X→Y) based on the matched points. Efficient 

matching is achieved by storing the X and Y sets in a KD tree data structure [63]. For matched points 

𝑥𝑖 from X and 𝑦𝑖 from  Y, the two-dimensional ICP algorithm uncovers the rotation angle “𝜑” and 

the translation parameter “t” that minimize the quadratic distance between the target and source 

points:  

 

𝑚𝑖𝑛𝜑,𝑡 {∑(𝑦𝑖 − (𝑅(𝜑)𝑥𝑖 − 𝑡))
𝑇

𝑁

𝑖=1

(𝑦𝑖 − (𝑅(𝜑)𝑥𝑖 − 𝑡))} (19) 

where 𝑅(𝜑) is the rotation matrix using angle “φ” as a variable. 

To ensure correct data association, the coordinate systems between the ego car (𝑥𝑐 and 𝑦𝑐) and 

the reference map (𝑥𝑚 and 𝑦𝑚) must be unified. This is achieved using a homogeneous 

transformation matrix, as provided by Eq. (20). The rotation and translation are implemented using 

map particle or ego car coordinates (𝑥𝑝 and 𝑦𝑝) and the rotation angle 𝜃: 

 

[
𝑥𝑚

𝑦𝑚

1
] = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑥𝑝

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑦𝑝

0 0 1

] × [
𝑥𝑐

𝑦𝑐

1
] (20) 

While algorithm choices like GB-DBSCAN [62] and ICP [63] aim for efficiency, their 

computational cost can scale with point cloud density (for clustering/RANSAC) and the number of 

landmarks (for ICP association). In particularly dense or complex environments, these steps could 

require further optimization or hardware acceleration to guarantee strict real-time performance. 

The effectiveness of GB-DBSCAN and RANSAC depends on appropriate parameter tuning 

(e.g., density criteria, inlier thresholds) and sufficient data points defining the target shape; they may 

misclassify clutter or fail on poorly defined landmarks. ICP's convergence relies on a reasonable 

initial pose estimate from the PF prediction and can be sensitive to symmetric or ambiguous landmark 

configurations. 

2.5. Details of the Particle Filter 

For a stochastic process with noisy observations 𝑝(𝑧𝑡|𝑥𝑡), the posterior distribution 𝑏𝑒𝑙(𝑥𝑡) can 

be represented by a finite set of particles. This approach serves as an approximate implementation of 

the Bayesian filter in a recursive mode, with a normalization factor 𝜁 as given by Eq. (21): 
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 𝑏𝑒𝑙(𝑥𝑡) ← 𝜁 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙(𝑥𝑡−1) (21) 

The accuracy of the belief distribution 𝑏𝑒𝑙(𝑥𝑡) improves with a higher number of particles 𝑀, 

where t denotes the time step at which the particle set's state is considered, as shown in Eq. (22): 

 𝜒𝑡 = {𝑥𝑡
[𝑖]|1 ≤ 𝑖 ≤ 𝑀} (22) 

The optimal solution which represents the actual state is one of the particles in the set 𝜒𝑡 at time 

t. Each 𝑥𝑡
[𝑖]

 represents a hypothesis for the optimal solution. The Particle Filter (PF) employed in this 

work is detailed in Table 1, and its workflow is illustrated in Fig. 5. When a new measurement 

(odometry signal 𝑢𝑡) or a pole-like object’s measurement update (𝑧𝑡) from the unscented Kalman 

filter is received, and a fresh search for the optimum vehicle pose is launched. 

Table 1.  The particle filter streamlined workflow 

Function Particle Filter (𝝌𝒕−𝟏, 𝒖𝒕, 𝒛𝒕): 

Inputs: Particles’ set 𝜒𝑡−1 at a time (𝑡 − 1), control 

input 𝑢𝑡, and measurements set 𝑧𝑡. 

Outputs: The updated particles’ set 𝜒𝑡 at time 𝑡. 

Begin  

Initialize Particles: �̅�𝑡 = 𝜒𝑡 = ∅. 

𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑥𝑖
[𝑚]

~𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1
[𝑚]

) 

calculate 𝑤𝑡
[𝑚]

= 𝑝 (𝑧𝑡|𝑥𝑖
[𝑚]

) 

update �̅�𝑡 = �̅�𝑡 + 〈𝑥𝑖
[𝑚]

, 𝑤𝑡
[𝑚]

〉  

𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜 

𝑑𝑟𝑎𝑤 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼𝑤𝑡
[𝑖]

 

𝑎𝑑𝑑 𝑥𝑡
[𝑖]

 𝑡𝑜 𝜒𝑡 

Return 𝜒𝑡 

End. 

 

The Particle Filter implementation involves a predict-update cycle. In the prediction step (step 

2 in the function), two values are computed for each particle: the state hypothesis (𝑥𝑖
[𝑚]

) and the state 

transition distribution 𝑝 (𝑥𝑡|𝑢𝑡, 𝑥𝑡−1
[𝑚]

), based on the object's motion model. Each particle is assigned 

a weight reflecting its importance among other particles, calculated using a multivariate Gaussian 

probability density function as shown in Eq. (23): 

 

𝑤𝑡
[𝑚]

= ∏

𝑒𝑥𝑝 (−
1
2

(𝑧𝑖
[𝑡]

− 𝜇𝑖
[𝑡]

)
𝑇

Σ−1(𝑧𝑖
[𝑡]

− 𝜇𝑖
[𝑡]))

√|2𝜋Σ|

𝑁

𝑖=1

 
(23) 

where 𝑁 is the number of measurements for particle 𝑚, Σ is the measurement covariance matrix, 𝜇𝑖
[𝑡]

 

is the predicted state mean for the 𝑖𝑡ℎ observation at step 𝑡, and 𝑧𝑖
[𝑡]

 is the 𝑖𝑡ℎ pole observation for 

particle 𝑚 at step 𝑡. 

Subsequently, the set of particles (�̅�𝑡) is resampled in proportion to their weights (𝛼𝑤𝑡
[𝑖]

), where 

𝛼 is a coefficient for normalization. This generates a new set of 𝑀particles, resulting in the updated 

posterior approximation 𝜒𝑡. Typically, 𝜒𝑡 will contain multiple copies of the strongest particles, 

while weaker particles are discarded. The algorithm iterates until 𝜒𝑡 contains 𝑀 copies of a single 

particle, representing the solution or the needed vehicle pose. 

The gauge for convergence for the particle filter is the weighted mean error (𝐸𝑟𝑟𝑜𝑟𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑), 

computed over all particles as shown in Eq. (24). The 𝐸𝑟𝑟𝑜𝑟𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is calculated by determining 
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the RMSE between the ground truth 𝑔 and the state of each particle 𝑝𝑖, weighted by its importance, 

then summing the product for all particles and dividing by the sum of all weights: 

 
𝐸𝑟𝑟𝑜𝑟𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

∑ 𝑤𝑖√|𝑝𝑖 − 𝑔|𝑀
𝑖=1

∑ 𝑤𝑖
𝑀
𝑖=1

 (24) 

 

 

Fig. 5. A flowchart presents an overview of the particle filter methodology 

The number of particles, M, presents a critical trade-off between localization accuracy and 

computational load [29, 56]. While more particles can represent complex probability distributions 

more accurately, increasing computational demand, simulation experiments (detailed in Sec 3, Table 

7) demonstrated that M=50 provided a suitable balance for the tested scenarios. This count achieved 

the target sub-15cm mean error while maintaining an update cycle time (approx. 0.74 ms for the PF 

stage, derived from Table 9) well within the requirements for real-time operation (>100Hz). 

The performance of this landmark-based PF is fundamentally dependent on the availability, 

density, and geometric distinguishability of pole-like landmarks in the environment. In areas with 

very sparse landmarks (e.g., open highways) or highly repetitive/ambiguous configurations, 

localization accuracy may degrade, potentially requiring integration of other features or sensors. 

RTMCL initialization leverages fused GPS/IMU data for an initial pose estimate. In scenarios 

with prolonged GPS signal denial (e.g., tunnels, deep urban canyons), this initial estimate can drift 

significantly. While the filter continues relative updates using odometry and landmarks, accumulated 

error might necessitate re-initialization upon GPS reacquisition. No specific contingency beyond 

standard filter recovery mechanisms is implemented for complete sensor failure. 

2.6. Execution of the RTMCL 

The RTMCL system prioritizes real-time performance, reflected in its development and 

implementation choices. The RTMCL algorithm is implemented in C++ [64], a programming 

language renowned for its prominent performance, particularly for real-time applications [65]. This 

choice ensures the system's ability to process data and generate results swiftly. The RTMCL code 

runs on a Linux-based operating system (Ubuntu) [66], providing a stable and well-supported 

platform. For numerical computations, the Eigen library is leveraged [67]. This library offers 

efficient handling of all vector and matrix operations, essential for executing the object models and 

the prediction-update stages within the RTMCL framework. 

Sensor data processing is handled by the NVIDIA DRIVE AGX platform, a powerful platform 

designed for processing sensor data in autonomous vehicles. The lidar sensor employed is the 
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Velodyne Lidar VLP-16 [68]. This sensor boasts 16 channels, a range of 100 meters, a 360° 

horizontal field of view, a 30° vertical field of view, and an impressive capacity of 300,000 points 

per second. Additionally, the Continental ARS430 radar [68] operates at 77 GHz, offering a range of 

250 meters, broad azimuth and elevation coverage, and an accuracy of 0.1 meters. This combination 

of hardware provides RTMCL with a rich and detailed picture of the surrounding environment. 

The accurate execution of motion models for various objects, as described in Equations (9) to 

(11), hinges on meticulously determined noise parameters [68]. A crucial step involves fine-tuning 

these parameters, which are then represented in Table 2. To guarantee consistency in the UKF design, 

the Normalized Innovation Squared (NIS) metric is continuously monitored and employed for further 

refinement of the noise parameters [69]. This ensures the UKF remains unbiased and delivers 

consistent results. The estimation error is averaged, aiming for a mean value close to zero, to verify 

the UKF's lack of bias. The UKF's actual Mean Squared Error (MSE) is compared with the state 

covariance computed by the UKF itself. Finally, the NIS value at each time step is calculated using 

Equation (25), and a moving window of N measurement samples is employed to compute the average 

NIS value (𝑁𝐼𝑆𝐴𝑣𝑒𝑟𝑎𝑔𝑒). These steps ensure the UKF is precisely calibrated and delivers reliable 

state estimates. 

 𝑁𝐼𝑆𝑘 = (𝑧𝑘+1 − �̂�𝑘)𝑇𝑆𝑘
−1(𝑧𝑘+1 − �̂�𝑘) 

𝑁𝐼𝑆𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁
∑ 𝑁𝐼𝑆𝑘

𝑘=𝑁

𝑘=1

 
(25) 

The noise parameters governing the UKF motion/measurement models (Table 2, Table 3) and 

the PF artificial noise/map uncertainty (Table 4) were determined empirically through iterative 

tuning during offline simulation. Initial values were informed by typical sensor specifications (e.g., 

radar/lidar accuracy) and motion assumptions. Parameters were then refined by monitoring UKF 

consistency via the Normalized Innovation Squared (NIS) metric [69] (as described by Eq. (25), 

aiming for values consistent with the expected chi-squared distribution) and minimizing the overall 

localization error (RMSE/MAE, Eq. (27)/(29) on validation datasets. It is important to note that these 

parameters may require re-calibration for different sensor suites, vehicle platforms, or significantly 

different operating environments to maintain optimal performance. 

Table 2.  Setting of the object model, particle filter, and unscented kalman filter (noise parameters) 

Parameter Value (UKF/PF) Parameter Value (UKF) 

𝜎𝑎 m/s2 1.000 𝜎𝑝𝑦
 m (lidar) 0.150 

𝜎�̈� rad/s2 0.600 𝜎ρ m (radar) 0.300 

𝜎�̇� rad/s 0.060 𝜎𝜑 rad (radar) 0.030 

𝜎𝑝𝑥
m (lidar) 0.150 𝜎�̇� m/s (radar) 0.300 

 

The unscented Kalman filter performance depends heavily on its proper initialization [68]. The 

estimated state vector (𝑥) and its estimated state covariance matrix (𝑃) are critical variables. The 

initial values for 𝑝𝑥 and 𝑝𝑦 (the first two terms of 𝑥 in Eq. (8)) are derived from early sensor 

measurements. Regarding the remaining 3 terms, a trial and error process combined with intuition is 

used for initialization, as shown in Table 3. The 𝑃 matrix is constructed as a diagonal matrix, 

including the covariance values of each term in 𝑥, as given in Eq. (26). 

The Root Mean Square Error (RMSE) as defined in Eq. (27) evaluates the UKF's performance, 

measuring the closeness of the estimated ranges to the ground truth (true ranges). This metric is 

calculated using an N-sample moving window. 

 𝑃 = 𝑑𝑖𝑎𝑔 (𝜎𝑝𝑥

2 , 𝜎𝑝𝑦

2 , 𝜎�̂�
2, 𝜎�̂�

2 , 𝜎
�̂̇�

2) (26) 
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Table 3.  Initialization of the state-variables of the UKF 

Parameter Value (UKF) Parameter Value (UKF) 

𝑝𝑥   m x-reading (1st raw)  𝑝𝑦   m y-reading (1st raw) 

𝑣   m/s 0.00 𝜓   rad 0.00 

�̇�   rad/s 0.00 𝜎�̂�𝑥
   m 1.00 

𝜎�̂�𝑦
   m 1.00 𝜎�̂�   m/sec √1000.0 

𝜎�̂�   rad √1000.0 𝜎
�̂̇�
   m/sec2 √1000.0 

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑥𝑘

𝑒𝑠𝑡 − 𝑥𝑘
𝑡𝑟𝑢𝑒)2

𝑘=𝑁

𝑘=1

 (27) 

where 𝑥𝑘
𝑡𝑟𝑢𝑒 is the ground-truth state vector generated by a motion driving simulator [70] or supplied 

as training data during the UKF design phase, and 𝑥𝑘
𝑒𝑠𝑡 is the UKF's estimated state vector. 

Proper initialization is equally crucial for the Particle Filter (PF). The initialization process 

includes the following steps: 

1. The PF particles' count 𝑀 is typically between 100 and 1000 [29], as per the literature [56]. A 

balance between accuracy and computation speed is necessary, and after many trials, 𝑀 = 50 

was chosen for its real-time performance alongside the needed accuracy. 

2. The initial pose of the ego car (𝑝𝑥𝐺𝑃𝑆
, 𝑝𝑦𝐺𝑃𝑆

, 𝜃𝐺𝑃𝑆) from the GPS/IMU fusion is used to initialize 

all 𝑀 particles' state vectors: 

 𝑝𝑥
[𝑚]

~𝒩 (𝑝𝑥𝐺𝑃𝑆
, 𝜎𝑥𝐺𝑃𝑆

2 + 𝜎𝑥𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙

2 ) 

𝑝𝑦
[𝑚]

~𝒩 (𝑝𝑦𝐺𝑃𝑆
, 𝜎𝑦𝐺𝑃𝑆

2 + 𝜎𝑦𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙

2 ) 

𝜃𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒
[𝑚]

~𝒩(𝜃𝐺𝑃𝑆 , 𝜎𝜃𝐺𝑃𝑆

2 + 𝜎𝜃𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙

2 ) 

(28) 

where  𝑝𝑥
[𝑚]

, 𝑝𝑦
[𝑚]

, and 𝜃𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒
[𝑚]

 are the initialized poses of particle 𝑚. The standard deviations for 

GPS/IMU fusion noise are 𝜎𝑥𝐺𝑃𝑆
, 𝜎𝑦𝐺𝑃𝑆

, and 𝜎𝜃𝐺𝑃𝑆
. Artificial noise 𝜎𝑥𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙

, 𝜎𝜃𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙
, and 

𝜎𝜃𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙
 adds randomness to improve convergence. Table 4 lists the initialization values. 

3. Particles' weights, indicating their importance, are initialized using a uniform distribution: 

𝑤[𝑚] =
1

𝑀
. 

4. Landmarks in the reference map, particularly pole-shaped ones, are modeled by Gaussian 

distributions for 𝑥 and y positions, represented as 𝒩(𝑝𝑥𝑃𝑜𝑙𝑒
, 𝜎𝑥𝑃𝑜𝑙𝑒

2 ) and 𝒩(𝑝𝑦𝑃𝑜𝑙𝑒
, 𝜎𝑦𝑃𝑜𝑙𝑒

2 ). 

These distributions model position uncertainties. The standard deviation values 𝜎𝑥𝑝𝑜𝑙𝑒
 and 𝜎𝑦𝑝𝑜𝑙𝑒

 

are itemized in Table 4. 

The MAE (mean absolute error) for each estimated variable of the pose, relative to the ground 

truth, is calculated using an N-measurements moving window to evaluate PF performance, as 

presented in Eq. (29): 

Table 4.  Initialized values for the particle-filter parameters 

Parameter Value (PF) Parameter Value (PF) 

𝜎𝑥𝐺𝑃𝑆
 0.300 m 𝜎𝑥𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙

 10 m 

𝜎𝑦𝐺𝑃𝑆
  0.300 m 𝜎𝑦𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙

 10 m 

𝜎𝜃𝐺𝑃𝑆
 0.010 rad 𝜎𝜃𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙

 0.050 rad 

𝜎𝑥𝑝𝑜𝑙𝑒
 0.300 m 𝜎𝑦𝑝𝑜𝑙𝑒

 0.300 m 
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where  𝑥𝑖
𝑏𝑒𝑠𝑡 , 𝑦𝑖

𝑏𝑒𝑠𝑡 , 𝑎𝑛𝑑 𝜃𝑖
𝑏𝑒𝑠𝑡 are the best-estimated values of the poses of the particles of the PF, 

and  𝑥𝑖
𝑔𝑡

, 𝑦𝑖
𝑔𝑡

, 𝑎𝑛𝑑 𝜃𝑖
𝑔𝑡

 are the ground truth values produced by motion-driving simulation software 

or offered as training data during the PF design phase. 

A comparative analysis of these tuned parameters against typical values or those used in related 

works could be presented in the Discussion section to highlight optimization gains. 

 

𝑋𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑|𝑥𝑖

𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑔𝑡

|

𝑁

𝑖=1

 

𝑌𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑|𝑦𝑖

𝑏𝑒𝑠𝑡 − 𝑦𝑖
𝑔𝑡

|

𝑁

𝑖=1

 

𝑌𝑎𝑤𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑|𝜃𝑖

𝑏𝑒𝑠𝑡 − 𝜃𝑖
𝑔𝑡

|

𝑁

𝑖=1

 

(29) 

3. Results 

3.1. Performance Evaluation and Analysis 

The tuning process, iterative and guided by KPIs (Eqs. (24), (26), (27), (29)), assessed RTMCL's 

performance across various hyperparameter sets. Fig. 6 illustrates localization outcomes on the 754-

meter test track featuring curves and 42 pole-like landmarks simulating urban driving. Table 5 

presents the UKF performance (RMSE) for detecting different object types, demonstrating its 

capability. Table 6 highlights the significant benefit of fusing Lidar and Radar, showing improved 

RMSE and NIS consistency compared to using either sensor alone. 

The Particle Filter's convergence is analyzed in Table 7, showing diminishing error returns with 

increasing particle counts beyond 50, alongside increasing execution time. This highlights a critical 

computational trade-off: while 200 particles slightly reduce RMSE (e.g., x-error by ~4% compared 

to 50 particles), they nearly triple the PF execution time (from 0.74ms to 2.4ms). Therefore, M=50 

was selected as optimal for this study, balancing sub-15cm accuracy with the demands of real-time 

operation (>100Hz). Table 8 demonstrates the system's robustness to landmark position uncertainty, 

maintaining <30cm localization error even with 1-meter standard deviations in the map. The overall 

real-time capability is confirmed in Table 9, detailing stage-wise execution times summing to 8.21ms 

(122Hz) on the test hardware. 

Fig. 6, Fig. 7, and Fig. 8 are showing (a) Pose Trajectory, (b) Yaw Angle vs. Ground Truth, and 

(c) Speed/Yaw Rate Time Series, while Fig. 9 shows the typical error decay during the PF 

initialization phase, stabilizing quickly. Fig. 10 illustrates the particle weight distribution during a 

lap, indicating robust tracking as the best particle consistently maintains high importance. Fig. 11 

displays the number of detected poles used by the PF, showing variability but typically staying within 

the effective range (4-12 noted in discussion) for stable operation. 

An inverse relationship is observed between particle weights and the detected pole count. 

Equation (30) offers a more concise representation of Equation (22). The weights in Eq. (30) are 

calculated as the product of the likelihood function associated with observing each pole-like 

landmark. This likelihood function is modeled by a multivariate Gaussian probability density 

function. The optimal number of observed poles for smooth RTMCL operation is between 4 and 12, 

as shown in Fig. 11. 

The RTMCL's real-time performance was extensively tested, proving its fast execution. 

Running on a standard Intel Core i5 CPU with 1.6 GHz and RAM of 8 GB, the RTMCL pipeline 
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achieves impressive real-time performance, exceeding the recommended range of 10Hz to 30Hz with 

a processing speed of 122Hz. Details on execution times for various stages are provided in Table 9. 

Table 5.  Valuation of the performance of the UKF 

State Var Cyclist Vehicle Pedestrian Landmark 

𝑝𝑥 0.06481 0.18570 0.06521 0.03240 

𝑝𝑦 0.08093 0.18991 0.06052 0.04331 

𝑣𝑥 0.14521 0.47451 0.53323 0.00324 

𝑣𝑦 0.15922 0.50752 0.54422 0.00543 

𝜓 0.03923 0.25803 0.20751 0.00752 

 

 

Fig. 6. Egocar localization outcomes in the shown test track 

Table 6.  Assessment of the performance of the UKF for the fusion of lidar and radar sensors 

 Lidar+Radar Lidar Only Radar Only 

𝑝𝑥 (RMSE) 0.06480 0.16122 0.20313 

𝑝𝑦 (RMSE) 0.08091 0.14641 0.25392 

𝑣𝑥 (RMSE) 0.14521 0.20822 0.19713 

𝑣𝑦 (RMSE) 0.15922 0.21293 0.18711 

𝜓 (RMSE) 0.03921 0.05403 0.04802 

Average NIS 2.27973 1.69412 2.65762  

Min NIS 0.00122 0.04873 0.11309 

Max NIS 14.7491 12.9973 12.1832 

Threshold: NIS > 95%  2.201 % 3.202 % 5.201 % 

Table 7.  PF convergence with various particle counts 

No. of 

Particles 
Error (x) Error (y) Error (Yaw) Execution Time 

15 122.3 33.00 1.596 0.2681 msec 

25 0.138 0.124 0.005 0.4862 msec 

50 0.114 0.115 0.004 0.7393 msec 

100 0.115 0.107 0.004 1.2243 msec 

150 0.110 0.106 0.004 2.0862 msec 

200 0.110 0.104 0.004 2.4032 msec 
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Fig. 7. The estimation of the orientation of the egocar (yaw angle) versus the ground truth in the 

experimenting track 

 

Fig. 8. A 3-lap tour on the experimenting track showing the performance of the egocar’s yaw rate and speed 

Table 8.  Sensitivity to landmark positional variance 

𝝈𝒙𝒑𝒐𝒍𝒆
 𝝈𝒚𝒑𝒐𝒍𝒆

 error (x) error (y) error (Yaw) 

0.30 0.30 0.1144 0.1153 0.0041 

0.50 0.50 0.1731 0.1632 0.0056 

1.00 1.00 0.2927 0.2737 0.0099 

 

 

𝑤𝑡
[𝑚]

= ∏

𝑒𝑥𝑝(−
(𝑧𝑥𝑗

[𝑡] − 𝜇𝑥𝑗

[𝑡])

2𝜎𝑥𝑝𝑜𝑙𝑒
2 −

(𝑧𝑦𝑗

[𝑡] − 𝜇𝑦𝑗

[𝑡])

2𝜎𝑦𝑝𝑜𝑙𝑒
2 )

2𝜋𝜎𝑥𝑝𝑜𝑙𝑒
𝜎𝑦𝑝𝑜𝑙𝑒

𝑁

𝑗=1

 
(30) 
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Fig. 9. The initiation phase of the PF shows the decay of errors 

 

Fig. 10. The egocar’s single-lap tour and the particles’ weights distribution 

Table 9.  RTMCL processing time for each pose estimation 

Task Exec. Time (μs) 
- 12-poles UKF-based state estimation:  12×439 

- GB-DBSCAN + RANSAC + ICP → Clustering using + data association:  835 

- Particle-Filter-based Pose estimation: 739 

- 20% estimated overhead control tasks: 1368 

- Execution Times Summation 8210 

 

The RTMCL can accommodate more than 50 pole detections while still meeting the 30Hz 

measurement rate requirement for lidar and radar. This analysis confirms that the RTMCL's real-

time performance is suitable, allowing for improved robustness by increasing the number of particles 

or detected poles. 
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Fig. 11. The egocar’s single-lap tour and the detected poles distribution 

3.2. Limitations of Experimental Validation 

It is crucial to acknowledge the limitations of the validation performed. The results presented 

were obtained using a simulated environment (CARLA [70]) with a predefined test track and 

accurately mapped pole-like landmarks. This controlled setting allowed for focused evaluation of the 

core RTMCL algorithm's performance and parameter sensitivity. However, the study did not include 

validation on real-world datasets or in unstructured, dynamically changing environments. 

Consequently, the system's performance under challenging real-world conditions such as: 

• Adverse Weather: Heavy rain, dense fog, or snow simultaneously impacting both lidar and 

radar. 

• Dense Urban Environments: Significant occlusions, multi-path reflections affecting radar, or 

GPS signal degradation/denial. 

• Varying Landmark Densities: Scenarios with very sparse or highly cluttered/ambiguous 

landmarks. 

• Sensor Imperfections: Unmodeled noise, calibration drift, or temporary sensor dropouts. 

While the methodology is designed to be generalizable, its effectiveness in these complex 

scenarios would require further investigation and potentially environment-specific tuning. The current 

results demonstrate the potential of the RTMCL approach under idealized conditions but should be 

interpreted with these constraints in mind. 

4. Discussion 

The RTMCL system presented demonstrates a promising approach for real-time autonomous 

vehicle localization, achieving a mean error of approximately 11 cm in both lateral and longitudinal 

positioning within the simulated test environment. This performance is attributed to the synergistic 

combination of UKF-based radar-lidar fusion for robust landmark detection, the use of a probabilistic 

landmark map to handle uncertainties, and a tailored particle filter for state estimation. The system 

also exhibits robustness to significant landmark position uncertainties (Table 8) and confirms real-

time capability (122Hz on standard CPU hardware, Table 9). 
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4.1. Comparison with Prior Localization Methods 

RTMCL's precision compares favorably with previously reported pole-based localization 

techniques. Our 11 cm mean error represents a significant improvement over the 20 cm error reported 

by Spangenberg et al. [72] (using stereo cameras and particle/Kalman filters), the 16.4 cm mean / 99.6 

cm max error by Weng et al. [47] (using lidar, IMU, GPS via Bayesian filter), and the considerably 

larger errors of 95 cm (longitudinal) / 49 cm (lateral) reported by Suhr et al. [54] (using maps, GPS, 

IMU, camera). 

While these comparisons highlight RTMCL's potential accuracy advantage, it's important to 

consider methodological differences (sensors used, validation environments). Furthermore, 

contemporary research explores Deep Learning (DL) approaches for tasks relevant to autonomy [73]-

[75]. While DL excels in areas like perception [73] and prediction [74], often leveraging powerful 

GPUs (e.g., NVIDIA Jetson/Titan X), RTMCL focuses on precise real-time localization using 

established probabilistic filtering methods. RTMCL offers advantages in interpretability and 

demonstrated efficiency on standard CPU hardware (Intel Core i5), making it potentially more suitable 

for integration into systems with constrained computational resources compared to complex end-to-

end DL localization models. 

4.2. Computational Trade-Offs and Practical Considerations 

The real-time performance of RTMCL hinges on balancing accuracy and computational load. As 

shown in Table 7 and discussed previously, the choice of 50 particles offered the best compromise for 

the tested scenarios, achieving high accuracy without overburdening the CPU. Increasing particles 

improves accuracy marginally but significantly impacts latency, potentially violating real-time 

constraints. The UKF, GB-DBSCAN, and ICP steps also contribute to the overall 8.21ms cycle time 

(Table 9). While efficient, the costs of clustering and ICP can scale with data density and landmark 

count, respectively, potentially requiring optimization in highly complex environments. The achieved 

11 cm accuracy running at 122Hz on a standard Intel i5 CPU underscores the method's practicality 

without reliance on specialized hardware accelerators. 

4.3. Limitations and Future Directions 

Despite promising results, RTMCL has limitations, primarily stemming from the simulation-

based validation, as detailed in Section 3.2. The system's performance in real-world adverse weather, 

areas with sparse/ambiguous landmarks, or during prolonged GPS outages needs thorough 

investigation. The sensitivity to increased sensor noise levels or map inaccuracies beyond those 

simulated also warrants further study. The reliance on accurately generated offline maps and robust 

time synchronization between sensors are practical prerequisites. 

Future work should prioritize validation on diverse real-world datasets to assess generalization 

and robustness across varied conditions [76]-[79]. Addressing the limitation of sparse pole landmarks 

could involve integrating additional features (e.g., curbs, building corners) or sensor modalities (e.g., 

cameras for visual landmarks, potentially leveraging techniques from [54]) to provide redundancy. 

Exploring adaptive tuning of noise parameters based on environmental conditions or sensor health 

diagnostics could further enhance robustness. Finally, implementing fault detection and mitigation 

strategies for handling sensor dropouts or inconsistent measurements would be crucial for safety-

critical deployment. 

5. Conclusions 

The RTMCL system offers a novel and effective pipeline for real-time, high-accuracy self-

driving car localization, achieving an impressive mean error of approximately 11 cm for both lateral 

and longitudinal positioning in simulation. This performance is realized through a multi-stage process 

integrating initial GPS/IMU pose estimation, refined state tracking via a tailored UKF fusing radar 

and lidar sensor data, extraction of pole-like landmarks using clustering, and final high-precision pose 

generation using a customized particle filter incorporating probabilistic landmark information. 
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Critically, RTMCL distinguishes itself from alternative approaches. Unlike computationally 

intensive SLAM methods or dense HD maps requiring massive storage and frequent updates, RTMCL 

achieves centimeter-level accuracy using lightweight, sparse landmark maps, offering a compelling 

balance between high precision and computational tractability. Its core innovations lie in robust radar-

lidar landmark detection via UKF, which mitigates weather sensitivity often encountered in lidar-only 

systems [47], [49], and the explicit probabilistic modeling of landmark map uncertainties, handled 

effectively within the particle filter framework for superior robustness compared to deterministic 

matching. 

The practical impact of this approach is significant. RTMCL demonstrates its capability operating 

effectively at over 100Hz (exceeding the typical 30Hz requirement) on standard Intel Core i5 CPU 

hardware. This highlights its potential viability for integration into mass-market autonomous vehicles, 

contrasting with some deep learning-based localization methods that often necessitate more powerful 

and energy-intensive GPU-based computing platforms [73]. 

However, several limitations must be acknowledged to provide a balanced perspective. The 

system's performance fundamentally relies on the presence, density, and visibility of pole-like 

landmarks; its effectiveness may degrade in environments where such features are sparse or 

consistently occluded (e.g., open highways, dense urban traffic). The validation was primarily 

conducted in simulation, and real-world robustness under extreme weather conditions (simultaneously 

affecting both radar and lidar), significant sensor noise, or during prolonged GPS/IMU signal denial 

(affecting initialization) requires rigorous empirical verification. The current implementation also 

lacks explicit fault detection and contingency plans for handling sensor failures or highly inconsistent 

data streams. While the 50-particle configuration proved efficient, scaling to highly complex scenarios 

might necessitate more particles, impacting the computational load, although the current performance 

suggests headroom on the tested hardware. 

Future advancements for RTMCL should prioritize validation on diverse real-world datasets to 

thoroughly assess generalization and robustness. Enhancing performance in sparse-landmark 

environments could involve integrating the detection and mapping of additional static features (e.g., 

curbs, building corners, traffic signs) perhaps using complementary sensors like cameras or range 

finders. Machine learning integration holds promise for further refinement; for instance, ML 

techniques could potentially be explored to develop adaptive models for dynamically tuning UKF or 

PF noise parameters based on real-time environmental assessment or sensor confidence levels, or to 

improve the robustness of landmark feature extraction and data association, though this introduces 

considerations of training data needs, model complexity, and interpretability. 

In conclusion, despite the acknowledged limitations and areas for future work, RTMCL presents 

a significant step towards reliable, accurate, and computationally efficient localization for autonomous 

vehicles, offering a strong and practical foundation built upon robust probabilistic principles.  
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