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1. Introduction 

Magnetic Resonance Imaging (MRI) data segmentation is an important step in the diagnosis and 

management of patients with brain tumors [1]. Brain tumors, which can be benign or malignant, are 

serious diseases with high morbidity and mortality rates. Early detection and a thorough understanding 

of the location, size, and type of tumor are essential for determining the appropriate treatment strategy, 
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 Brain tumor segmentation in MRI scans is a crucial task in medical 

imaging, enabling early diagnosis and treatment planning. However, 

accurately segmenting tumors remains a challenge due to variations in 

tumor shape, size, and intensity. This study proposes a ResNet-UNet-based 

segmentation model using LGG dataset (from 110 patients), optimized 

through hyperparameter tuning to enhance segmentation performance and 

computational efficiency. The proposed model integrates different ResNet 

architectures (ResNet18, ResNet34, ResNet50, ResNet101, and 

ResNet152) with UNet, evaluating their performance under various 

learning rates (0.01, 0.001, 0.0001), optimizer types (Adam, SGD, 

RMSProp), and activation functions (Sigmoid). The methodology involves 

training and evaluating each model using Loss Function, Mean Intersection 

over Union (mIoU), Dice Similarity Coefficient (DSC), and Iterations per 

Second as performance metrics. Experiments were conducted on MRI 

brain tumor datasets to assess the impact of hyperparameter tuning on 

model performance. Results show that lower learning rates (0.0001 and 

0.001) improve segmentation accuracy, while Adam and RMSProp 

outperform SGD in minimizing segmentation errors. Deeper models 

(ResNet50, ResNet101, and ResNet152) achieve the highest mIoU (up to 

0.902) and DSC (up to 0.928), but at the cost of slower inference speeds. 

ResNet50 and ResNet34 with RMSProp or Adam provide an optimal trade-

off between accuracy and computational efficiency. In conclusion, 

hyperparameter tuning significantly impacts MRI segmentation 

performance, and selecting an appropriate learning rate, optimizer, and 

model depth is crucial for achieving high segmentation accuracy with 

minimal computational cost. 
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such as surgery, radiation therapy, or chemotherapy [2]. In this context, MRI data segmentation helps 

separate tumor tissue from normal brain tissue, edema, or cerebrospinal fluid, thereby producing an 

accurate visual map for planning medical interventions [3]. Conventionally, the segmentation process 

is performed manually by radiologists, which is time-consuming and prone to interobserver 

variability. In addition, the heterogeneous nature of brain tumors, including variations in size, shape, 

and signal intensity, makes the segmentation process a major challenge [4]. With the increasing 

complexity of brain tumor cases, manual methods are no longer sufficient to meet urgent clinical 

needs. Therefore, an automated or semi-automated technology-based approach is needed to improve 

the speed and accuracy of segmentation. The use of machine learning and deep learning technologies 

in MRI data segmentation offers a potential solution. Models such as Convolutional Neural Networks 

(CNNs), including variants such as U-Net or 3D CNN, have been shown to provide accurate and 

efficient segmentation results [5]. With this technology, the model can learn complex patterns in MRI 

data to detect tumors, even at an early stage of development. This is very important because early 

detection of brain tumors is closely related to the success rate of therapy and patient prognosis [6]. In 

addition to being important for diagnosis, MRI data segmentation also plays a key role in medical 

research. Segmented data allows researchers to quantitatively analyze tumor characteristics, such as 

volume, growth, or response to therapy [7]. This information not only helps clinical decision-making 

but also contributes to the development of new therapies and personalization of care. With accurate 

segmentation, MRI data can be used to create predictive models that help predict disease progression 

and treatment effectiveness [8]. 

Several recent studies have proposed various segmentation methods based on Convolutional 

Neural Networks (CNN) and optimization algorithms to enhance tumor detection accuracy. Zheng et 

al. (2022) proposed an enhanced U-Net model for brain tumor segmentation to overcome limitations 

in conventional segmentation approaches, such as poor edge detail extraction and inadequate feature 

reuse [9]. The study introduced a hybrid dilated convolution (HDC) module within a serial encoding-

decoding structure, which enhances segmentation accuracy. Additionally, a new loss function was 

designed to improve segmentation of difficult-to-classify tumor regions. Experimental results showed 

that the modified U-Net outperformed existing models in Dice similarity coefficient, precision, and 

Hausdorff distance. This advancement is crucial for more accurate brain tumor detection and could 

improve automated diagnosis efficiency. Ullah et al. (2023) presented a hybrid Convolutional Neural 

Network (CNN)-based segmentation approach that integrates handcrafted features with CNNs to 

improve segmentation accuracy [10]. The proposed framework extracts intensity, texture, and shape-

based features, which are then fused with CNN-extracted deep features. Evaluations on the BraTS 

dataset demonstrated superior performance in segmentation accuracy, Dice score, and specificity 

compared to standalone CNN-based methods. This study highlights the importance of integrating 

domain-specific handcrafted features with deep learning techniques to enhance segmentation 

robustness. 

Aggarwal et al. (2023) proposed an improved ResNet-based segmentation model that enhances 

traditional deep learning models by addressing gradient diffusion issues [11]. The study optimized 

information flow through residual blocks and projection shortcuts, resulting in improved precision 

and computational efficiency. Compared to traditional CNNs and Fully Convolutional Networks 

(FCNs), the enhanced ResNet model achieved over 10% improvement in accuracy, recall, and F1-

score on the BraTS 2020 dataset. The research demonstrated that residual learning could significantly 

improve segmentation efficiency while reducing computational costs. Another study conducted by 

Walsh et al. (2022) proposed an implementation of U-Net that enables real-time segmentation with 

superior performance compared to other conventional segmentation algorithms [12]. This model was 

evaluated using the BITE dataset, with results showing an average Intersection-over-Union (IoU) 

score of 89%, which is higher than other benchmark methods. The main advantage of this approach 

is the use of images from three perspective planes (coronal, sagittal, transversal) instead of 3D 

volumetric images, thereby improving computational efficiency in brain tumor analysis. In the study 

by Ranjbarzadeh et al. (2023), AI-based brain tumor segmentation was examined using supervised 

learning, unsupervised learning, and deep learning [13]. This study highlighted that deep learning-



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

919 
Vol. 5, No. 2, 2025, pp. 917-936 

  

 

Yuri Pamungkas (Impact of Hyperparameter Tuning on ResNet-UNet Models for Enhanced Brain Tumor 

Segmentation in MRI Scans) 

 

based methods, particularly CNNs, have significantly improved segmentation efficiency compared to 

conventional methods such as thresholding and k-means clustering. The research also emphasized the 

importance of using multi-modal MRI (T1, T2, T1ce, and FLAIR) to enhance tumor detection 

accuracy. One of the main challenges in brain tumor segmentation is overfitting due to the limited 

availability of annotated data for training deep learning models. 

Therefore, this study aims to develop a brain tumor segmentation model based on ResNet-UNet 

that has been optimized through hyperparameter tuning to improve segmentation performance and 

efficiency. ResNet-UNet is a hybrid architecture that combines ResNet (Residual Network) as an 

encoder for deeper feature extraction and UNet as a decoder for segmentation image reconstruction. 

This combination provides advantages in handling varying tumor structure complexity and improves 

the model's generalization ability to various types of MRI data. However, model performance is 

greatly influenced by the selection of hyperparameters, such as learning rate, batch size, number of 

layers, and activation function, which directly affect the convergence process and segmentation 

accuracy. Experiments were conducted using the LGG (Low-Grade Glioma) Segmentation Dataset, 

which is a benchmark for evaluating brain tumor segmentation models. Model performance evaluation 

was carried out using metrics such as Loss, Dice Similarity Coefficient (DSC), and Mean Intersection 

over Union (mIoU), to ensure more accurate and consistent segmentation compared to conventional 

methods. The hypothesis is that optimal hyperparameter tuning can improve model generalization and 

reduce overfitting, thereby improving brain tumor segmentation performance on LGG datasets. In 

addition, with optimal hyperparameter tuning, the model is expected to work efficiently without losing 

precision in detecting complex tumor boundaries. The implementation of this model is expected to 

assist medical personnel in making faster and more accurate clinical decisions, as well as opening up 

opportunities for the development of artificial intelligence-based diagnostic support systems in the 

fields of radiology and oncology. 

2. Material and Methods 

2.1. Dataset 

The LGG (Low-Grade Glioma) Segmentation Dataset is a collection of brain MRI images 

accompanied by manual FLAIR abnormality segmentation masks [14]. This dataset is designed to 

support research in brain tumor segmentation, particularly for detecting and classifying low-grade 

gliomas (LGG). FLAIR-based segmentation is crucial as this modality effectively highlights abnormal 

regions associated with tumors, including edema and structural changes in the brain that may not be 

clearly visible in other MRI modalities. The MRI images in this dataset were obtained from The 

Cancer Imaging Archive (TCIA), a widely used repository of medical imaging data for cancer research 

[15]. TCIA provides high-quality, curated datasets for various types of cancer, including brain tumors. 

The data in the LGG Segmentation Dataset has undergone preprocessing to ensure consistency in size, 

resolution, and intensity normalization, making it ready for use in various AI-based segmentation 

studies. This dataset consists of MRI scans from 110 patients, all of whom are part of The Cancer 

Genome Atlas (TCGA) lower-grade glioma collection. Each patient in this dataset has at least one 

Fluid-Attenuated Inversion Recovery (FLAIR) imaging sequence and available genomic cluster data. 

The inclusion of genomic information in this dataset enables research that correlates MRI imaging 

patterns with molecular tumor characteristics, improving our understanding of the relationship 

between tumor biology and imaging features [16]. 

2.2. Data Pre-Processing 

Pre-processing is a crucial step in preparing the LGG Segmentation Dataset for deep learning-

based brain tumor segmentation [17]. This process involves retrieving data, cleaning, transforming, 

and loading it efficiently to ensure consistency in model training. The first step in pre-processing is to 

gather all necessary files, including MRI scans, segmentation masks, and metadata containing patient-

specific information such as clinical and genomic data. MRI scans are typically stored in NIfTI (.nii) 

format, while segmentation masks are provided as manually annotated ground truth labels. The dataset 
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includes a CSV file containing essential patient metadata, such as Patient ID, genomic cluster data 

(RNASeqCluster, MethylationCluster, miRNACluster, etc.), histopathological and clinical 

information (tumor tissue site, laterality, tumor location), demographic details (gender, age, race, and 

ethnicity), and survival data (death01). These features allow for a more comprehensive analysis by 

linking tumor characteristics in MRI scans with genetic and histological factors [18]. The CSV file is 

read into a pandas DataFrame, providing structured data processing for analysis. Handling missing 

values is a critical part of pre-processing to avoid inconsistencies in the dataset. For categorical 

variables, missing values are imputed using the most frequent category (mode), while for numerical 

values, missing data is filled using the mean or median, depending on the distribution. If a patient’s 

metadata contains excessive missing values, the row may be removed to maintain dataset integrity. 

This step ensures that the dataset remains complete and unbiased for further analysis. 

2.3. ResNet-UNet Architectures 

ResNet-UNet is a deep learning architecture that combines the advantages of two well-known 

models, namely Residual Network (ResNet) and U-Net, to improve the performance of medical image 

segmentation, including in the detection and segmentation of brain tumors in MRI [19]. ResNet is 

known for its ability to prevent the vanishing gradient problem and enable deeper feature modeling, 

while U-Net is very effective in segmentation tasks with an encoder-decoder structure that allows for 

precise image detail reconstruction [20]. Fig. 1 is a diagram of the ResNet-UNet architecture. 

 

Fig. 1. ResNet-UNet architecture 

The ResNet-UNet architecture utilizes ResNet as an encoder, which is responsible for extracting 

features from input images using residual blocks. Residual blocks in ResNet help retain important 

information by using shortcut connections, so that the model can learn more complex features 

without experiencing performance degradation due to too deep a network [21]. The use of ResNet as 

an encoder improves the feature extraction capability compared to the conventional encoder in U-

Net. After the features are extracted by the ResNet encoder, the results are sent to the U-Net decoder 

section, which is responsible for reconstructing the high-resolution segmentation image [22]. The U-

Net decoder consists of upsampling layers and skip connections that allow the recovery of spatial 

details from the extracted features. Skip connections in U-Net connect features from the initial 

encoding stage directly to the corresponding decoding stage, thus preserving important information 

that may be lost during the downsampling process [23].  

2.3.1. UNet 

UNet is a deep learning architecture based on Convolutional Neural Network (CNN) specifically 

designed for medical image segmentation tasks, including in the analysis of MRI scans of brain tumors 
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[24]. This model has become a standard method in pixel-based segmentation, where each pixel in the 

image is classified to determine the boundary between normal tissue and tumor. UNet uses an encoder-

decoder approach with skip connections to improve segmentation accuracy and preserve spatial 

information in the image [25]. The main goal of UNet in brain tumor segmentation from MRI scans 

is to detect, classify, and isolate the tumor area from healthy brain tissue with a high degree of 

precision. Accurate segmentation is essential in early diagnosis, surgical planning, and evaluating the 

effectiveness of therapies such as radiation or chemotherapy [26]. By using UNet, doctors can obtain 

segmentation maps that show tumor boundaries in detail, allowing for more precise clinical decision 

making. In addition, this model is able to work with limited data through data augmentation and 

efficient utilization of spatial information [27]. Fig. 2 is a diagram of the UNet architecture. 

 

Fig. 2. UNet architecture 
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The diagram above illustrates the U-Net architecture, specifically designed for image 

segmentation tasks, including medical segmentation such as brain tumor detection from MRI scans 

[28]. This architecture begins with an input image tile of size 572 × 572 × 1 (grayscale) or larger for 

RGB format. The input is processed through an initial convolutional layer to produce an initial feature 

map with 64 channels. The U-Net structure consists of two main paths, such as the encoder 

(contracting path) and the decoder (expanding path), interconnected by skip connections [29]. The 

encoder is responsible for feature extraction using a series of stacked convolutional layers (3×3, 

ReLU) followed by max pooling (2×2) to progressively reduce the spatial dimensions. Each step in 

the encoder increases the number of feature channels, starting from    →     →     →     →     , 

while the spatial dimensions shrink from     →     →     →    →   .  he en oder aims to  apture 

critical features at various levels of abstraction. At the center of the architecture lies the bottleneck, 

the deepest part with two stacked convolutional layers and 1024 channels, where abstract features are 

extracted to provide a richer representation [30]. These features are then passed to the decoder, which 

restores the spatial dimensions using up-convolution or transposed convolution (2×2). In the decoder, 

spatial dimensions progressivel  in rease  e.g., from    →    →     →     →      while the number 

of  hannels de reases from      →     →     →     →   . 

One of U-Net's strengths lies in the use of skip connections, which link the encoder layers to the 

corresponding decoder layers at the same resolution level [31]. These skip connections allow spatial 

information from the encoder to be transferred to the decoder, ensuring that critical details lost during 

downsampling are restored [32]. In the final stage, a 1×1 convolution layer is used to produce the 

output segmentation map with 2 channels, representing the pixel probabilities for each class (e.g., 

tumor or healthy tissue). The U-Net architecture is highly effective for segmentation as it combines 

global feature extraction in the encoder, spatial reconstruction in the decoder, and spatial information 

transfer through skip connections [33]. This structure ensures that the model can generate precise 

segmentation maps, even for complex images such as brain tumor MRI scans. This combination 

makes U-Net one of the most reliable models for deep learning-based segmentation tasks [34]. 

2.3.2. ResNet 

ResNet (Residual Network) is a deep learning architecture based on Convolutional Neural 

Networks (CNN) designed to address the vanishing gradient problem that commonly occurs in very 

deep networks [35]. ResNet utilizes residual blocks with shortcut connections that allow information 

from earlier layers to be directly passed to subsequent layers. This approach enables the model to learn 

more complex features without performance degradation, making ResNet one of the most popular 

architectures for image segmentation tasks, including brain tumor segmentation from MRI scans [36]. 

The primary purpose of ResNet in brain tumor segmentation is to accurately identify and distinguish 

tumor regions from healthy tissue [37]. Accurate segmentation supported by ResNet plays a crucial 

role in early diagnosis, surgical planning, and therapy evaluation, such as radiation or chemotherapy. 

In segmentation tasks, ResNet is often used as the encoder in encoder-decoder architectures, such as 

ResNet-UNet, to capture deep features from MRI scans and detect relevant patterns in complex tumor 

structures [38]. 

 es et’s ar hite ture  onsists of residual blo ks, ea h  ontaining two or three sta ked 

convolutional layers (3×3) and shortcut connections that directly link the initial input to the block's 

output [39]. These shortcut connections employ an identity mapping mechanism that adds the input 

to the output after convolution, ensuring gradients flow efficiently through very deep networks. 

ResNet comes in various variants, such as ResNet-50, ResNet-101, and ResNet-152, differing in the 

number of layers and network depth, providing flexibility for tasks of varying complexity [40]. The 

working mechanism of ResNet begins with initial feature extraction using the first convolutional layer. 

Then, the image passes through a series of residual blocks where shortcut connections ensure that 

critical information from previous layers is preserved [41]. In the context of brain tumor MRI 

segmentation, ResNet is typically combined with a decoder to reconstruct the final segmentation map. 

The decoder enlarges the spatial dimensions of the image and generates a probability map for each 
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pixel, identifying whether the pixel belongs to the tumor region or healthy tissue [42]. Fig. 3, Fig. 4, 

Fig. 5, Fig. 6, Fig. 7 is a diagram of the ResNet architectures. 

 

Fig. 3. ResNet-18 

 

Fig. 4. ResNet-34 

 

Fig. 5. ResNet-50 

 

Fig. 6. ResNet-101 

 

Fig. 7. ResNet-152 

The ResNet model has several variants, namely ResNet18, ResNet34, ResNet50, ResNet101, and 

ResNet152, which differ in the number of layers and network complexity [43]. Although all variants 

use residual blocks with shortcut connections, there are differences in the number of parameters, 

network depth, and the t pe of residual blo ks used, whi h affe t the model’s performan e and 
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efficiency [44]. ResNet18 and ResNet34 are lighter variants of ResNet, using basic residual blocks 

with two convolutional layers per block. ResNet18 consists of 18 layers and has fewer parameters, 

making it suitable for devices with limited computational power or tasks that do not require a very 

deep network. ResNet34 increases the depth to 34 layers, providing better accuracy while maintaining 

computational efficiency [45]. These two models are ideal for medical segmentation tasks with small 

to medium-sized datasets, as they do not require as much computational power as deeper models. 

On the other hand, ResNet50, ResNet101, and ResNet152 use bottleneck residual blocks, which 

are more complex compared to the basic blocks in ResNet18 and ResNet34 [46]. Each bottleneck 

block consists of three convolutional layers (1×1, 3×3, and 1×1), where the 1×1 layers are used to 

reduce and expand feature dimensions, keeping the number of parameters efficient even in deeper 

networks. ResNet50 has 50 layers and more parameters than ResNet34, making it more powerful in 

capturing complex features [47]. ResNet101 increases the number of layers to 101, providing deeper 

feature representation and higher accuracy in segmentation and classification tasks [48]. ResNet152 

is the deepest variant with 152 layers, offering higher accuracy but requiring significant computational 

power, making it commonly used in brain tumor segmentation with large datasets, as it can capture 

fine structural details of tumors more effectively [49]. In terms of performance and application, 

ResNet18 and ResNet34 are faster in inference and well-suited for simple segmentation tasks or real-

time applications. ResNet50 is often the optimal choice as it provides a balance between accuracy and 

computational efficiency, making it widely used in deep learning-based segmentation models such as 

ResNet-UNet [50]. ResNet101 and ResNet152 offer deeper feature representations and are ideal for 

tasks requiring high-level feature extraction, but they demand high-powered GPUs for training and 

inference. In general, the choice between ResNet variants depends on the required accuracy, 

computational capacity, and dataset size [51]. For MRI-based brain tumor segmentation, ResNet50 or 

ResNet101 are frequently used as they offer the best balance between complexity, accuracy, and 

computational efficiency. 

2.4. Hyperparameter in CNNs 

In Convolutional Neural Networks (CNNs), hyperparameters play a crucial role in determining 

model performance, training stability, and generalization ability to new data [52]. Unlike model 

parameters such as weights and biases that are updated during training, hyperparameters are set before 

training begins and need to be optimized for the best results [53]. Some of the key hyperparameters 

in CNNs that significantly affect training effectiveness include learning rate, batch size, number of 

epochs, optimizer, and activation function [54].  he learning rate  α  is a h perparameter that defines 

how much the model updates its weights during each iteration. A learning rate that is too high can 

cause unstable convergence, where the model overshoots the optimal point during optimization. 

Conversely, a learning rate that is too low can make training excessively slow or cause the model to 

get stuck in a local minimum [55]. Typically, the learning rate is set within the range of 0.0001 to 

0.01, depending on the model architecture and dataset. Techniques such as learning rate decay or 

adaptive learning rate are often used to dynamically adjust the learning rate during training to improve 

optimization [56]. 

Another crucial hyperparameter is batch size, which determines the number of data samples 

pro essed before updating the model’s weights in a single iteration.  he  hoi e of bat h size 

significantly affects training stability and efficiency. A small batch size (e.g., 16 or 32) results in more 

frequent weight updates, which can help the model find optimal solutions faster but requires more 

iterations [57]. A large batch size (e.g., 128 or 256) allows the model to use more data before updating 

weights, improving training stability but requiring more GPU memory. The optimal batch size is 

usually determined through experimentation, as a batch size that is too large may reduce model 

generalization, while a batch size that is too small may make training noisy and unstable [58]. The 

number of epochs refers to the number of times the entire dataset is used to train the model. If the 

number of epochs is too low, the model may not learn effectively, leading to underfitting [59]. 

Conversely, if the number of epochs is too high, the model may memorize the training data and overfit, 

resulting in poor performance on new data. To prevent overfitting, techniques such as early stopping 
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are often used, which stop training when no further improvement is observed in model performance 

over several epochs. Typically, the number of epochs is chosen within the range of 10 to 100, 

depending on the dataset and model complexity [60]. 

An important aspect of CNN training is the optimizer, which determines how the model updates 

its weights based on gradient calculations [61]. Several commonly used optimizers include Stochastic 

Gradient Descent (which updates weights using gradients and is often combined with momentum to 

enhance stability), Adam (which dynamically adjusts the learning rate for each parameter and 

accelerates convergence), RMSprop (which stabilizes gradient updates and prevents exploding 

gradients), and Adagrad (which adapts the learning rate automatically but may reduce learning 

efficiency over time) [62]. The choice of optimizer depends on the dataset and model architecture, 

with Adam being widely used in medical image segmentation and image classification due to its robust 

performance in deep networks. Finally, the activation function plays a crucial role in introducing non-

linearity to the network, allowing the model to learn complex patterns [63]. Common activation 

functions in CNNs include ReLU (which is widely used due to its simplicity and effectiveness in 

mitigating the vanishing gradient problem), Leaky ReLU (which allows small negative values to 

ensure gradient flow), Sigmoid (which is used in binary classification output layers but is less effective 

in hidden layers due to vanishing gradient issues), and Softmax (which is applied in multi-class 

classification tasks as it converts outputs into probability distributions) [64]. The choice of activation 

function depends on the specific task, with ReLU and Leaky ReLU commonly used in hidden layers, 

while Sigmoid and Softmax are applied in output layers depending on the classification type. The 

following are the hyperparameter tuning scenarios on the ResNet model tested in the study. 

Based on Table 1, various ResNet architectures (18, 34, 50, 101, 152) are used to compare 

different network depths, where shallower models such as ResNet-18 and 34 are lighter and faster, 

while deeper models like ResNet-50, 101, and 152 can capture more complex features but are at risk 

of overfitting. The number of epochs is set to 50 to ensure the model learns sufficiently without 

overfitting. Three types of optimizers tested include Adam (known for its stability and fast 

convergence), SGD (more robust for generalization), and RMSProp (suitable for handling gradient 

fluctuations in deep learning). Additionally, three learning rate levels (0.01, 0.001, and 0.0001) are 

chosen to examine the impact of learning speed on model convergence, where 0.001 is commonly 

used as a standard due to its balance between stability and efficiency. This model employs the Sigmoid 

activation function, which is suitable for binary segmentation tasks as it produces probability values 

between 0 and 1 [65]. The selection of these hyperparameters aims to determine the best combination 

that can enhance Mean Intersection over Union (mIoU) and Dice Similarity Coefficient (DSC) in 

brain tumor segmentation using the ResNet-UNet model. 

Table 1.  Hyperparameter tuning on the ResNet architectures 

ResNet Architectures 18, 34, 50, 101, 152 

Epoch 50 

Optimizer 
Adam, 

SGD, 

RMSProp 

Learning Rate 
0.01, 

0.001, 

0.0001 

Activation Function Sigmoid 

2.5. Model Performance Evaluation 

Evaluating the performance of a segmentation model is crucial to ensure its accuracy and 

reliability in identifying regions of interest, such as brain tumors in MRI scans. In deep learning-based 

segmentation tasks, various metrics are used to measure how well the model predicts segmentation 

masks compared to the ground truth [66]. Among the most commonly used evaluation metrics are 

Loss, Dice Similarity Coefficient (DSC), and Mean Intersection over Union (mIoU). Each of these 

metri s provides valuable insights into different aspe ts of the model’s segmentation performan e. 
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2.5.1. Loss Function 

The loss function quantifies the difference between the predicted segmentation and the ground 

truth, guiding the optimization process during model training. In MRI segmentation tasks, common 

loss functions include Binary Cross-Entropy (BCE) Loss, Dice Loss, and Combination Losses (such 

as BCE + Dice Loss) [67]. Binary Cross-Entropy (BCE) Loss is often used in binary segmentation 

tasks, where each pixel is classified as either tumor or non-tumor. However, BCE loss can be less 

effective when dealing with imbalanced datasets where the background class significantly outweighs 

the tumor class [68]. To address this, Dice Loss is commonly employed, which is derived from the 

Dice Similarity Coefficient (DSC). Dice Loss is particularly useful for segmentation tasks as it directly 

optimizes the overlap between predicted and ground truth masks. Many segmentation models also use 

hybrid loss functions that combine BCE and Dice Loss, ensuring both pixel-wise accuracy and global 

shape consistency in segmentation. The loss function helps the model learn to refine segmentation 

predictions over multiple training iterations, reducing false positives and false negatives [69]. 

2.5.2. Dice Similarity Coefficient (DSC) 

The Dice Similarity Coefficient (DSC), also known as the Dice Score, is a widely used metric to 

measure the overlap between the predicted segmentation and the ground truth [70]. The DSC formula 

is given by: 

𝐷𝑆𝐶 =
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (1) 

where A represents the predicted segmentation mask and B represents the ground truth mask. The 

DSC value ranges from 0 to 1, where 1 indicates perfect segmentation (complete overlap) and 0 

indicates no overlap at all. A higher Dice Score suggests that the model is accurately identifying tumor 

regions, while a lower score implies poor segmentation performance. Dice Similarity is particularly 

useful in medical image segmentation because it effectively accounts for class imbalances, ensuring 

that the model focuses on overlapping areas rather than just pixel-wise accuracy. Since MRI brain 

tumor segmentation typically involves small tumor regions compared to the entire brain structure, 

DSC is often a preferred metric in performance evaluation [71]. 

2.5.3. Mean Intersection over Union (mIoU) 

Another critical evaluation metric in MRI segmentation is Mean Intersection over Union (mIoU), 

which measures the ratio of intersection to the union between predicted and ground truth 

segmentations [72]. The mIoU formula is: 

𝑚𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (2) 

Similar to the Dice Score, IoU (also called the Jaccard Index) evaluates the overlap between 

segmentation masks but tends to be more sensitive to small errors in boundary predictions. mIoU is 

commonly used in multi-class segmentation tasks, where it averages IoU scores across all classes to 

provide an overall segmentation accuracy measure. Like DSC, the higher the mIoU score, the better 

the segmentation accuracy. In MRI brain tumor segmentation, mIoU is particularly useful for 

assessing how well the model can distinguish tumor boundaries from healthy brain tissue. However, 

since mIoU is generally more conservative than DSC (i.e., it produces lower scores for the same 

segmentation results), it is often used in combination with DSC to get a more comprehensive 

evaluation of segmentation performance [73]. 

3. Results and Discussion 

This study aims to develop a brain tumor segmentation model based on ResNet-UNet that has 

been optimized through hyperparameter tuning to improve segmentation accuracy and efficiency. 
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Therefore, a hybrid model between UNet and several ResNet architectures (18, 34, 50, 101, and 152) 

are proposed in this study. Each ResNet architecture is then tuned with hyperparameters by changing 

the learning rate (0.01, 0.001, and 0.0001), activation function type (Sigmoid), and optimizer type 

(Adam, SGD, and RMSProp). Based on the results of hyperparameter tuning and model testing, the 

performance metrics are obtained as shown in the following table. 

The Table 2 presents the performance metrics of different ResNet models (ResNet18, ResNet34, 

ResNet50, ResNet101, and ResNet152) in brain tumor MRI segmentation tasks. The evaluation was 

conducted using three different optimizers (Adam, SGD, and RMSProp) with a learning rate of 0.01 

and the Sigmoid activation function. The performance was assessed using four key metrics, such as 

Loss, Mean Intersection over Union (mIoU), Dice Similarity Coefficient (DSC), and Iterations per 

Second. These metrics provide insights into how well each combination of model depth and optimizer 

performs in the segmentation task. Among the three optimizers, Adam and RMSProp produced lower 

loss values compared to SGD, indicating that these optimizers were more effective in minimizing 

segmentation errors. Adam and RMSProp consistently achieved lower loss values (0.006 - 0.008), 

whereas SGD produced higher loss values (0.010 - 0.012), suggesting that Adam and RMSProp are 

better suited for this segmentation task. In terms of Mean IoU and Dice Similarity Coefficient (DSC), 

RMSProp achieved the highest values across all models, with mIoU reaching up to 0.888 and DSC 

reaching 0.917, signifying superior segmentation accuracy. Adam also performed well, with slightly 

lower values than RMSProp, while SGD had the lowest mIoU and DSC scores, indicating weaker 

segmentation performance. 

Table 2.  Performance Metrics of ResNet model with LR = 0.01 and AF = Sigmoid 

Learning Rate (LR) = 0.01 and Activation Function (AF) = Sigmoid 

Optimizer Model Loss Mean IoU Dice Coefficient Iterations/ Second 

Adam 

ResNet18 0.006 0.887 0.914 8.63 

ResNet34 0.007 0.882 0.913 6.62 

ResNet50 0.008 0.875 0.903 4.65 

ResNet101 0.007 0.873 0.903 3.34 

ResNet152 0.007 0.872 0.900 2.66 

SGD 

ResNet18 0.012 0.797 0.833 8.85 

ResNet34 0.012 0.778 0.812 6.79 

ResNet50 0.019 0.640 0.640 4.79 

ResNet101 0.019 0.632 0.632 3.46 

ResNet152 0.011 0.813 0.845 2.83 

RMSProp 

ResNet18 0.006 0.887 0.916 9.19 

ResNet34 0.006 0.889 0.917 7.01 

ResNet50 0.007 0.880 0.909 4.94 

ResNet101 0.007 0.884 0.913 3.59 

ResNet152 0.007 0.888 0.917 2.61 

 

The results show that deeper models (ResNet50, ResNet101, and ResNet152) tend to have higher 

accuracy (higher mIoU and DSC) but operate at slower processing speeds (iterations per second). 

ResNet18 and ResNet34 consistently performed segmentation at higher speeds (e.g., 8.630 and 6.620 

iterations per second using Adam), whereas ResNet152 was the slowest, with speeds dropping to 

2.660 iterations per second. The deeper models, particularly ResNet50, ResNet101, and ResNet152, 

achieved the highest segmentation accuracy, with mIoU exceeding 0.870 and DSC reaching 0.917 

when trained with RMSProp. This suggests that deeper architectures are more effective in capturing 

complex tumor structures but require more computational resources. Based on the results, ResNet152 

with RMSProp achieved the highest segmentation performance, with mIoU of 0.888 and DSC of 

0.917, indicating precise tumor boundary identification. However, this came at the cost of lower 

inference speed (2.610 iterations per second). If computational efficiency is a priority, ResNet34 or 

ResNet50 with RMSProp may offer a good trade-off between accuracy and processing speed, with 

mIoU around 0.889 and DSC around 0.917 while maintaining a moderate number of iterations per 

second. 
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The Table 3 presents the performance metrics of different ResNet models (ResNet18, ResNet34, 

ResNet50, ResNet101, and ResNet152) for brain tumor MRI segmentation, using a learning rate of 

0.001 and the Sigmoid activation function. The models were evaluated with three different optimizers 

(Adam, SGD, and RMSProp), and their performance was measured using four key metrics, such as 

Loss, Mean Intersection over Union (mIoU), Dice Similarity Coefficient (DSC), and Iterations per 

Second. These metrics provide insights into the model’s segmentation a  ura  , effi ien  , and 

computational performance. Among the three optimizers, Adam and RMSProp consistently achieved 

lower loss values, indicating their effectiveness in minimizing segmentation errors. Adam showed 

stable performance across all ResNet models, with loss values ranging from 0.006 to 0.007, while 

RMSProp produced similar values, particularly excelling in deeper models like ResNet50 and 

ResNet152. On the other hand, SGD had significantly higher loss values, ranging from 0.019 to 0.033, 

with lower segmentation accuracy, suggesting that it is less suitable for this task when using a learning 

rate of 0.001. In terms of Mean IoU (mIoU) and Dice Similarity Coefficient (DSC), RMSProp 

achieved the highest values across all models, with mIoU reaching 0.901 and DSC reaching 0.926 

when used with ResNet152. Adam also performed well, achieving similar mIoU and Dice scores 

(0.897 - 0.904 for mIoU and 0.926 - 0.931 for DSC), making it a strong alternative to RMSProp. 

Meanwhile, SGD significantly underperformed, with mIoU values as low as 0.614 and Dice scores 

ranging from 0.623 to 0.681, indicating weaker segmentation accuracy compared to Adam and 

RMSProp. 

Table 3.  Performance Metrics of ResNet model with LR = 0.001 and AF = Sigmoid 

Learning Rate (LR) = 0.001 and Activation Function (AF) = Sigmoid 

Optimizer Model Loss Mean IoU Dice Coefficient Iterations/ Second 

 Adam 

ResNet18 0.006 0.897 0.926 9.12 

ResNet34 0.007 0.897 0.926 6.93 

ResNet50 0.006 0.887 0.915 4.90 

ResNet101 0.006 0.904 0.931 3.55 

ResNet152 0.007 0.884 0.913 1.79 

 SGD 

ResNet18 0.033 0.676 0.676 9.34 

ResNet34 0.034 0.614 0.639 7.16 

ResNet50 0.031 0.623 0.623 5.05 

ResNet101 0.024 0.726 0.757 3.52 

ResNet152 0.025 0.681 0.681 2.85 

RMSProp 

ResNet18 0.006 0.902 0.930 9.19 

ResNet34 0.007 0.882 0.910 7.03 

ResNet50 0.007 0.895 0.922 4.96 

ResNet101 0.006 0.872 0.901 3.59 

ResNet152 0.006 0.901 0.926 2.61 

 

As observed in previous experiments, deeper models (ResNet50, ResNet101, and ResNet152) 

tend to achieve higher segmentation accuracy but operate at slower inference speeds (iterations per 

second). ResNet18 and ResNet34 had the highest processing speeds, with RMSProp and Adam 

achieving up to 9.190 and 9.120 iterations per second, respectively. Meanwhile, ResNet152 exhibited 

the slowest inference speed, dropping to 2.610 iterations per second, which indicates that deeper 

models require significantly more computational resources. However, deeper models such as 

ResNet50, ResNet101, and ResNet152 demonstrated superior segmentation accuracy, with mIoU 

exceeding 0.890 and DSC reaching 0.926 when using RMSProp or Adam. This confirms that deeper 

networks are more effective in capturing intricate tumor structures, albeit at the cost of processing 

speed. The results suggest that ResNet152 with RMSProp achieved the best segmentation 

performance, with an mIoU of 0.901 and DSC of 0.926, making it the most precise model in 

identifying tumor boundaries. However, this performance came with reduced inference speed (2.610 

iterations per second). ResNet50 and ResNet101 with RMSProp or Adam provide a good balance 

between accuracy and computational efficiency, offering high Dice scores (above 0.920) while 

maintaining moderate processing speed. 
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The Table 4 presents the performance metrics of different ResNet models (ResNet18, ResNet34, 

ResNet50, ResNet101, and ResNet152) for brain tumor MRI segmentation, using a learning rate of 

0.0001 and the Sigmoid activation function. The models were evaluated with three different 

optimizers (Adam, SGD, and RMSProp), and their performance was measured using Loss, Mean 

Intersection over Union (mIoU), Dice Similarity Coefficient (DSC), and Iterations per Second. These 

metrics provide a comprehensive evaluation of the model’s segmentation a  ura  ,  omputational 

efficiency, and processing speed. Among the three optimizers, Adam and RMSProp demonstrated 

significantly better segmentation performance compared to SGD, which produced notably higher loss 

values and lower accuracy metrics. Adam maintained loss values between 0.007 and 0.009, achieving 

a Mean IoU (mIoU) of up to 0.904 and a Dice Coefficient (DSC) of up to 0.928 when used with 

ResNet50. Similarly, RMSProp achieved comparable results, with loss values as low as 0.006, an 

mIoU of up to 0.902, and a DSC of 0.928. These results suggest that Adam and RMSProp are more 

suitable for brain tumor segmentation tasks, as they ensure better accuracy and lower error rates. In 

contrast, SGD performed significantly worse, with loss values reaching 0.108 for ResNet18 and 0.103 

for ResNet152. Additionally, its mIoU values remained very low, ranging between 0.075 and 0.528, 

indicating poor segmentation quality. The Dice Coefficient for SGD did not exceed 0.528, which is 

considerably lower than the scores achieved by Adam and RMSProp. These results confirm that SGD 

struggles to converge effectively with a learning rate of 0.0001, making it a suboptimal choice for this 

task. 

Table 4.  Performance Metrics of ResNet model with LR = 0.0001 and AF = Sigmoid 

Learning Rate (LR) = 0.0001 and Activation Function (AF) = Sigmoid 

Optimizer Model Loss Mean IoU Dice Coefficient Iterations/ Second 

Adam 

ResNet18 0.007 0.877 0.908 9.01 

ResNet34 0.007 0.901 0.926 6.74 

ResNet50 0.007 0.904 0.932 4.65 

ResNet101 0.007 0.891 0.921 3.33 

ResNet152 0.010 0.858 0.888 2.65 

SGD 

ResNet18 0.108 0.304 0.304 8.86 

ResNet34 0.106 0.075 0.075 6.79 

ResNet50 0.106 0.055 0.062 4.92 

ResNet101 0.113 0.348 0.348 3.62 

ResNet152 0.103 0.528 0.528 2.80 

RMSProp 

ResNet18 0.006 0.897 0.925 8.82 

ResNet34 0.007 0.873 0.904 6.64 

ResNet50 0.006 0.901 0.928 4.69 

ResNet101 0.007 0.889 0.920 3.37 

ResNet152 0.006 0.902 0.928 2.38 

 

The results also highlight the impact of model depth on segmentation performance. Deeper 

models (ResNet50, ResNet101, and ResNet152) consistently achieved higher segmentation accuracy, 

with mIoU surpassing 0.900 and Dice scores above 0.920 when using Adam or RMSProp. This 

indicates that deeper networks are more effective in capturing complex tumor structures [74]. 

However, deeper models also come with a trade-off in terms of computational efficiency, as observed 

in the iterations per second metric. ResNet18 and ResNet34 exhibited the highest processing speeds, 

with Adam and RMSProp achieving up to 9.01 and 9.19 iterations per second, respectively. 

Meanwhile, ResNet152 was the slowest, dropping to 2.38 iterations per second, emphasizing the 

increased computational burden of deeper architectures. The results suggest that ResNet50 and 

ResNet152 with RMSProp achieved the highest segmentation performance, with mIoU values of 

0.902 and Dice Coefficients of 0.928. ResNet50 with Adam also performed exceptionally well, 

reaching an mIoU of 0.904 and a DSC of 0.928, making it an optimal choice for accurate tumor 

segmentation. However, if computational efficiency is a priority, ResNet34 with Adam or RMSProp 

offers a strong balance between accuracy and speed, achieving an mIoU of 0.901 while maintaining a 

moderate processing speed of 6.74 to 6.49 iterations per second. 
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The evaluation of hyperparameter tuning in brain tumor MRI segmentation demonstrates that 

parameters such as learning rate, optimizer selection, and activation function significantly influence 

model performance evaluation metrics like Loss Function, Dice Similarity Coefficient (DSC), and 

Mean Intersection over Union (mIoU) [75]. The results from different settings indicate how 

adjustments in these hyperparameters impact segmentation accuracy, model stability, and 

computational efficiency. One of the most crucial factors affecting model performance is the learning 

rate. A higher learning rate (0.01) results in unstable convergence, higher loss values, and lower 

segmentation accuracy. This is evident from the poor performance of models trained with SGD at a 

learning rate of 0.01, which exhibited higher loss values (above 0.012) and lower mIoU and Dice 

scores. As the learning rate was reduced to 0.001 and 0.0001, segmentation accuracy improved, 

particularly when combined with Adam and RMSProp optimizers. For instance, ResNet50 and 

ResNet152 with RMSProp at 0.0001 achieved lower loss values (0.006), an mIoU of 0.902, and a 

Dice score of 0.928, indicating that a lower learning rate stabilizes model training and enhances 

segmentation precision. The choice of optimizer also plays a critical role in determining how well the 

model can minimize segmentation errors [76]. The results indicate that Adam and RMSProp 

consistently outperformed SGD across all learning rate settings, delivering lower loss values, higher 

mIoU, and superior Dice scores. For example, at 0.0001 learning rate, ResNet50 and ResNet152 with 

RMSProp achieved the best segmentation accuracy, while SGD struggled with high loss values 

(0.103) and poor mIoU (as low as 0.075). This suggests that SGD is not well-suited for MRI 

segmentation tasks, as it struggles with convergence at lower learning rates. In contrast, Adam and 

RMSProp, which dynamically adjust learning rates, proved to be more effective for brain tumor 

segmentation. 

Regarding activation functions, all models in the experiments utilized Sigmoid, which is 

commonly used in binary segmentation tasks like tumor vs. non-tumor classification. However, the 

results suggest that learning rate and optimizer selection have a greater impact on model accuracy than 

the choice of activation function itself. Since Sigmoid is prone to vanishing gradient problems in deep 

networks, alternative activation functions like ReLU or Leaky ReLU could potentially improve 

segmentation results in deeper architectures such as ResNet101 and ResNet152 [77]. Model depth 

also significantly influences segmentation performance. The deeper models (ResNet50, ResNet101, 

and ResNet152) consistently achieved higher segmentation accuracy, particularly when trained with 

Adam or RMSProp at lower learning rates. For instance, ResNet152 with RMSProp at 0.0001 attained 

the highest segmentation accuracy with an mIoU of 0.902 and DSC of 0.928, suggesting that deeper 

networks are better at capturing complex tumor structures. However, these models also come with a 

trade-off in terms of computational efficiency [78]. The iterations per second metric indicates that 

ResNet18 and ResNet34 process images faster (above 9.0 iterations per second), while deeper models 

like ResNet152 operate significantly slower (2.38 iterations per second), highlighting the increased 

computational burden of using deeper networks. 

Based on the analysis, the optimal configuration for MRI brain tumor segmentation involves 

using a low learning rate (0.0001), Adam or RMSProp optimizer, and deeper ResNet architectures 

(ResNet50 or ResNet152). SGD is the least effective optimizer for this task, as it produces higher loss 

values and lower segmentation accuracy. While deeper models provide superior segmentation results, 

they require more computational resources, making them less practical for real-time applications. 

Therefore, for high-precision segmentation tasks, ResNet50 or ResNet152 with RMSProp or Adam at 

a learning rate of 0.0001 is the best choice. However, if computational efficiency is a priority, 

ResNet34 with Adam or RMSProp offers a strong balance between accuracy and speed. These 

findings highlight the importance of hyperparameter tuning in optimizing medical image 

segmentation models, demonstrating that the right combination of learning rate, optimizer, and model 

depth can significantly enhance segmentation accuracy and efficiency. However, this research still 

does not consider the imbalance of the LGG dataset used in brain tumor segmentation. This data 

imbalance can cause the model to tend to be more accurate in identifying non-tumor areas but fail to 

recognize tumor boundaries well [79]. Therefore, in future research, an approach using a balanced 
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sampling strategy is very important in improving the performance of brain tumor segmentation using 

UNet-ResNet, especially on datasets that have an imbalanced class distribution such as LGG. 

4. Conclusion 

This study successfully developed a brain tumor segmentation model based on ResNet-UNet, 

optimized through hyperparameter tuning to enhance segmentation accuracy and computational 

efficiency. The evaluation of different ResNet architectures (ResNet18, ResNet34, ResNet50, 

ResNet101, and ResNet152) under various hyperparameter settings revealed that deeper models 

generally achieve better segmentation accuracy, while shallower models provide faster inference 

speeds. Among the tested hyperparameters, learning rate, optimizer selection, and activation function 

played a crucial role in model performance. The results demonstrate that lower learning rates (0.0001 

and 0.001) led to improved segmentation accuracy, as they stabilized model convergence and 

minimized segmentation errors. The choice of optimizer significantly impacted model performance, 

with Adam and RMSProp consistently outperforming SGD across all learning rate settings. Models 

trained with SGD exhibited higher loss values, lower Dice Similarity Coefficient (DSC), and Mean 

Intersection over Union (mIoU), making it a less suitable optimizer for this task. Meanwhile, 

RMSProp achieved the highest segmentation accuracy, with an mIoU of 0.902 and DSC of 0.928 

when applied to ResNet152, while Adam showed competitive results with similar scores. 

Additionally, the activation function (Sigmoid) was found to be effective for binary segmentation 

tasks, but alternative functions such as ReLU or Leaky ReLU could be explored to further enhance 

performance in deeper architectures. 

The study also highlights the trade-off between segmentation accuracy and computational 

efficiency. Deeper models (ResNet50, ResNet101, and ResNet152) achieved superior accuracy in 

detecting tumor structures, but they required higher computational resources and exhibited slower 

inference speeds. In contrast, shallower models (ResNet18 and ResNet34) provided faster inference 

but lower accuracy, making them more suitable for real-time applications with computational 

constraints. The optimal balance between accuracy and efficiency was found in ResNet34 and 

ResNet50 with RMSProp or Adam, which maintained high Dice scores (above 0.920) while 

preserving a reasonable inference speed. While this study has demonstrated the effectiveness of 

hyperparameter tuning in brain tumor segmentation, several areas remain open for future research. 

One potential improvement is the exploration of alternative activation functions, such as ReLU, Leaky 

ReLU, or Swish, which may mitigate vanishing gradient problems in deep ResNet architectures. 

Additionally, future studies could investigate adaptive learning rate strategies, such as cyclical 

learning rates or learning rate warm-up techniques, to further optimize model convergence and prevent 

underfitting or overfitting. Another important area for future research is the integration of more 

advanced optimization techniques, including gradient accumulation or adaptive gradient methods like 

AdaBelief or NovoGrad, which may enhance segmentation accuracy while maintaining computational 

efficiency. Furthermore, incorporating data augmentation and transfer learning techniques could 

improve model generalization, particularly for handling small or imbalanced datasets in medical 

imaging. 
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