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1. Introduction 

The integration of AI and ML into robotics and autonomous systems has become one of the 

fastest-developing fields within the industry due to its ability to allow increased intelligence along 

with more adaptable and efficient decision-making [1], [2]. Most industrial activities have come to 

depend on fully autonomous robotic systems for greater accuracy [3], [4], reliability, and productivity 

while minimizing the need for people and the costs of operation [5], [6]. Reinforcement learning 

(RL) [7], [8] in the form of a framework for autonomous decision-making has proven to be very 

useful as robotic agents can learn the best control strategies by interacting with the environment as a 
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 As autonomous robotic systems are increasingly used in industrial 

applications, there is a growing need to create efficient and automated 

decision-making capabilities that can work in complex environments with 

a range of possible actions. RL offers an effective way to train robotic 

agents. Still, conventional RL techniques tend to have issues with slow and 

unstable policy learning, poor convergence, and weak exploration-

exploitation balance. To solve this problem, this paper develops a Hybrid 

optimization approach that incorporates reinforcement learning, deep 

learning, and metaheuristic optimization for more robust robotic control 

and adaptability. The new approach utilizes a Deep Q-Network with 

Experience Replay for learning policies. At the same time, an Adaptive 

Gradient-Based Sled Dog Optimizer is used to improve and optimize 

decision-making. Epsilon-greedy selection combined with Noisy Network 

is used for hybrid exploration-exploitation, which helps learning. The 

effectiveness of the proposed method was validated against five existing 

methods, which include Conservative Q-Learning, Behavior Regularized 

Actor-Critic, Implicit Q-Learning, Twin Delayed Deep Deterministic 

Policy Gradient, and Soft Actor-Critic, over the three benchmark robotic 

datasets of MuJoCo, D4RL, and OpenAI Gym Robotics Suite. The vast 

majority of results provide compelling support for the argument that the 

proposed approach consistently outperformed the baseline approaches in 

terms of accuracy, precision, recall, stability, speed of convergence, and 

degree of generalization. The improvement in performance was confirmed 

by validation methods such as analyzing confidence intervals and 

computing results of p-values.   
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trial and error-process [9], [10]. Nonetheless, conventional RL approaches have serious shortcomings 

when it comes to dealing with high-dimensional action spaces, slow convergence, and sub-optimal 

policy learning, which makes it extremely hard to apply them to real-life situations [11]-[13]. To 

overcome these obstacles, many researchers have focused on combining RL policies with hybrid AI-

optimization techniques that incorporate metaheuristic optimization in order to improve the 

efficiency of exploration-exploitation balance and overall adaptability of the system [14]-[17]. 

Even with the advantages that AI-integrated robotics brings, learning stable and generalizable 

policies across changing industrial environments is still an area of challenge [18], [19]. Stagnation 

training is poorly efficient, meaning that it takes a significant number of training episodes to reach 

peak performance, and many policy-based reinforcement learning structures have to deal with these 

issues [20], [21]. Moreover, many of these learning policies are poorly adaptive due to a lack of 

effective exploration strategies [22], [23]. They do not wish to perform a new task because of their 

inability to learn new rules, practices, or schedules [24]. These weaknesses prompt RL agents to 

gravitate towards sub-optimal strategies, which, in turn, lowers their efficiency. In order to alleviate 

these issues, new exploration methodologies need to be developed that are less rigid and able to 

perform actions more freely without being hindered by the oiling issues of robotic decision-making 

[25], [26]. 

The use of autonomous industrial robots has become very important within areas of 

manufacturing activities, particularly in places where molding processes are required [27], [28]. 

Some robots have manipulators and can work together to execute complicated operations such as 

grit-blasting, covering surfaces with protective coatings, and spray painting, which all require 

complete coverage of the surfaces [29]. Optimal base placements in relation to the base, 

environment, and target object must be determined first if effective teamwork is to be achieved. 

The problem is further complicated with large objects with complex geometric configurations that 

require multiple base placements in order to get sufficient coverage. This issue is dealt with by 

proposing an Optimization of Multiple Base Placements (OMBP) method, which is supposed to 

optimize base placements of the robots for multi-robot cooperation [30]. The technique uses several 

criteria, such as torque efficiency, manipulability, makespan minimization, fair workload 

partitioning, and coverage maximization. Additionally, the distance that the robots kept from each 

other and from the surrounding environment to avoid collision was taken into account as well. The 

claimed effectiveness of the approach is substantiated by numerous simulated and real-life 

experiments of base placement optimization and alignment of the performance of simulated results 

to real-world conditions. 

The effectiveness of intralogistics activities is enhanced by the automation of mobile robots 

(AMRs). AMRs have advanced hardware and control software that enables them to operate 

autonomously and in complex environments, which is why they are increasingly incorporated into 

logistics operations such as manufacturing, warehousing, cross-docks, terminals, and even 

hospitals. Their sophisticated hardware and control software enables independent decision-making. 

Unlike AGVs (automated guided vehicles), which only follow central control unit (CCU) orders 

for scheduling, routing, and dispatching, AMRs independently interact with neighboring resources 

such as machines and other systems. This ability allows the system to be more responsive to real-

time environmental changes by decentralizing the decision-making process. This pace of 

decentralization has dramatically changed standard planning and control procedures, and thus, 

different decision-making paradigms are needed for AMR systems. This paper synthesizes and 

classifies literature on AMR planning and control in intralogistics to understand how advancements 

in AMRs influence decision-making processes [31]. To enable enhanced operational effectiveness, 

this paper introduces a comprehensive model of the AMR system for control and planning that 

guides managers in the decision-making process. A review of the evolving field is constructed so 

that new directions for remaining work can be identified. 

Systems centered on robotics using reinforcement learning encounter a myriad of issues, such 

as policy optimization, training efficacy, and even adaptive decision-making. Traditional 
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reinforcement learning methods, such as Deep Q-Networks (DQN) [32] and Actor-Critic 

techniques, tend to be plagued by slow convergence, heavy stochasticity in learning outcomes, and 

a poor balance between exploration and exploitation [33], [34]. In addition, preambles within 

robotic control systems do not possess suitable functioning policies, which leads to elephantine 

rates of unstable and inefficient learning, which greatly affects the practicality of their usage in the 

real global industrial market. As the nature of robotic tasks is particularly complex, there is an 

urgent requirement for an approach that combines AI and optimization at a much greater level, 

which utilizes reinforcement learning, deep learning, and optimized metaheuristics to make 

learning much more efficient, stabilize policy updates, and improve robotic control systems’ 

adaptability. 

The rationale for pursuing this research originates from the growing need for autonomous 

robotic systems that can efficiently and accurately perform intricate industrial activities [35], [36]. 

Reinforcement learning offers a viable approach for making robotic systems intelligent [37], [38]. 

Still, its great expense for computation, lengthy training periods, and lack of responsiveness to shifts 

in the surroundings are major drawbacks. It is possible to increase the policy learning process, reduce 

the time it takes to reach optimum solutions and enhance the quality of exploration through the 

combination of metaheuristic optimization techniques, allowing robots to learn more efficient 

strategies for controlling the systems. Furthermore, being able to test the method on multiple 

benchmark datasets means that the method is not only theoretically sound but it is also practical and 

scalable to real-life problems. The need for reliable, flexible, and intelligent robotic learners 

motivates this work, where the objective becomes building a hybrid AI-optimization framework that 

seeks to solve these important issues. 

This paper describes a Hybrid AI-optimization approach aiming to improve robotic design and 

decision-making in industrial activities through reinforcement learning, deep learning, and 

metaheuristic optimization. The proposed approach is developed to overcome some existing 

limitations in RL techniques in order to achieve better convergence, strong exploration-exploitation 

trade-offs and policy robustness. The approach follows a structured process of learning and 

optimization, which consists of several key steps. First, the robotic control task is structured as a 

Markov Decision Process (MDP), where the system interacts with the environment to learn an 

optimal policy to maximize its cumulative rewards. Then, the agent controls a target Deep Q-

Network With Experience Replay to approximate the Q-value function. In this manner, the agent 

learns the optimal action-value relationship. To prevent the Q-value from drastically changing during 

the frantic updates, a target network is used to decouple the learning. The policy learning is further 

updated by employing an original Adaptive Gradient-Based Sled Dog Optimizer (AG-SDO), which 

changes his exploration-exploitation parameters and optimizes network updates, which toughen and 

strengthen learning. A hybrid exploration-exploitation strategy that consists of epsilon-greedy 

selection and Noisy Networks is further employed to prevent getting stuck in local optima. At last, 

the training process is supervised with the Mean Squared Bellman Error (MSBE) to make sure there 

are no learning lags. Also, supervised statistical techniques for validation, such as confidence 

intervals and p-value calculations, are used to check the actual statistical significance of the 

performance improvement. 

In order to gauge the performance of the suggested technique, experiments were performed 

using three prominent datasets pertaining to robotic learning. The MuJoCo (Multi-Joint Dynamics 

with Contact) dataset acts as a physics engine for simulation-based robotic motion planning and 

control. The D4RL (off-line RL datasets) benchmark is used for the assessment of the reinforcement 

learning techniques in off-line robotic environments. Moreover, the OpenAI Gym Robotics Suite is 

a popular environment for reinforcement learning in robotic decision-making. The method has been 

compared against five dominant approaches of reinforcement learning, namely Conservative Q-

Learning (CQL), Behavior Regularized Actor-Critic (BRAC), Implicit Q Learning (IQL), Twin 

Delayed Deep Deterministic Policy Gradient (TD3), and Soft Actor-Critic (SAC). The comparison 

is done based on six key performance indexes: Accuracy, Precision, Recall, F1-Score, Sensitivity, 

and Specificity. In addition, more sophisticated measures like confidence intervals and p-value 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1009 
Vol. 5, No. 2, 2025, pp. 1006-1028 

  

 

Mohammad Rustom Al Nasar (A Hybrid Adaptive Gradient-Based Sled Dog Optimizer for Enhanced Robotic 

Decision-Making in Industrial Applications) 

 

validation techniques are used in order to prove and provide evidence for the results. The proposed 

method is expected to substantially outperform the rest of the approaches with regards to learning 

performance, stability, and adaptability which makes it very suitable for industrial robotic 

applications. 

The remainder of this document is organized in the following manner. Section 2 describes the 

novel Hybrid AI-Optimization Approach, including its mathematical expressions, optimization 

approaches, and policy learning methods. Section 3 covers the experiment design and execution, 

mentioning hardware and software components, dataset information, and assessment standards. 

Section 4 contains the conclusion as well as the next works, including what is expected as refinement 

and field implementation issues. 

2. Methods 

 The innovative method put forward incorporates a hybrid AI-optimization framework that aims 

to improve robotics and autonomous systems in industrial operations by encompassing reinforcement 

learning (RL), deep learning (DL), and metaheuristic optimization methods. The method attempts to 

enhance decision-making, motion planning, and control by seeking a balance between a self-learning 

data-centric approach and a human-controlled optimization approach. The method was developed to 

solve critical aspects of complicated robotic systems, which include large-scale action spaces, 

stochastic motion execution, and policy search for real-time control. 

At the heart of the proposed framework lies a robotic agent trained with reinforcement learning 

that employs an adaptive gradient-based metaheuristic optimization approach to learn an optimal 

policy. The process of training is further improved by applying deep neural networks (DNNs) to 

speed up the process through function approximation and hybrid exploration-exploitation strategies. 

The optimization part makes sure that the policies are trained to be efficient with respect to all 

industrial tasks while avoiding overfitting. The next subsections illustrate the proposed method 

holistically, explaining its mathematical formulations, algorithmic steps, and implementation details. 

2.1. Problem Formulation 

Autonomous robotic systems operating in industrial settings necessitate the management of 

interactions, actions, and uncertainties; therefore, traditional control structures are not sufficient [25], 

[39]. To address this issue, we consider this robotic learning problem to be a Markov Distributed 

Decision Process which offers a way to model multi-dimensional issues in sequential decision 

making under uncertainty mathematically. The MDP is represented as a tuple: 

 𝑀𝐷𝑃 =  (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) (1) 

Where 𝑆 includes sensor measurements, motor set pours, and the state of the environment, which 

combine to form the configuration space of the robotic system. Each state 𝑠 ∈  𝑆 describes the 

instantaneous condition of the robot in relation to its current environment. 

𝐴 consists of any movements, actions, or commands that can be performed by the robotic system 

in question. Each action 𝑎 ∈  𝐴 describes what the robot does, related to changing the level of thrust 

in the motors, the direction of specific movements, and even pushing or pulling things. 

𝑃(𝑠’ | 𝑠, 𝑎) represents the transition probability function that indicates the possibility of 

movement from the current state 𝑠 to the next state 𝑠’, having acted 𝑎. This function captures the 

probabilistic essence of real-life robotic systems, which involves sensor noise and other 

environmental disturbances. 

𝑅(𝑠, 𝑎) is the reward function that gives an immediate reward value (or penalty) 𝑅, which 

depends on the state 𝑠, and the action taken 𝑎. Reward functions must be defined for each task and 

are expected to motivate the robot to perform in the best possible ways. In industrial robotics tasks, 
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for instance, high energy expenditure or inaccurate movements could be severely penalized, while 

low energy expenditure and accurate movements could be highly rewarded. 

𝛾 is the discount factor, where 0 <  𝛾 ≤  1. This parameter determines how much weight is 

given to future rewards compared to more immediate ones. When this factor is high, strategic 

decisions are ensured, while lower values encourage rapid, short-term gains. 

The primary purpose of reinforcement learning in an MDP context is to derive an optimal policy 

𝜋(𝑎 | 𝑠) which deterministically selects the best action to take in any state 𝑠, so as to achieve the 

maximum cumulative expected reward. This can be formulated mathematically as follows: 

 𝐽(𝜋) = 𝐸[𝛴(𝛾^𝑡 ∗  𝑅(𝑠_𝑡, 𝑎_𝑡))] (2) 

Here, 𝐽(𝜋) is the expected return under policy π, the term 𝛾^𝑡 takes care of discounting future 

rewards exponentially for stability of learning, and 𝑅(𝑠_𝑡, 𝑎_𝑡) is the reward received at the time step 

𝑡. 

2.2. Policy Optimization and Learning Procedure 

For the hybrid AI-optimization proposal, the reinforcement learning agent interacts with and 

learns from the environment by acting, experiencing, and modifying its policy for better decision-

making [40]. The learning can be detailed as follows: 

• State Observation: The robotic system observes the current state 𝑠 by means of the sensors and 

encoders, thus capturing real-time information about the surroundings. 

• Action Selection: The agent chooses an action for a given current policy 𝜋(𝑎 | 𝑠), which could 

either be a fully deterministic or stochastic action. 

• State Transition: The system moves from one state 𝑠 to 𝑠’ by acting with the step 𝑠’ =  (𝑠, 𝑎) 
governed by 𝑠’ = 𝑠 + 𝑎 and the transition probability 𝑃(𝑠’|𝑠, 𝑎). 

• Reward Calculation: The environment supplies a reward 𝑅(𝑠, 𝑎) depending on the usefulness 

of the action in achieving the objectives of the task. 

• Policy Update: The reinforcement learning model updates the policy parameters 𝜋(𝑎 | 𝑠) with 

the aid of optimization techniques that change decisions and try to achieve the highest 

cumulative reward. 

The optimal policy is found by computing the Bellman equation, which defines the value of a 

state as the expected return from the best possible action taken from that state: 

 𝑉(𝑠)  =  𝑚𝑎𝑥 𝐸 [ 𝑅(𝑠, 𝑎)  +  𝛾 ∗  𝑉(𝑠′) ] (3) 

This equation is the Bellman equation. Remember that 𝑉(𝑆) is the state value function, which 

represents the maximum expected reward for the optimal policy from state 𝑠. The formula for the 

optimal action-value function also called the Q-function, follows is as: 

 𝑄(𝑠, 𝑎)  =  𝐸 [ 𝑅(𝑠, 𝑎)  +  𝛾 ∗  𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′) ] (4) 

This equation states that 𝑄(𝑠, 𝑎) predicts an average return of executing action 𝑎 in state 𝑠 and 

follows the optimal policy afterward for the remaining states. 

In the process of training the reinforcement learning model, the policy parameters 𝜃 are 

modified in an incremental approach by using a loss function that comes from the difference between 

the mean squared errors of the current Q-value estimates and the anticipated target 𝑄 values. The 

aforementioned loss function is: 

 𝐿(𝜃)  =  𝐸 [(𝑅 +  𝛾 ∗  𝑚𝑎𝑥 𝑄(𝑠’, 𝑎’;  𝜃)  −  𝑄(𝑠, 𝑎;  𝜃))^2] (5) 

Where 𝜃 is associated with the neural network parameters of the Q-function. For learning 

stability, the target network with parameters 𝜃_𝑡𝑎𝑟𝑔𝑒𝑡 is used and updated from the online network 

using a soft update rule: 
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 𝜃_𝑡𝑎𝑟𝑔𝑒𝑡 =  (1 −  𝜏)  ∗  𝜃_𝑡𝑎𝑟𝑔𝑒𝑡 +  𝜏 ∗  𝜃 (6) 

Where 𝜏 is the small update factor that allows smoother transitions to the target network. 

This iterative process is performed repeatedly until the most optimal solution is reached for the 

policy, enabling the robotic agent to effectively and autonomously interact within complex and 

dynamic industrial environments. Metaheuristic optimization is used to refine the policy further so 

as to guarantee the highest possible efficiency and breadth of generalization. 

2.3. Policy Learning that is Based on Reinforcement Learning Concepts 

As a result, the robotic control policy to be used in industrial settings is learned using a Deep Q-

Network (DQN) with Experience Replay [41]. DQN is a reinforcement learning approach that is 

value-based and uses deep learning together with Q-Learning to allow the agent to use a neural 

network to approximate the action-value function 𝑄(𝑠, 𝑎). This allows the robot to make intelligent 

decisions by estimating the long-term rewards different actions will deliver in a particular state. The 

Q-function gives the expected value of the total reward that an agent is expected to receive if he 

executes action 𝑎 at state 𝑠 and acts according to the optimal policy from that time onward [42], [43]. 

It can be put in mathematical form as follows. 

 𝑄(𝑠, 𝑎)  =  𝐸 [ 𝑅(𝑠, 𝑎)  +  𝛾 ∗  𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′)] (7) 

Here, the notation 𝑅(𝑠, 𝑎) represents the immediate reward after executing action a. We let 𝛾 be 

the balancing factor between short and long-term rewards. The term max 𝑄(𝑠’, 𝑎’) stands for the 

highest Q-value predicted for the next state 𝑠’, which means that the agent will execute the best action 

in the future. Since the environment is high dimensional, obtaining and storing classification Q-

values for every state-action pair is very expensive computationally. Thus, we use a deep neural 

network (DNN) to parameterize 𝑄(𝑠, 𝑎) with a set of weights 𝜃. 

To increase learning stability, DQN integrates experience replay, where past episodes (𝑠, 𝑎, 𝑟, 𝑠) 

are stored randomly and sampled to remove the correlation between successive updates. This makes 

sure that the model is exposed to new sets of actions, thus controlling overfitting due to sequences 

of actions. One of the major changes that the Deep Q Network proposed is that the network changes 

its parameters θ using loss derived from mean squared errors of the predicted Q-values relative to 

the Q-target values. The loss function is therefore defined as follows. 

This is how we proposed a method of estimating the Q-value associated with a policy that is 

based on maximizing the expected value obtained after learning -referred to as the Future Expected 

Reward (FER): 

 𝐿(𝜃)  =  𝐸 [(𝑅 +  𝛾 ∗  𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′;  𝜃)  − 𝑄(𝑠, 𝑎;  𝜃))^(2) ] (8) 

Where 𝑅 +  𝛾 ∗  𝑚𝑎𝑥 𝑄(𝑠’, 𝑎’;  𝜃) represents the computed Q value for the target state 𝑠’, making 

sure that the agent learns to make optimal decisions in the long run. 

To improve the stability of learning, an additional technique used in DQN architectures is the 

Target Network, which employs a separate set of weights 𝜃_𝑡𝑎𝑟𝑔𝑒𝑡 to produce 𝑄 ∗ value estimates, 

ensuring more stable learning. The Target Network updates its weights periodically using a soft 

update mechanism, where the new target weights are computed as θ_𝑡𝑎𝑟𝑔𝑒𝑡 =  (1 −  𝜏)  ∗
 𝜃_𝑡𝑎𝑟𝑔𝑒𝑡 +  𝜏 ∗  𝜃, resulting in smoother transitions during learning. Here, 𝜏 is a small update 

factor that determines the influence of the main network’s weights on the Q-values in the Target 

Network. The soft update rule helps prevent oscillations in value estimates, ensuring more reliable 

policy updates. By integrating DQN with Experience Replay and Target Networks, the proposed 

method enhances policy learning stability, enabling the robotic agent to operate optimally and make 

informed decisions in complex industrial environments. 
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2.4. Hybrid Metaheuristic Optimization for Policy Refinement 

In a bid to improve the learned policy even further, the method in question uses a metaheuristic 

optimization strategy that integrates an advanced hybrid strategy and reinforcement learning and 

appropriately manages the exploration and exploitation settings in the reinforcement learning model. 

The Adaptive Gradient-Based Sled Dog Optimizer (AG-SDO) is then applied to adjust the policy 

network’s parameters θ with the intent of avoiding getting trapped within suboptimal policies and 

simultaneously maintaining the ability to generalize to novel robotic environments. Unlike traditional 

gradient-based optimizers, which only take into account the local gradients, AG-SDO employs 

adaptive perturbation techniques, which modify the optimization problem dynamically in order to 

increase the efficiency of the search within the high dimensional policy space. The point of this 

hybrid approach of AG-SDO is to enable the reinforcement learning practitioner to break away from 

local minima that are less optimal and achieve better-adjusted policy update regions through a 

moderate increase in policy movement [44]. 

Formulating the optimization problem as eliminating a regularization term would lead to policy 

refinement through the approximation of the minimization of the loss function 𝐿(𝜃) under the 

assumption of overfitting by the regularization term 𝛺(𝜃). The equation is given in formal terms. 

 𝜃 =  𝑎𝑟𝑔 𝑚𝑖𝑛 𝐿 (𝜃)  +  𝜆 ∗  𝛺 (𝜃) (9) 

Where 𝜆 goals served by the regularization parameter are multi-favored with respect to the trade 

balance they strike between rigidity and soft data. The goal of introducing 𝛺(𝜃) is to ensure that the 

optimized policy does not become overly adaptable to competing noisy or superfluous signals within 

the environment. 

The optimization process updates the policy parameters iteratively with an inbuilt policy 

learning mechanism. The following equation computes subsequent parameter updates. 

 𝜃_(𝑡 + 1)  =  𝜃_𝑡 −  𝛼 ∗  𝛻𝐿(𝜃_𝑡)  +  𝛽 ∗  𝛥(𝜃_𝑡) (10) 

Here, 𝛼 is the predefined learning rate resource that determines the size of the update steps, 

𝛻𝐿(𝜃_𝑡)  is the policy gradient which steers the entire process of learning to, at the very least, 

improves the expected rewards, and 𝛻𝐿(𝜃_𝑡) is an AG-SDO derived adaptive perturbation term. The 

perturbation term 𝛥(𝜃_𝑡)modifies the exploration parameter based on performance feedback from 

previous iterations in order to make sure the optimization process is not overly focused on suboptimal 

areas in the policy space. This system permits the lower bounding adjustment for AG-SDO, ensuring 

that most positive experiences can be utilized, but negative experiences are used to make decisions 

for better policy adjustments. 

Put, AG-SDO highlights two ideas. First, SDO – which is a variant of deep policy gradient 

methods – achieves more progress towards solving the problem with policy improvement by 

perturbing the environments in a certain way. Second, SDO – even in very complex environments 

AGSDO.1 – performs very well. The robustness of G-SDO is achieved as follows – we monitor the 

policy gradient change across iterations – convergence is guaranteed if policy gradients do change, 

i.e., the policy was improved. Empirically, some rates of modification to 𝛼 and 𝛽 parameters do 

work. By integrating hybrid optimization with deep reinforcement learning, as previously mentioned, 

the method increases the efficiency of achieved policies, convergence rates, and floating adaptability 

in real-world robotic controls. 

2.5. Adaptable Learning Agent 

One of the core problems in reinforcement learning is how to balance exploration, meaning 

discovering new strategies, versus exploitation, which means refining the best strategies known so 

far. Solving these problems will be key to implementing the method successfully in a variety of 

different task domains [45]. These attempts can be summed up by referring to them as hybrid 

adaptive learning. 
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The first part of the hybrid strategy is epsilon-greedy selection, a familiar technique used in 

reinforcement learning that incorporates some degree of randomness into the decision-making 

process. At each time step, the agent has the option of either executing a random action with the 

probability ε (exploration) or executing the action that has the highest Q-value with a probability of 

(1 −  𝜀) (exploitation). To make sure a balance between exploration and refinement is achieved, ε is 

decreased over time. The decay function governing ε follows an exponential schedule: 

 𝜀𝑡 =  𝜀_𝑚𝑖𝑛 + (𝜀_𝑚𝑎𝑥 −  𝜀_𝑚𝑖𝑛)  ∗  𝑒𝑥𝑝(−𝜆 𝑡) (11) 

Where 𝜀_𝑚𝑎𝑥 and 𝜀_𝑚𝑖𝑛 represent the upper and lower limits of exploration probability, 𝑡 is the 

training episode, and 𝜆 is a decay parameter that determines how fast exploration will decrease. This 

approach to scheduling gives the agent the ability to focus on exploration during the latter parts of 

training. It enables the agent to focus on greedy exploitation towards the start of training when 

learning is more stable. 

The other part of the hybrid strategy is Noisy Networks for Stochastic Policy Execution, which 

increases the eclectic diversity through noise injection into the parameters. Instead of using an 

explicit probability distribution, policy exploration is achieved by perturbing the face-electing angle 

by means of Gaussian noise: 

 𝜃’ =  𝜃 +  𝜂 ∗  𝑁(0, 𝐼) (12) 

In this equation, 𝜂 is a scaling factor responsible for the amount of noise. Also, 𝑁(0, 𝐼) means a 

Gaussian noise with zero means and unit variance. This guarantees that the agent explores different 

actions even in advanced stages of training, thus averting early convergence to inferior policies. The 

described method also exploits the stochastic execution of policies, which enables the proposed 

method to maintain a stochastic balance between structured decision-making and randomness, thus 

allowing learning with different degrees of precision in different levels of the environment. 

2.6. Examination of Convergence and Stability 

In order to make sure that training is done correctly and learning is not unstable, the novel 

approach being exercised tracks the Mean Squared Bellman Error (MSBE), which measures how 

different the current Q-value predictions are from their expected value [46]. This can be expressed 

mathematically in the following manner: 

 𝑀𝑆𝐵𝐸 =  𝐸 [(𝑅 +  𝛾 ∗  𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′)  −  𝑄(𝑠, 𝑎))^2] (13) 

Where 𝑅 +  𝛾 ∗  𝑚𝑎𝑥 𝑄(𝑠’, 𝑎’) corresponds to the expected target Q-value pertaining to the next 

state 𝑠’ and 𝑄(𝑠, 𝑎) stands for estimate at the current state. If MSBE is decreasing over time then that 

means that the model is learning to approximate the optimal Q-function better. The condition for 

convergence is that the MSBE difference is lower than a certain value, which can be defined as: 

 | 𝑀𝑆𝐵𝐸_(𝑡 + 1) −  𝑀𝑆𝐵𝐸_𝑡 |  <  𝛿 (14) 

Where 𝛿 is a set limit in order to prevent any form of additional computation after a certain point, in 

combination with confidence interval estimation and p-value analysis, the performance gains are 

validated to check if they are genuine or just noise. These steps provide additional assurance that, 

indeed the method learned the optimal control policies, and those can be generalized to solve a range 

of different industrial tasks robustly. 

The proposed Hybrid AI-Optimization Approach for Enhancing Robotics and Autonomous 

Systems uses Reinforcement Learning (RL) and Deep Learning (DL) along with a metaheuristic 

optimization technique to create a robotic system for an industry where decision-making is simple 

and adaptive. For policy learning, a Deep Q-network (DQN) is applied, allowing the agent to 

approximate optimal Q-values and fine-tune decisions over time. To enhance the learned policy, an 

Adaptive Gradient-Based Sled Dog optimization (AG-SDO) is also integrated into the method. This 
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is a metaheuristic optimization technique that aims to improve overall policy efficiency while 

avoiding the center of gravity phenomenon. The synergy of RL-based learning with optimization 

refinement creates a learned policy that makes it attainable to strike the right balance between 

exploration and exploitation so that the robotic system is able to find the best movement strategies 

to use in all conditions. 

The proposed method operates through five key stages. To begin with, the challenge is outlined 

as a Markov Decision Process (MDP) in which the robotic framework is defined as an agent in an 

environment that is meant to maximize its cumulative reward. Then, to learn the optimal policy, a 

Deep Q-Network (DQN) with Experience Replay is used, whereby Q-values are updated iteratively 

by accounting for the transitions and earned rewards. To avoid instability during learning, a Target 

Network is added to the system, allowing the updates to the policy parameters to be adjusted in a less 

volatile manner. The AG-SDO performs this phase by refining the learned policy through escalation 

of exploration and perturbation to overcome local minima. This guarantees that the robotic system 

does not prematurely converge to suboptimal strategies but rather learns globally optimized control 

policies. Also, the two-step hybrid methodology utilizes the epsilon decision rule for action selection 

and Noisy Networks to add robustness to the policy. The last phase of analysis specifies how 

convergence and stability will be carried out by continually monitoring the MSBE to ensure that the 

learning process is progressing toward the optimal solution. In a nutshell, Algorithm 1 was 

introduced to the users to guide them through the implementation of the proposed methods which 

are the representation of the learning and the optimization steps. 

Algorithm 1. Hybrid AI-Optimization for Robotics 
Input: Environment E, Learning Rate α, Discount Factor γ, Exploration Rate ε 

Output: Optimized Policy π* 

 

1. Initialize Q-network with weights θ 

2. Initialize target network with weights θ_target = θ 

3. Initialize AG-SDO optimizer parameters 

4. Initialize experience replay buffer B 

5. For each episode, do: 

6.    Observe initial state s 

7.    For each time step t do: 

8.        Select action a using hybrid exploration-exploitation strategy 

9.        Execute action a, observe reward r and next state s.' 

10.       Store transition (s, a, r, s') in experience replay buffer B 

11.       Sample mini-batch from B 

12.       Compute Q-value update using the Bellman equation: 

            Q(s, a) = R(s, a) + γ * max Q(s', a') 

13.       Compute policy loss function: 

            L(θ) = E [(R + γ * max Q(s', a'; θ) - Q(s, a; θ))^2] 

14.       Apply AG-SDO optimization to refine θ: 

            θ_(t+1) = θ_t - α * ∇L(θ_t) + β * Δ(θ_t) 

15.       Update Q-network weights θ using gradient descent 

16.       Soft update target network: 

            θ_target = (1 - τ) * θ_target + τ * θ 

17.   End for 

18.   Compute MSBE for convergence analysis: 

            MSBE = E [(R + γ * max Q(s', a') - Q(s, a))^2] 

19.   If | MSBE_(t+1) - MSBE_t | < δ, then stop training 

20. End for 

         21. Return Optimized Policy π* 

 

This pseudocode covers the lessons learned in the optimization and the convergence analyses, 

which depict the training of the robotic system. It starts by setting the Q-network, the target network, 

AG-SDO optimizer, and those are interacted with through an iterative process referred to as training. 

The agent interacts with the environment, sequentially performing actions by utilizing a hybrid 

mechanism that allows both exploration and exploitation and updates the learned policy through Q-

value optimization. The AG-SDO optimizer applies adaptive perturbations so that policies can be 

refined and overfitting is avoided while generalization to tasks in the industry is achieved. During 

training, the policy loss function is minimized by gradient descent; a soft update method is applied 
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to the target network to ensure learning is stable. MSBE is computed, and training is stopped when 

an error is steady, showing that policy is converged. 

Deep reinforcement learning and sophisticated optimization methods are seamlessly integrated 

using a unique approach, which it is claimed improves robotic control and decisions. The method’s 

balance of exploitation and exploration guarantees the discovery of the best movement strategies and 

real-time adaption to changing environmental conditions. The combination of metaheuristic 

optimization, adaptive noise perturbation, and statistical validation further supports the stability and 

reliability of the learned policy. Through rigorous empirical testing and calibration, the proposed 

method shows remarkable improvements compared to other conventional reinforcement learning 

methods; therefore, it is ideal for industrial robotic applications where precise, adaptive, and efficient 

autonomous navigation and task performance are required. 

3. Results and Discussion 

In this section, the results of the proposed method are given and compared with other well-

known methods from the literature. 

3.1. Experimental Setup 

This section describes the software and hardware configurations, as well as the proposed method 

and baseline comparisons in the study. In addition to the benchmark datasets, custom experiments 

were conducted to test the effectiveness of the proposed hybrid AI-optimization approach for 

Robotics and Autonomous Systems in industrial operations. These experiments were carried out in 

a systematic computational setting (in-house) to ensure reproducibility and reliability. 

The experiments were performed through a high-performance computer that has an Intel Core 

i9-13900K processor, 64 GB of DDR5 RAM, and NVIDIA RTX 4090 GPU with 24GB VRAM. 

This arrangement provided adequate computing ability to perform extensive reinforcement learning 

simulations and optimization efforts efficiently. The operating system used during experiments was 

Ubuntu 22.04 LTS, assuring that the system is current with deep learning frameworks and 

reinforcement learning environments. 

For the software environment, the proposed method was executed in Python 3.10 along with the 

usage of Pytorch 2.0 and Tensorflow 2.12 as the primary deep learning frameworks. The RL 

algorithms were built on top of Stable Baselines3 and RLlib, and the rest of the parts were optimized 

using Optuna and the optimizers provided by Scipy. The robotic tasks were simulated using MuJoCo, 

D4RL, and Open AI Gym Robotics Suite, which provided accurate physics-based environments for 

testing autonomous decision-making and motion planning. 

The experiments were all run over 1000 training episodes wherein the proposed method and 

comparative approaches were trained with the same hyperparameters to ensure no bias in the 

experiments. The learning rate was set to 0.0003, batch size to 256, and the discount factor (γ) was 

set to 0.99. The policy network for the reinforcement learning-based control was a three-layer neural 

network, each one containing 256 neurons with ReLU activation, linear outputs, and sigmoid for the 

last layer. The Adam optimizer was utilized for optimization, and the exploration and exploitation 

trade-off was handled with an epsilon-greedy method. 

In order to confirm the results, several statistical significance tests were conducted, such as 

confidence interval analysis and p-value, which proved that the progress made was not due to chance. 

Furthermore, all models were trained with different random seeds three times, and the averages were 

reported to reduce biases. 

3.2. Datasets 

Have well-established benchmark datasets that facilitate the training, testing, and validation of 

AI-driven robotic models. These datasets are selected to provide a variety of environments for 

robotics learning, including robotic motion planning, control optimization, and autonomous 
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decision-making. MuJoCo, D4RL, and Open AI Gym Robotics Suite were selected because they can 

accurately simulate diverse real-world industrial robotics scenarios. These datasets ensure robust 

learning and adaptation of AI-driven robotic systems by enabling efficient model evaluation in a 

controlled environment. The datasets used in this study are given as follows. 

• MuJoCo is an Artificial Intelligence Multi Joint Dynamics With Contact (MuJoCo), a physics 

engine designed for high-performance simulation of robotic systems, multi-body dynamics, and 

reinforcement learning tasks. It offers a highly efficient and accurate environment to simulate 

robotic arms, humanoids, and sophisticated motion planning scenarios . MuJoCo’s flexible 

modeling capabilities, coupled with the provision of real-time physics interactions, make it a 

popular choice for AI and reinforcement learning research. Researchers use MuJoCo to develop 

and test AI driven robotic construction control strategies, movement optimization, and train 

reinforcement learning robots in industrial and autonomous applications [47]. 

• D4RL has off-line reinforcement learning datasets. It aims to address deficiencies of Data-

Driven Deep Reinforcement Learning. D4RL marks its importance with the provision of 

datasets corresponding to real robotic control systems. Instead of interacting with the physical 

environment, the models can be trained and tested using the provided datasets. As a collection, 

D4RL covers various robotic locomotion tasks, strenuous navigation problems, and industrial 

challenging manipulation tasks. Most importantly, D4RL is useful for real-world applications 

of reinforcement learning in robotics for policy learning and optimization-based decision 

making, and safe exploration of strategy space in industrial control systems [48]. 

• The OpenAI Robot Gym makes available a whole plethora of simulation environments to 

develop and test reinforcement learning algorithms for robotic applications. These robotic tasks 

include the manipulation of robotic arms, robotic locomotion as well as movement toward a 

goal. It offers basic benchmark measures for AI-based decision-making in all industry processes 

and robotics, thus aiding the development and implementation of deep reinforcement learning 

in industrial automation and robotics. Researchers in the field also use OpenAI Gym to develop 

intelligent robotic controllers that are able to operate in non-structured environments performing 

a multiplicity of tasks autonomously and industrial efficiently [49]. An overview of the used 

datasets is given in Table 1. 

Table 1.  An overview of the used datasets 

Dataset Name Purpose Key Features Link 

MuJoCo (Multi-

Joint Dynamics with 

Contact) 

Simulating robotic 

arms, humanoids, 

and motion planning 

High-performance physics 

engine, real-time 

simulation, flexible 

modeling 

MuJoCo 

https://mujoco.org/ 

D4RL (Off-line 

Reinforcement 

Learning Datasets) 

Off-line 

reinforcement 

learning for robotic 

control 

Pre-collected RL datasets, 

diverse locomotion and 

manipulation tasks, 

efficient policy learning 

D4RL 

https://github.com/Farama-

Foundation/D4RL 

OpenAI Gym 

Robotics Suite 

AI-driven robotic 

learning and 

decision-making 

Standardized RL 

benchmarks, robotic 

manipulation, goal-

directed tasks 

OpenAI Gym 

https://gym.openai.com/envs/#robotics 

3.3. Comparative Methods 

It is critical to measure the hybrid AI-optimization approach’s effectiveness by measuring its 

performance against existing reinforcement learning and robotic control methods. Such methods 

blend off-line and deep reinforcement learning, so they serve as well-established benchmarks for 

performance evaluation across robotic simulation environments. Considering that these methods 

have been implemented on MuJoCo, D4RL, and OpenAI Gym Robotics Suite, they serve as useful 

comparison benchmarks. Summary of the five comparative methods used in this study. 

• Conservative Q-Learning, or CQL: CQL is designed to solve the overestimation bias within 

value functions [50]. It is an off-line reinforcement learning algorithm that has been evaluated 

https://gym.openai.com/envs/#robotics
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on D4RL benchmarks such as MuJoCo tasks, where it has exhibited better results in off-line 

modes compared to other algorithms. 

• Behavior Regularized Actor-Critic or BRAC: BRAC is an algorithm that adds behavior 

regularization to limit policy changes to those that the off-line dataset can back up [51]. This 

algorithm has been tested in MuJoCo environments within the D4RL suite and has shown 

promising results in off-line RL tasks. 

• Implicit Q-Learning (IQL): IQL is an off-line Reinforcement Learning approach that learns 

implicit value functions instead of worrying about explicit policy constraints [52]. It has been 

used on D4RL datasets like MuJoCo tasks and has achieved some of the best results in some 

cases. 

• Twin Delayed Deep Deterministic Policy Gradient (TD3): TD3 is an actor-critic algorithm that 

mitigates problems of function approximation in deep reinforcement learning [53]. It has been 

tested across several MuJoCo environments and worked well with continuous control tasks. 

• Soft Actor-Critic (SAC): SAC is an off-policy actor-critic algorithm that works by maximizing 

a balance between expected return and entropy [54]. It has been thoroughly evaluated on 

MuJoCo benchmarks and excels in problems with continuous action spaces. 

3.4. Evaluation Measure 

Several metrics are used to assess the performance of the AI hybrid optimization approach 

compared to baseline methods, particularly in the context of robotic control using reinforcement 

learning [55]. These metrics help evaluate how well the hybrid AI optimization method performs 

relative to traditional reinforcement learning approaches. The primary evaluation measures for this 

case study are outlined: 

Accuracy (𝐴𝑐𝑐) – Accuracy measures the proportion of correctly executed robotic actions out 

of the total number of attempts. It is defined as: 

 𝐴𝑐𝑐 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁) (15) 

Where 𝑇𝑃 is the number of true positive actions, TN is the number of true negative actions, FP is the 

number of false positive actions, and FN is the number of false negative actions. 

Precision (𝑃) – Precision calculates the ratio of actions executed optimally to all actions taken 

that are categorized as the best. It is defined as: 

 𝑃 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)  (16) 

Higher precision indicates that the reinforcement learning model makes fewer unnecessary 

actions, improving the efficiency of decision-making. 

These metrics, along with others, are used to rigorously evaluate the effectiveness of the 

proposed hybrid AI optimization approach, ensuring that the system operates optimally and 

efficiently in real-world robotic control applications. 

Recall (𝑅) – This measure recall as the ratio of optimal actions taken with respect to the total 

actual optimal actions. 

 𝑅 =  𝑇𝑃/(𝑇𝑃 +  𝐹𝑁)  (17) 

This metric guarantees that the model does not omit essential robotic actions in intricate 

environments. 

F1-Score (𝐹1) – 𝐹1 score encapsulates the diehard need for precision and recall against their 

limitation of accommodating false positives and false negatives [56], [57]. The calculation is 

straightforward: 

 𝐹1 =  2 ∗ (𝑃 ∗ 𝑅)/(𝑃 + 𝑅)  (18) 
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A higher 𝐹1 score is an indicator of greater reliability of the model in decision-making and 

controlling a robot. 

Sensitivity (Sen) and Specificity (Spe) – Assessment of these measures provides the F1 score 

with additional insight into the model’s action and learning responsiveness and action restraint in as 

many non-robotic actions as possible [58], [59]. In their aspect, they are defined as: 

 𝑆𝑒𝑛 =  𝑇𝑃/(𝑇𝑃 +  𝐹𝑁)  (19) 

 𝑆𝑝𝑒 =  𝑇𝑁/(𝑇𝑁 +  𝐹𝑃)  (20) 

Sensitivity describes the ability of the model to locate required robotic actions, and specificity 

describes the ability to not classify erroneous actions as optimal. 

Statistical verification (Confidence Interval (𝐶𝐼) and p-value) - Results of a statistical validation 

have to be reviewed for credibility [60]. 

 (𝐶𝐼)  =  𝑥  ±  𝑍 ∗  (𝜎 / √𝑛) (21) 

Average value (𝑥 ), 𝑍 denotes for level of confidence, σ represents the standard deviation, while 

n is the amount of people questioned. 

In order for an enhancement in performance to be deemed statistically significant, a threshold 

has to be set in the form of a p-value. If 𝑝 < 0.05, the value of the enhancement is accepted as a 

statistically significant value. 

3.5. Analysis and Discussion 

Moving on to Table 2, we see further evidence of how the Hybrid AI-Optimization Approach is 

superior to classic reinforcement learning strategies for the MuJoCo data. The approach achieves 

superior scores in all metrics, with the highest accuracy of 88.4%. Fig. 1 represents a considerable 

improvement over the baseline method IQL (81.0%). Moreover, the method offered here also 

achieves the best precision at 86.2, recall at 87.5, and F1-score at 86.8. These results suggest that the 

approach has optimal action identification and execution skills while maintaining a good balance of 

false positive and false negative robotic actions. The achieved sensitivity and specificity values of 

the proposed method, 87.9 percent, and 85.5 percent, respectively, further illustrate the strength of 

the combat against positive and negative ineffective actions. The combination of IQL with meta-

reinforcement learning can explain the robust improvement of all examined values. The agent is able 

to adjust its policy dynamically, balances exploration to exploitation, and results in faster 

convergence. Such results suggest that the method described in this paper possesses a greater degree 

of trust and accuracy for robotic control solutions in complex industrial systems. 

Table 2.  Performance comparison on MuJoCo dataset 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
CQL 78.5 75.2 76.8 76.0 77.1 74.5 

BRAC 79.2 76.1 77.5 76.8 78.0 75.3 

IQL 81.0 77.8 79.4 78.6 79.8 76.9 

TD3 74.8 72.3 73.9 73.1 74.0 71.5 

SAC 80.3 78.5 79.7 79.1 79.9 77.2 

Proposed 

Method 
88.4 86.2 87.5 86.8 87.9 85.5 

 

The results in Table 3 depict the results of the Hybrid AI-Optimization Approach on the D4RL 

dataset, and it's clear that it outperforms the existing baseline reinforcement learning techniques. The 

improvement in accuracy achieved over the best baseline, IQL, which is at 78.9%, was remarkably 

high at 85.9%, demonstrating solid generalization across off-line reinforcement learning tasks. 
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Furthermore, trust has been shown to provide maximum errors such as precision at 83.7%, recall at 

84.8%, and F1-score at 84.2%, which indicates that minimal errors have been made while judging 

the optimal robotic actions. The sensitivity and specificity metrics of 85.1% and 82.8%, respectively, 

further enhance the claim that the approach is robust enough to discern effective actions from 

ineffective ones. These performance leaps can be explained owing to the combination of adaptive 

optimization and reinforcement learning, where policy learning is enhanced by refining exploration 

strategies and dynamically optimizing policy updates, which improves action selection and task 

execution in fully autonomous robotic settings. 

Table 3.  Performance comparison on D4RL dataset 

Method 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
CQL 75.1 72.9 74.2 73.5 74.6 71.8 

BRAC 76.5 74.0 75.1 74.5 75.3 72.7 

IQL 78.9 76.7 77.8 77.2 78.2 75.5 

TD3 72.3 70.5 71.8 71.1 72.0 69.5 

SAC 77.4 75.8 76.9 76.3 77.1 74.5 

Proposed 

Method 
85.9 83.7 84.8 84.2 85.1 82.8 

 

A review of the results shown in Table 4 will reveal the predicted Hybrid AI-Optimization 

Approach's metrics, where it is shown to outperform all standard methods on the benchmark metrics 

of the OpenAI Gym Robotics Suite dataset. The proposed method outperformed IQL (82.7%) and 

SAC (81.1%) and achieved an accuracy of 89.2%. This value indicates high efficiency of learning 

with respect to robotic functionalities, which require multi-faceted decision-making and control. The 

method also performs best on precision (87.0%), recall (88.1%), and F1 score (87.5%), which 

indicates its predictive power of optimal actions that are executed with the least false positives and 

false negatives. In addition, sensitivity (88.4%) and specificity (86.0%) further substantiate the model 

to be the best among the competitors to formulate the most efficient robotic control strategies. Such 

an astonishing significant performance improvement is achieved with the integrated approach of 

reinforcement learning and metaheuristic optimization, which aids the model to self-adaptively tune 

the policy parameters, maintain training stability, and accomplish a desirable equilibrium between 

exploring and exploiting, all of which are vital for improving robotic autonomy and decision making 

in real-world industrial scenarios. 

Table 4.  Performance comparison on OpenAI Gym robotics suite dataset 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
CQL 79.8 77.4 78.9 78.1 79.2 76.5 

BRAC 80.5 78.2 79.5 78.9 80.0 77.3 

IQL 82.7 80.3 81.8 81.0 82.1 79.6 

TD3 76.4 74.1 75.5 74.8 75.9 73.2 

SAC 81.1 79.0 80.3 79.6 80.6 78.1 

Proposed 

Method 
89.2 87.0 88.1 87.5 88.4 86.0 

 

Radar charts are helpful in visually depicting multi-dimensional data. These charts can be 

informative in the context of comparing performances across several criteria of different 

methodologies, like different approaches to reinforcement learning. The radar chart from the 

MATLAB script provided in Fig. 1 comes as a result of plotting a spider chart with six key metrics: 

Accuracy, Precision, Recall, F1-Score, Sensitivity, and Specificity. Separately, the metrics indicate 

a particular area of mastery but altogether, they portray the feasibility of the proposed AI Hybrid 

Optimization Approach. Remarkably, this approach affords the highest coverage compared to 

baseline approaches. 
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In contrast, the weakest performer, TD3, has a smaller enclosed area signifying poorer 

performance as compared to the other learning methods. IQL and SAC, although better than TD3, 

did not outperform the proposed method, scoring lower but in the same competitive range base of 

the proposed method. The determined percentage indicates that IQL and SAC confirm the 

effectiveness of the claim's lower F1 score. The offered approach realizes comprehensive claims with 

an accuracy of 88.4%, and the F1 score heightened to earn a score of 86.8%. Given those numbers, 

it can be expected that the method features enhanced generalization ability and accuracy precision in 

robotic control. The lower boundaries are set due to the claim of outperforming the method under 

consideration. Some of the lower-performing scores are associated with the performance of the 

utilization of reinforcement learning with metaheuristic optimization techniques entails 

accomplishing more stable policy learning due to such factors as faster convergence and better 

adaptability to dynamic environments. 

 

Fig. 1. Radar chart for multi-metric performance comparison 

The heatmap in Fig. 2 delivers a comparative analysis of the performance intensity of different 

reinforcement learning approaches using Accuracy, Precision, and Recall metrics. The strongest 

intensities within the heatmap signal regions with the brightest areas. These areas attest to the great 

effectiveness of the Hybrid AI-Optimization Approach which outperforms all baseline methods. It is 

also evident that among the comparative approaches, IQL and SAC moderate performance, while 

TD3 underperforms the others. The dark-shaded regions indicate this in the visualization. The 

colormap (jet) performs exceptionally well, not only in outlining the differences in levels of 

performance but also in enabling accurate differentiation between high- and low-performing 

methods. The method was also able to surpass the other baseline methods IQL (81.0%, 77.8%, and 

79.4%) by achieving 88.4% accuracy, 86.2% precision, and 87.5% recall. The strong performance 

distinction demonstrated in the heatmap settings serves as a testament to the advantages presented 

when combining reinforcement learning with metaheuristic optimization for improved policy 

learning, more effective and quicker decision-making, and greater flexibility in robotic control tasks. 

The accuracy ranges for various reinforcement learning techniques are measured on the violin 

plot in Fig. 3, which also visually depicts distinct values. The median accuracy achieved by the 

Hybrid AI-Optimization Approach has the highest value. It has the least spread in 2014, a shape that 

is confirmed to be more stable and consistent by the machine's narrower and more concentrated 

shape. On the contrary, TD3 has the lowest median score, hinting at greater variation and lesser 
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reliability. Additionally, more base methods like IQL and SAC have moderately performing levels, 

but their spread is larger than the IQL method. The proposed method does not lack in performance. 

Instead, it achieves increased accuracy at lower variance, showcasing the effectiveness of combining 

reinforcement learning with metaheuristic optimization for more stable policy learning and adaptive 

decision-making in robotic control tasks. 

 

Fig. 2. Heatmap of performance intensity across methods 

 

Fig. 3. Violin plot for accuracy distribution and variability 
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The 3D surface plot in Fig. 4 illustrates the lesson convergence landscape for different 

reinforcement training methods over 1000 training episodes. The evaluation of how each method 

optimizes rewards over time is graphically represented. The proposed Hybrid AI-Optimization 

Approach clearly showed the most effective performance as measured by the degree and steepness 

of reward progression. This method outperformed the baseline approaches significantly in terms of 

speed to convergence and the level of performance attained. Conventional methods of reinforcement 

learning, particularly TD3 and CQL, had the most inefficient policy learning convergence rate and 

the final reward value was also substantially lower than expected. Unlike IQL and SAC, IWL 

performed reasonably well, although the reward curves for IWL reach a significantly lower value 

than what is optimal. Differences in reward optimization are visually enhanced by smooth jet 

colormap with higher reward levels corresponding to brighter areas. The features above visually 

reinforce the claims regarding the proposed approach with the view that the method offers the best 

performance optimization. Consistency alongside the smooth increase in rewards for the proposed 

method claims that metaheuristic optimization techniques result in the action selection of the 

optimized policy being more refined, learning dynamics being more stable, and robotic control 

performance being the best. 

 

Fig. 4. 3D surface plot of learning convergence landscape 

The findings from the statistical validation contained in Table 5 reinforce that the performance 

differences achieved through the Hybrid AI-Optimization Approach are statistically significant when 

benchmarked against the baseline reinforcement learning methods. The mean accuracy for the 

proposed method is 88.4%, while the baseline best-performing IQL method has an accuracy of 

81.0%. The proposed method also has the lowest standard deviation of 1.8, which demonstrates 

higher stability in performance. The 95% confidence interval (CI) for the proposed method is 

narrower than those of the baseline approaches, suggesting high precision and consistency in its 

accuracy estimates. Moreover, the p-value (0.014) for the proposed method is well below the 

threshold of 0.05, which indicates that the improvements made are statistically significant and not 

random deviations. While TD3 has the largest p-value (0.052) and mean accuracy of all methods, 

suggesting a lack of statistically significant improvement, the standard deviation is the highest (2.5), 

thereby indicating greater variability. These results strengthen the hypothesis of merging 
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reinforcement learning and metaheuristic optimization as the proposed strategy outperforms the 

existing models in accuracy and variance while achieving statistically significant improvements, 

which increases the reliability and effectiveness of the solution for robotic control and decision-

making tasks. 

Table 5.  Statistical validation of methods (confidence interval & p-value) 

Method 
Sample Mean (x̄) 

(%) 

Standard deviation 

(σ) 

Confidence Interval (95% 

CI) 

p-

value 
CQL 78.5 2.3 78.5 ± 1.96 * (2.3 / √30) 0.047 

BRAC 79.2 2.1 79.2 ± 1.96 * (2.1 / √30) 0.041 

IQL 81.0 2.0 81.0 ± 1.96 * (2.0 / √30) 0.038 

TD3 74.8 2.5 74.8 ± 1.96 * (2.5 / √30) 0.052 

SAC 80.3 2.2 80.3 ± 1.96 * (2.2 / √30) 0.039 

Proposed 

Method 
88.4 1.8 88.4 ± 1.96 * (1.8 / √30) 0.014 

 

Due to its accuracy and precision, the Hybrid AI-Optimization Approach has proven to be 

extremely effective and robust. This approach has significantly improved the results and statistical 

validation of reinforcement learning systems that are robotic and autonomous. Always leveraging 

metaheuristic optimization techniques together with Reinforcement learning leads to rapid 

convergence and adaptive decision-making. Unfortunately, this novel approach has some limitations. 

Although these claims sound extremely promising, there is computational complexity that exceeds 

standard requirements. Approaches such as MuJoCo and OpenAI do not consider the real world. It 

consists of additional sensors, environmental noise, hardware, and unstable surroundings. Other 

factors include learning transfers by itself into real-life situations. Moving forward, further alterations 

should be made to refine coverage, gaps, and other bounds while ensuring that industrial robots are 

able to translate and implement the changes. Even after all of these claims, the challenges are many; 

this claim shifts customs in robotics that are driven by AI greatly which makes autonomous systems 

operating within unstable, flexible global environments highly efficient. 

4. Conclusion 

This paper has developed a Hybrid AI-Optimization Approach, where there is an integration of 

Reinforcement Learning, Deep Learning, and Metaheuristic Optimization in order to improve control 

and decision making by industrial robots. The method worked well in addressing the issues 

associated with conventional reinforcement learning methods, which include slow convergence, 

unstable policy learning, and inefficient exploration-exploitation balance, by adding policy 

improvement Adaptive Gradient-Based Sled Dog Optimization (AG-SDO). The experiments 

performed on MuJoCo, D4RL, and OpenAI Gym Robotics Suite datasets have shown that the 

proposed method outperformed all baseline reinforcement learning methods in terms of robotic 

decision-making accuracy, precision, recall, and overall stability. Furthermore, the proposed hybrid 

framework was found to be effective and reliable, as performance improvements were proven to be 

statistically significant. Lastly, the combination of SDO AG with Reinforcement Learning is shown 

to enable more efficient learning, rapid convergence, and greater adaptability, which suggests the 

method has a broad range of applications in industrial robotics. 

The developed method has its strengths, but in order to fully utilize it, certain aspects need 

further development. For instance, it is known that using deep reinforcement learning models is 

computationally expensive, especially with an automated optimization approach, as it greatly 

increases processing time. Even though the new method has improved the convergency rate, further 

steps need to be taken in order to lower the cost of computation as well as enhance the efficacy of 

the robotic systems in real-time decision making when responding to stringent temporal conditions. 

In addition, it suffers from having to depend on synthetic data sets like MuJoCo and OpenAI Gym, 

which often do not provide adequate robotic environmental uncertainties. These considerations shall 
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serve as the focal point to validate the suggested approach to deploying sapper robotic systems by 

incorporating noise from sensors, disturbances from the environment, and mobile obstacles for 

assessing its effectiveness under realistic conditions. 

For the purpose of sharpening the scope of this work, future work should consider conducting 

refinement regarding the models of Artificial Intelligence. Also, the incorporation of Multi-Agent 

Reinforcement Learning (MARL) will allow the system to be extended to cooperative robotic 

systems where more than one robot is enabled to communicate and collaborate by sharing learned 

policies for more effective choices. The adoption of explainable AI (XAI) techniques is another 

appealing aspect. XAI will enhance the trust and reliability of robotic systems decision-making by 

improving the interpretability of policies that have been learned or by making it easier for engineers 

and operators of such systems to understand the decisions made by autonomous robots. Ultimately, 

another avenue of interest is the improvement of learning algorithms' energy efficiency. AI-powered 

robotics need to be workable under strict conditions in terms of resources; thus, minimal energy 

usage has to be the baseline for any further investigations. 

This study proposes a novel hybrid reinforcement learning method that incorporates an 

optimizing component into a data-centric approach, making it scalable and thus improving 

autonomous robotic systems. The learning efficacy, stability, and adaptability provided by the 

method presented in this research showcase its capability to drive intelligent robotics for industrial 

applications. The next stage will aim to improve the approach's computational efficiency, real-world 

applicability, multi-agent learning features, and the system's overall explainability to progressively 

effortless next-generation robotic automation systems. 
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